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1 Introduction

Mathematics is a field of research acclaimed for elegance and functionality, but often

criticised for its abstract nature. In the educational environment, this becomes evident

with the arbitrary introduction of concepts such as vector spaces and complex numbers,

with no immediate grounding in physical reality. This essay approaches the issue with

an aim to uncover the applications of mathematics and the reasoning behind select-

ing abstract concepts with consideration of their use in elementary quantum mechanics

(QM). Arguably, elementary QM lies in Erwin Schrodinger’s work on the time-dependent

Schrodinger equation (TDSE) and time-independent Schrodinger equation (TISE). This

led to the research question: How does abstract mathematics apply to physical

phenomena in the process of the development of Schrodinger’s equations? QM

is used as context for the discussion of mathematics’ application to the natural sciences,

providing justification for continued mathematical research as a means of supporting

science.

The scope of this essay is dictated by Barton Zweibach’s lectures in Quantum

Physics at MIT. Mathematics outside these lectures is considered, but remains at a

freshman undergraduate level. The essay uses secondary sources which review research

articles from prominent physicists and mathematicians who contributed to the founda-

tion of QM such as Dirac, Schrodinger, von Neumann and Hilbert. A strong focus is

maintained on linear algebra and differential calculus.
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2 Physics

2.1 Wave-function

Probability is the foundation of QM. For a given free particle (a particle not bounded by

external forces), the probability is modelled by an amplitude function, commonly written

as Ψ(x, t). It is a wave-function that changes with respect to position, x, and time, t.

Note that x is usually a position vector, ~x, but for simplicity, extra spatial dimensions are

avoided. Ψ(x, t) outputs a complex number, which lies on the complex plane (or space).

The complex number’s magnitude (or norm) is the value of the amplitude outputted by

the function [Zwe16a].

Similar to classical physics, where the intensity of an electromagnetic wave is pro-

portional to amplitude, the probability of a free particle appearing at (x, t) in space-time,

is given by |Ψ(x, t)|2 (amplitude squared) [Sch16]. Note that |Ψ(x, t)|2 = Ψ(x, t)∗Ψ(x, t),

since Ψ is a complex-valued function. The particle must always exist in space, so the

total probability over all space must equal to 1:

∫ ∞
−∞
|Ψ(x, t)|2∂x =

∫ ∞
−∞

Ψ(x, t)∗Ψ(x, t)∂x = 1 (2.1)

This is important to note for Section 4.8.

2.2 Phase Shift

Since the free particle is modelled by a wave-function, it seems natural to define the

particle with respect to its wave properties. One such important property is a phase,
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which is an angle manipulated with respect to time and position to output an amplitude.

To aid with future derivations, both the momentum and energy must be considered in

the phase.

For this, the de-Broglie wavelength, λ, is used [Zwe16c].

p =
h

λ
(2.2)

λ provides a connection between the momentum of a particle (p) and wavelength of the

wave-function. One might postulate that λ itself can be used as a phase, since it happens

to change as x changes. However, since the phase refers to an angular quantity, it is

important to represent momentum with reference to an angular quantity, which λ is not.

Hence:

p =
h

λ
=

h

2π

2π

λ
= ~k (2.3)

~ is called the reduced Planck constant. k is known as the ”angular wavenumber”. 1
λ

represents how many times per unit distance the wavelength appears. k = 2π
λ

represents

how many radians the wave-function sweeps through on the unit circle per unit distance.

Since k is angular, it can be incorporated easily into the phase.

Similarly, the Planck-Einstein relation can use the energy of a particle to find an

angular quantity. This is [Zwe16c]:

E = hf (2.4)

and to model frequency as an angular quantity:

E = hf =
h

2π
2πf = ~ω (2.5)

ω is the angular frequency of the wave. These give the de-Broglie relations:

p = ~k and E = ~ω (2.6)
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It is important to notice that ω is actually a function of k.

k =
2π

λ
=

2πf

v
=
ω

v
=⇒ ω(k) = kv (2.7)

Hence, two angular quantities have been determined. k can be evolved with respect to

position, such that kx is a certain phase shift. Similarly, ω, can be evolved with respect

to time, such that ωt is a certain phase shift. Combining the two, an overall phase shift

is Φ = kx− ωt.

2.3 The Ansatz:

As for the wave-function’s general mathematical form, a “guess” must be made. QM, and

many fields of mathematics and physics, require such “guesses”, since there might not be

another way to approach the problem. Popularised by Leonhard Euler, it is known as an

“ansatz”. An educated, intelligent starting point.

Several possible wave-functions can be tested, provided the following conditions are

satisfied.

• Output a periodic amplitude,

• Have total probability of 1 over space,

• Never be zero for all values of x at a given time (this would mean the particle simply

disappeared),

• Satisfy the above conditions for any superposition (linear combination of wave-

functions), discussed further in Section 4.3.

There are 4 possibilities of the wave-function which satisfy the above conditions [Zwe16c]:
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1. Ψ(x, t) = sin(kx− ωt)

2. Ψ(x, t) = cos(kx− ωt)

3. Ψ(x, t) = ei(kx−ωt)

4. Ψ(x, t) = ei(ωt−kx)

The first three conditions are satisfied for all 4 functions, but the final condition must be

tested for.

Testing for the Ansatz

1. Ψ(x, t) = sin(kx − ωt):

Consider the wave-function Θ(x, t) = Ψ(x, t) + Ψ(x,−t), such that Θ(x, t) repre-

sents the superposition of the wave-functions moving in the +t direction and the

−t direction. These are perfect opposites of one another with respect to time. This

superposition is chosen to conduct a proof by contradiction.

Θ(x, t) = sin(kx− ωt) + sin(kx+ ωt)

= sin(kx) cos(ωt)− cos(kx) sin(ωt) + sin(kx) cos(ωt) + cos(kx) sin(ωt)

= 2 sin(kx) cos(ωt)

This superposition poses a problem. Whenever ωt = π
2
, 3π

2
, ..., Θ has a value of

0. Hence, there exists t such that for all x : Θ(x, t) = 0. The particle disappears,

rendering the wave-function invalid.
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2. Ψ(x, t) = cos(kx − ωt):

Again, consider Θ(x, t) = Ψ(x, t) + Ψ(x,−t).

Θ(x, t) = cos(kx− ωt) + cos(kx+ ωt)

= cos(kx) cos(ωt) + sin(kx) sin(ωt) + cos(kx) cos(ωt)− sin(kx) sin(ωt)

= 2 cos(kx) cos(ωt)

Similarly, whenever ωt = π
2
, 3π

2
, ... Θ has a value of 0. Hence there exists t such

that for all x : Θ(x, t) = 0. Again, the wave-function is invalid.

3. Ψ(x, t) = ei(kx−ωt):

Consider Θ(x, t) = Ψ(x, t) + Ψ(−x, t), which is a superposition of wave-functions

with opposite values with respect to position. Again, this is an arbitrary selection.

Θ(x, t) = ei(kx−ωt) + ei(−kx−ωt)

=
(
eikx + e−ikx

)
e−iωt

= (cos(kx) + i sin(kx) + cos(kx)− i sin(kx))e−iωt

= 2 cos(kx)e−iωt

Under this superposition, for all x, t : Θ(x, t) 6= 0. This is because for all t : e−iωt 6=

0. Similarly, 4. also works. However, in physics, it is convention to use 3. Hence,

the free particle wave-function can be modelled as [Zwe16c]:

Ψ(x, t) = eikx−iωt (2.8)

Unfortunately, this definition is simplified and models a singular “plane wave”.
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However, not all particles are plane waves with a unique wavenumber, k. Most particles

are a combination of these singular wavenumber plane waves. The most generalised form

of the free particle wave-function involves a superposition of every possible plane wave

[Zwe16d].

Ψ(x, t) =

∫ ∞
−∞

Φ(k)eikx−iωtdk (2.9)

This integral is the Fourier series combination of every possible sinusoidal function. Φ(k)

is a coefficient function which controls the weighting of each wave-function in the super-

position. This is the true free-particle wave-function. For the course of this essay, the

simplified variation will be used, but any results for the simplified variation will apply to

the free-particle.

Interestingly, complex numbers have nestled their way into the wave-function. Schrodinger

hadn’t yet comprehended the appearance of complex numbers, writing in a letter to Hen-

drik Lorentz that “Ψ is surely fundamentally a real function” [Sch26]. This bewilderment

is understandable, considering the function should describe the real world. It just hap-

pened to be that complex numbers were the conventional method of creating a vector

valued function at the time. Feynman went on to describe a wave-function like a dial

going around a circle in QED, breaking the myth that complex numbers were crucial

[Fey85].

This probes the necessity of an abstract mathematical structure like the complex

plane [Kar19]. However, to a practical physicist, the necessity of a structure doesn’t

impact its effectiveness. Schrodinger continued to use complex numbers, even if it seemed

impossible [Sch26].
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3 Operators

An operator is an object which scales a vector by a constant [Sim09]. The wave-function

acts as a vector in this context.

3.1 The Momentum Operator

The purpose of the momentum operator is to operate upon Ψ to extract information

regarding the momentum.

~
i

∂

∂x
Ψ(x, t) =

~
i

∂

∂x
eikx−iωt

=
~
i
(ik)eikx−iωt

= (~k)eikx−iωt

= peikx−iωt

~
i

∂

∂x
Ψ(x, t) = pΨ(x, t) (3.1)

Applying ~
i
∂
∂x

upon the wave-function scales it by the momentum. The operation is

known as the momentum operator, p̂ [Zwe16b].

p̂ =
~
i

∂

∂x
(3.2)

p̂Ψ(x, t) = pΨ(x, t) (3.3)

3.2 The Energy Operator

The momentum operator differentiated with respect to position to extract k, which is

associated with momentum. The energy operator can differentiate with respect to time,
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extracting ω which is associated with energy.

i~
∂

∂t
Ψ(x, t) = i~(−iω)Ψ(x, t) = EΨ(x, t) (3.4)

While differentiating with respect to time is useful, it doesn’t allow for a connection to

the momentum operator (essential to derive Schrodinger’s equations). The momentum-

energy relation can fix this.

E =
1

2
mv2 =

1

2

(mv)2

m
=

p2

2m
(3.5)

The relation can be used to construct the energy operator by replacing p with the mo-

mentum operator [Zwe16b].

EΨ(x, t)

=
p2

2m
Ψ(x, t)

=
p

2m
pΨ(x, t)

=
p

2m

~
i

∂

∂x
Ψ(x, t)

=
1

2m

~
i

∂

∂x

~
i

∂

∂x
Ψ(x, t)

= − ~2

2m

∂2

∂x2
Ψ(x, t)

This defines the energy operator:

Ê =
p̂

2m
= − ~2

2m

∂2

∂x2
(3.6)

Noting this result, one can put together Eq. 3.4 and Eq. 3.6 to create the Schrodinger

equation [Zwe16b].

− ~2

2m

∂2

∂x2
Ψ(x, t) = i~

∂

∂t
Ψ(x, t) (3.7)
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4 The Linear Algebra

4.1 TISE

The energy operator is usually replaced by the Hamiltonian operator, Ĥ. The Hamilto-

nian is associated with finding the total energy in the system, including potential energy

(which was ignored, for simplicity) [Nav16]. Since the Hamiltonian is applied on the

wave-function in a vector space, it can be characterised as a matrix.

ĤΨ(x, t) = i~
∂

∂t
Ψ(x, t) (4.1)

This equation is the TDSE, since it models change with respect to time of a wave-function.

However, the energy operator, Ê = i~ ∂
∂t

, can be replaced with E, since the effect of the

Hamiltonian operator is to find total energy. This inadvertently eliminates any time

dependent components from the equation, providing the TISE [BH20]:

ĤΨ(x) = EΨ(x) (4.2)

Both equations apply differently to the real world. The TISE can model states of particles

which do not change with respect to time: energy levels of an electron on a hydrogen

atom [HH20]. The TDSE can model states that change with respect to time: modelling

an electron’s movement in a changing electric field.

4.2 Eigenvalue Equation

The Schrodinger’s equations happen to have connections to linear algebra concepts. A

matrix is a set of values which describes a linear transformation [Bee17]. An important
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property of a linear transformation are eigenvectors. These vectors satisfy:

M~v = a~v (4.3)

The transformation scales the eigenvectors by a constant, a, known as the eigenvalue.

[Wei20a]. The TISE (Eq. 4.2) is a characteristic eigenvalue equation. Ĥ is the matrix, E

is an eigenvalue of Ĥ, and Ψ is the eigenvector, otherwise referred to as the eigenstate.

The solutions to the TISE are eigenstates, and the corresponding eigenvalues represent

total energy values. Similarly, in Eq. 3.3, p̂ is an operator which solves for the momentum

eigenvalue.

4.3 Linearity

The Hamiltonian satisfies the superposition principle, enough to show that it is a linear

operator [Zwe16a]:

If L̂~v = 0,

Additivity: L̂(~v1 + ~v2) = L̂~v1 + L̂~v2

Homogeneity: L̂(α~v) = αL̂~v

Superposition Principle: L̂(α~v1 + β~v2) = αL̂~v1 + βL̂~v2

(4.4)

The conditions of additivity and homogeneity give the superposition principle [Hee]. In

physics, a system described by a linear operator is generally easiest to work with. The

Navier-stokes equations on fluid mechanics are notorious partly due to their non-linear

nature. However, QM is generally linear. Eq. 4.1 can be rewritten to show the superpo-
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sition principle,

ĤΨ(x, t)− i~ ∂
∂t

Ψ(x, t) = 0(
Ĥ − i~ ∂

∂t

)
Ψ(x, t) = 0

L̂Ψ(x, t) = 0

An application of Ĥ, multiplication by i~, and differentiation with respect to time, are

all linear operations. Hence, the entire operator is linear. This makes Schrodinger’s

equations an appealing model for QM with the added benefit of being able to linearly

combine wave-functions [Dir58].

4.4 The Eigenstates

Any wave-function of a particle can be represented as a superposition of much simpler

wave-functions. The generalised free particle wave-function (Eq. 2.9) represents it math-

ematically with a Fourier series composed of “simple” wave-functions. These “simple”

wave-functions are eigenstates, solutions to the TISE. Using linear combinations of eigen-

states, any wave-function can be represented.

This is similar to representing vectors as linear combinations of their unit vectors:
a

b

c

 = a


1

0

0

+ b


0

1

0

+ c


0

0

1


Similarly in QM:

Ψ =
∑
n=1

bnϕn (4.5)
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where each bn is a coefficient for each eigenstate, ϕn [Dwo]. The eigenstates behave like

unit vectors, which span their vector space of R3. The conditions of a vector space are

the preservation of vector addition and scalar multiplication [Qui+14]. The TDSE has

been shown to support this with the superposition principle.

In a physical context, eigenstates are the possible states of the system [Dir58]. The

Fourier sum takes into account the “weightage” or probability of each possible state with

the Φ(k) function as a coefficient (further explored in Section 4.8). More importantly, each

eigenstate has a corresponding eigenvalue in the TISE. The eigenvalues are measurable

properties in the physical world, and with the TISE, the eigenvalue represents total energy

values. In real life, when a certain eigenvalue (or energy) is measured, it corresponds to

it’s eigenstate. Then, the particle collapses to the eigenstate [Alf08]. This is popularly

referred to as “collapsing the wave-function”.

4.5 Hermitian Matrix

While the eigenstates can span a vector space, they also have other interesting properties

with reference to the TISE:

1. The measured eigenvalues of the TISE are always real since they represent physical

properties (the TISE, specifically, models totals energy) [Wei20b].

2. The eigenvectors of the Hamiltonian matrix are orthonormal [Wei20b]. This means

there are n distinct eigenstates spanning an n-dimensional space and they are all

perpendicular to one another.

These conditions exist because the Hamiltonian operator is Hermitian. This is a
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special characteristic where the complex conjugate transpose of a matrix is equal to itself:

(A∗)T = A† = A (4.6)

4.6 Proof of Hermiticity

The formal condition of hermiticity for Ĥ is [Gri04]:∫ ∞
−∞

Ψ∗ĤΨ∂x =

∫ ∞
−∞

(ĤΨ)∗Ψ∂x (4.7)

This formality can be intuitively confirmed. The probability of a wave-function over all

space is: ∫ ∞
−∞
|Ψ|2∂x =

∫ ∞
−∞

Ψ∗Ψ∂x = 1 (4.8)

Applying a transformation to the initial state of the wave-function ((ĤΨ)∗) or the fi-

nal state of the wave-function (ĤΨ) will always result in a probability of 1 [Gri04].

Nevertheless, this result isn’t at all mathematically obvious. The Hamiltonian operator

(Ĥ = − ~2
2m

∂2

∂x2
= i~ ∂

∂t
) can be shown to satisfy this condition:∫ ∞

−∞
Ψ∗i~

∂Ψ

∂t
∂x

This can be solved with integration by parts:

u = Ψ∗i~ v =

∫
∂Ψ

∂t
∂x

∂u =
∂Ψ∗

∂x
i~∂x ∂v =

∂Ψ

∂t
∂x

∫ ∞
−∞

Ψ∗i~
∂Ψ

∂t
∂x =

(
Ψ∗i~

∫
∂Ψ

∂t
∂x

) ∣∣∣∞
−∞
−
∫ ∞
−∞

∫
∂Ψ

∂t
∂x
∂Ψ∗

∂x
i~∂x

=

(
Ψ∗
∫
i~
∂Ψ

∂t
∂x

) ∣∣∣∞
−∞
−
∫ ∞
−∞

∫
i~
∂Ψ

∂t
∂Ψ∗∂x

=

(
Ψ∗
∫
ĤΨ∂x

) ∣∣∣∞
−∞
−
∫ ∞
−∞

∫
i~
∂Ψ

∂t
∂Ψ∗∂x
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Ψ and Ψ∗ both evaluate to 0 at positive and negative infinity, which is characteristic of

a free-particle whose probability falls to 0 at extremes.∫ ∞
−∞

Ψ∗i~
∂Ψ

∂t
∂x = −

∫ ∞
−∞

∫
i~
∂Ψ

∂t
∂Ψ∗∂x

= −
∫ ∞
−∞

i~
∂Ψ∗

∂t
Ψ∂x

= −
∫ ∞
−∞
−(i~)∗

(
∂Ψ

∂t

)∗
Ψ∂x

=

∫ ∞
−∞

(
i~
∂Ψ

∂t

)∗
Ψ∂x

=

∫ ∞
−∞

(ĤΨ)∗Ψ∂x∫ ∞
−∞

Ψ∗ĤΨ∂x =

∫ ∞
−∞

(ĤΨ)∗Ψ∂x

The Hamiltonian operator is hermitian. In fact, any observable operator (such as

the momentum operator) will demonstrate hermiticity [Gri04].

4.7 Proof of Properties of Hermiticity

To show that the eigenvalues of the matrix are real:

A~v = λ~v

(A~v)† = (λ~v)†

~v†A† = λ†~v†

~v†A†~v = λ†~v†~v

~v†A~v = λ†~v†~v

~v†λ~v = λ†~v†~v

λ~v†~v = λ†~v†~v

λ = λ†
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Hence λ must be real [Qua12]. Secondly, to show that the eigenvectors are orthonormal.

Let there be n distinct eigenvalues for the n×n matrix, A, and let λ1, λ2 be two of these

eigenvalues.

A~x = λ1~x

A~y = λ2~y

Consider ~x · A~y:

= ~x · A~y

= (A~y)†~x

= ~y†A†~x

= ~y†A~x

= ~y†λ1~x

= λ1~y
†~x

= λ1~x · ~y

Alternatively:

= ~x · A~y

= ~x · λ2~y

= λ2~x · ~y

Hence,

λ1~x · ~y = λ2~x · ~y

If ~x · ~y 6= 0, then λ1 = λ2, which contradicts λ1, λ2 being distinct. Hence, ~x · ~y = 0, and

are orthonormal. All eigenvectors of A are orthonormal [Qua16].
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Hermiticity is necessity for a wave-function to be decomposed into orthonormal

eigenstates, because they are required to form a basis for the space which wave-functions

exist in. This vector space can be thought of as an∞-dimensional Euclidean space (R∞),

spanned by eigenstates.

David Hilbert first formalised an ∞-dimensional Euclidean space, which was later

called a Hilbert space and applied to QM by John von Neumann [Neu55]. The Hilbert

space isn’t just a vector space, but it is a vector space where all vector functions are

square-integrable (
∫∞
−∞ |Ψ|

2∂x = 1) [Gri04]. This is consistent with knowledge about

probability. Mathematically, this means that each eigenstate, and its linear combinations,

are normalised [Sch16], always having a total probability equal to 1.

The Hilbert space speaks towards the role of mathematics in physics. Some math-

ematicians argue that mathematics describes the simplest concepts, hence any physical

formalism will inevitably use mathematics. But this position assumes that the math-

ematics behind the formalism is actually simple. The Hilbert space is not a simple or

obvious application [Wig60]. It is especially chosen for its unique properties, not by co-

incidence. It allows for a decomposition of the wave-function into eigenstates, allows for

strictly real eigenvalues and allows for strictly normalised wave-functions. Using these

properties of mathematics in physics leads to remarkable results, because even though

mathematics is an incredibly abstract language, it is an incredibly accurate and effective

language [Wig60].
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4.8 Probability

This information allows for deeper analysis of the coefficients in the superpositions of

wave-functions. It is important that:

∫ ∞
−∞
|Ψ(x, t)|2∂x = 1 (4.9)

Consider the wave-function Ψ(x, t) represented as shown in Equation 4.5:

Ψ(x, t) =
∑
n=1

bnϕn = b1ϕ1(x, t) + b2ϕ2(x, t) + · · ·+ bnϕn(x, t)

In this case, the probability of each eigenstate and its coefficient must sum up to the

probability of the original wave-function. This follows from the principle of superposition.

The bounds from −∞ to ∞ are ignored for clarity.

∫
|Ψ(x, t)|2∂x =

∫
|b1ϕ1(x, t)|2 + |b2ϕ2(x, t)|2 + · · ·+ |bnϕn(x, t)|2∂x = 1

=

∫
|b1|2|ϕ1(x, t)|2 + |b2|2|ϕ2(x, t)|2 + · · ·+ |bn|2|ϕn(x, t)|2∂x = 1

=

∫
|b1|2|ϕ1(x, t)|2∂x+

∫
|b2|2|ϕ2(x, t)|2∂x+ · · ·+

∫
|bn|2|ϕn(x, t)|2∂x = 1

= |b1|2
∫
|ϕ1(x, t)|2∂x+ |b2|2

∫
|ϕ2(x, t)|2∂x+ · · ·+ |bn|2

∫
|ϕn(x, t)|2∂x = 1

Each
∫
|ϕn(x, t)|2∂x has a value of 1 since every ϕn(x, t) is a normalised wave-

function shown in Section 4.7 [Neu55]. Hence:

|b1|2 + |b2|2 + · · ·+ |bn|2 = 1 (4.10)

This is the relationship between the coefficients, relevant in Section 5.3.
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5 The Equation

5.1 Time Evolution

Schrodinger’s equation is a differential equation, and the TDSE is first order (only first

derivative), allowing for it to be solved with separation of variables:

i~
∂

∂t
Ψ(x, t) = ĤΨ(x, t)

i~
Ĥ

1

Ψ(x, t)
∂Ψ(x, t) = ∂t

i~
Ĥ

∫
1

Ψ(x, t)
∂Ψ(x, t) =

∫
∂t

i~
Ĥ

ln Ψ(x, t) = t+ C

ln Ψ(x, t) =
−iĤ
~

t+ C

Ψ(x, t) = e
−iĤ
~ t+C

Ψ(x, t) = Ce
−iĤ
~ t

Consider Ψ(x, t) at t = 0:

Ψ(x, 0) = Ce
−iĤ
~ (0)

Ψ(x, 0) = C

Hence time evolution is modelled by:

Ψ(x, t) = e
−iĤ
~ tΨ(x, 0) (5.1)

The operator e
−iĤ
~ t shows the evolution of the wave-function from time, 0, to time,

t [Sen14]. This is expressed as Û(t), or more specifically Û(t, t0), taking into account an
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initial time:

Û(t, t0) = e
−iĤ
~ (t−t0) (5.2)

This allows Û to operate over all time, not just from 0 to t. In a physical context

the time operator is useful in evolving to find the past and future of a wave-function.

5.2 Matrix Exponentiation

The time evolution operator should strike a concern. There is a matrix in the exponen-

tial. Results from the TDSE have brought about a supposed mathematical impossibility.

Hence, in the early 1900s, linear algebra adapted with Lie theory, allowing for matrix

exponentiation [Col14]. Unfortunately, Lie theory is well beyond this essay. Neverthe-

less, a simple definition of matrix exponentiation can be found from the Taylor series

decomposition of ex.

ex = exp(x) = 1 + x+
x2

2!
+
x3

3!
+ · · · =

∞∑
k=0

xk

k!
(5.3)

It is at this point we can differentiate between ex and the function exp(x). For real

values, it makes sense to call exp(x) as ex, since powers of numbers are well defined on

R. However, for complex numbers and matrices, this doesn’t mean anything. Hence,

literature often refers to ex as exp(x) since the Taylor series decomposition is the true

definition, consistent for real values, complex values, and matrices [San20]. Hence, for a

matrix, M [Kla19]:

exp(M) = I +M +
M2

2!
+
M3

3!
+ · · · =

∞∑
k=0

Mk

k!
(5.4)

This could be proved to converge for all complex matrices, but it is much easier
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to prove for the Hamiltonian matrix which is diagonalisable. Diagonalisation of the

Hamiltonian requires a transformation matrix which only works if the Hamiltonian has

a basis which spans the entire Hilbert space. Since the Hamiltonian is Hermitian, it

spans the Hilbert space with an orthonormal basis. Hence it works to prove the exponent

definition converges for diagonal matrices.

Let matrix, D = 

d1 0 · · · 0

0 d2 · · · 0

... · · · . . . 0

0 · · · 0 dn


Using Eq. 5.4:

exp(D) =



1 0 · · · 0

0 1 · · · 0

... · · · . . . 0

0 · · · 0 1


+



d1 0 · · · 0

0 d2 · · · 0

... · · · . . . 0

0 · · · 0 dn


+



d21
2!

0 · · · 0

0
d22
2!
· · · 0

... · · · . . . 0

0 · · · 0 d2n
2!


+ · · ·

exp(D) =



ed1 0 · · · 0

0 ed2 · · · 0

... · · · . . . 0

0 · · · 0 edn


(5.5)

To rigorously complete the proof that diagonalisation and exponentiation works,

consider diagonalisable matrix, M . M is diagonalised using the transformation matrix,

X, such that X−1MX is diagonalised. After exponentiating the matrix, it can be trans-
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formed back by applying the operations in reverse. Hence:

exp(M) = X exp
(
X−1MX

)
X−1 (5.6)

This can be confirmed using Eq. 5.4. Consider a rearrangement of Eq. 5.6:

X−1 exp(M)X = exp
(
X−1MX

)
= I +X−1MX +

(X−1MX)2

2!
+ · · ·

= I +X−1MX +X−1
M2

2!
X + · · ·

= X−1(I +M +
M2

2!
+ · · · )X

= X−1 exp(M)X

For any diagonalisable complex matrix, M , there is a convergent solution to the

matrix exponential [Kla19], shown by Eq. 5.6. The connection between the abstractness

of the Hilbert space and an actual time evolver is once again, remarkable.

5.3 Application

After acquiring Eq. 5.1, it is important to demonstrate the equation in the context of

an example with numerical values. To do so, the Hamiltonian needs to be expressed in

terms of the possible energy measurements (eigenvalues). The following steps utilise Eq.

4.5 [Lit19].

Ψ(x, t) = exp

(
−iĤ
~

t

)
Ψ(x, 0)

Ψ(x, t) =
∑
n=1

exp

(
−iĤ
~

t

)
bnϕn(x, 0)

Ψ(x, t) =
∑
n=1

bn exp

(
−iĤ
~

t

)
ϕn(x, 0)
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This expresses the wave-function in terms of its eigenstates, allowing the Hamilto-

nian to be evaluated on the n-th eigenstate. Noting the TISE: there are n eigenvalues,

En, for each individual eigenstate, ϕn. Hence, the equation above can be rewritten:

Ψ(x, t) =
∑
n=1

bn(1 + (−it/~)Ĥ +
(−it/~)2

2!
ĤĤ + · · · )ϕn(x, 0)

Ψ(x, t) =
∑
n=1

bn(ϕn(x, 0) + (−it/~)Ĥϕn(x, 0) +
(−it/~)2

2!
ĤĤϕn(x, 0) + · · · )

Ψ(x, t) =
∑
n=1

bn(ϕn(x, 0) + (−it/~)Enϕn(x, 0) +
(−it/~)2

2!
E2
nϕn(x, 0) + · · · )

Ψ(x, t) =
∑
n=1

bn(1 + (−it/~)En +
(−it/~)2

2!
E2
n + · · · )ϕn(x, 0)

Ψ(x, t) =
∑
n=1

bne
−iEn

~ tϕn(x, 0)

Ψ(x, t) = e
−iE
~ tΨ(x, 0) (5.7)

For any system with a set of energy eigenvalues, the wave-function can be solved

for in terms of the corresponding eigenstates and eigenvalues. It is interesting to see that

Eq. 5.7 ties in to the original wave-function definition in Eq. 2.8.

Ψ(x, t) = e
−iE
~ tΨ(x, 0) = e−iωtΨ(x, 0) = e−iωteikx = eikx−iwt

After using simple calculus to derive equations that model the evolution of the wave-

function, and using concepts from Lie theory, the final result is the wave-function itself.

This shows that the theory is mathematically and physically consistent throughout, con-

firming the ansatz’s accuracy.

As for an application, consider the superposition of a system, β [Lit19].

|β〉 =
1√
2
|0〉+

1√
2
|2〉 (5.8)

|β〉 is the wave-function with eigenstates, |0〉 and |2〉. The coefficients of the eigen-
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states satisfy the conditions outlined in Section 4.8. Assume that the associated eigen-

values for each eigenstate are: E0 = ~ω/2, E2 = 5~ω/2. Hence β(t) can be represented

as such:

|β(t)〉 =
1√
2
e

−iĤ
~ t |0〉+

1√
2
e

−iĤ
~ t |2〉

|β(t)〉 =
1√
2
e

−iE0
~ t |0〉+

1√
2
e

−iE2
~ t |2〉

|β(t)〉 =
1√
2
e

−i~ω/2
~ t |0〉+

1√
2
e

−5i~ω/2
~ t |2〉

|β(t)〉 =
1√
2
e−iωt/2 |0〉+

1√
2
e−5iωt/2 |2〉

A very curious result here is that e−iω/2 and e−5iω/2 cannot merge with the coefficient

to their left. If this occurred, the fundamental eigenvalues of this system would change,

which is impossible. If a system can either have energy E0 or E2, it cannot suddenly have

an intermediary energy after a certain time. This would be considerably problematic for

electron energy levels, which are discrete and have an absolute energy value. Hence, the

e−iω/2 and e−5iω/2 merge with the two eigenstates [Cap12]. This is confusing since the

eigenstates were not meant to change with time. However, e−iω/2 and e−5iω/2 are only

phase factors for the eigenstates. Only phase shifts can change the overall probability of

a function. Hence, the eigenstates themselves remain the same [Voo05]. The mathematics

remains true to physical results, even if supposedly contradictory at first.

5.4 Inconsistency with Relativity

Clearly QM is mathematically sufficient in describing small-scale systems. However, this

essay would be incomplete without considering inconsistencies with general relativity.

Firstly, probabilistic descriptions of QM broke fundamentals in deterministic classical

25



physics [Mam15]. The TDSE also assumed the existence of an absolute global time and

an absolute state of reference [MC08]. Both of these mathematical results are inconsistent

with the propositions of general relativity. That isn’t to say that the mathematics itself

is flawed. Literature would indicate that while there are contradictions introduced in the

mathematics, both fields of physics can be practically analysed without issue, accounting

for errors [XP16]. This points to a failure in physical understanding, but a certain

versatility in mathematics as a tool.

6 Conclusion

Differential calculus, and more importantly, linear algebra, are often challenged by aca-

demic communities in their necessity in creating sufficient scientific models. This essay

delves into the usage of mathematics in the development of QM in the early 1900s. The

foundation of describing particles in QM is discussed with reference to Euler’s form,

and then linear algebra is selected as a mathematical structure to support problems in

QM. The results are shown to be consistent, both mathematically (in comparison to the

original wave-function) and physically (in application to real problems).

Furthermore, this essay humours the fundamental question of the necessity of the

application of abstract mathematics in describing the real world. Abstract mathematics,

while “imaginary”, is accurate and surprisingly convenient when considering the func-

tionality of the Schrodinger’s equations. While it is important to consider alternate

explanations and motivations for QM, shown in QED by Feynman, the mathematics

discussed in this essay sacrifice no ability to be versatile and accurate.
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Admittedly, this essay would benefit from a consideration of a variety of other math-

ematical methods of QM, especially Lie theory and Feynman’s alternative to complex

numbers. Assessing different mathematical tools would provide a more comprehensive

resolution to the question.
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