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Section 1 : Introduction 

In the movie Inception, a spinning top is used by the 

protagonist to determine the reality they are in. As an avid 

fan of the movie, I bought myself a spinning top. The way 

the top stays upright for an extended period fascinated me. 

Whilst spinning the top, I noticed the shape of this top were 

different from the ones encountered in my childhood, which 

often have a circular base. It made me wonder – how does its 

shape affect the duration it spins for? What is the most 

efficient shape to maximize its spinning time ? 

 

Figure 1 – Spinning top from the 

movie Inception [1] 

 

When the opportunity arose, I was determined to satisfy my curiosity. Further background 

research has made me realised the complexity, and a lack of available information on this 

matter, making it even more exciting for me to carry out this investigation.   

 

The aim of my exploration is to maximize the spinning time of a top through varying its base 

shape. To effectively investigate the influence of shape on spinning time, I will be keeping 

other variables, such as volume, density and initial angular velocity fixed. Moreover, to 

simplify the problem, I will assume that the torque exerted by air drag is independent of the 

shape of the top (but in reality, drag force depends on surface area and shape). This is to keep 

the influence of friction and air drag consistent, allowing me to solely focus on angular 

momentum. With the following simplifications in mind, I will first determine factors that 

affect the spinning time of the top.  
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Section 2 : Background Physics 

2.1 Forces on a Spinning Top 

To understand the motions of a spinning 

object, I must first understand torque 𝜏  and 

angular momentum, 𝐿. Torque, defined as 

𝜏 = 𝑟×𝐹 (vectors quantities will be 

explained in section 2.2), is the result of 

applying a force, 𝐹 to rotate an object around 

an axis, where 𝑟 is the distance from the 

axisof rotation to the object (Figure 2 ) [2].  
 

Figure 2– Forces exerted on a spinning top [2] 

On the other hand, angular momentum is the rotational analog of linear momentum 𝑝, defined 

as 𝐿 = 𝑟×𝑝. There are 2 special features to angular momentum : it is a conserved quantity, 

and that its rate of change is torque, 𝜏 = !!
!"

 [3]. This will be explored and discussed in more 

detail in section 3.1. 

 

To determine factors influencing the spinning time of a top, I first examined the forces acting 

on it. Figure 3 shows an ideal cone-shaped top rotating about its axis of symmetry on a flat 

surface. 
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Figure 3 – Diagram of a spinning top Figure 4 – Forces exerted on a spinning top 

 

When a top is spinning, it has got an angular momentum 𝐿 along the axis of the top. The 

force of gravity 𝑚𝑔 , where 𝑚 is the mass of the top and 𝑔 is the gravitational acceleration, 

creates a torque 𝜏 perpendicular to 𝐿, which in turn changes the direction of the top’s 

rotational axis (Figure 4). 

 

When gravity is the only external force acting on the top, the magnitude of angular 

momentum is constant but it’s direction changes. Hence the spinning top precesses in a 

constant precession angle 𝜙 provided that the angular speed is above a certain threshold. 

Below this threshold, the top starts to wobble and precession of the top becomes complicated 

(which will be discussed in section 5.2) [4]. Such complications will be ignored in my 

exploration.  

 

However, in reality, air drag and friction from the ground creates an external torque that 

causes a deceleration. This slows the top down and reduces the magnitude of angular 

momentum. When the angular momentum drops below a certain threshold, the top no longer 

precesses steadily and gravity causes the top to eventually fall over. 
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To maximize the spinning time of a top, I would have to minimize the deceleration caused by 

air drag and friction. By assuming that the torque exerted by air drag is independent of the 

shape of the top (stated in section 1), this allows me to solely focus on the change of angular 

momentum. To do so, I first looked into the relationship between angular momentum and 

torque of a point mass. 

 

2.2 Dot and Cross Product 

This investigation will be revolved around vector quantities, hence it is important to 

understand how to manipulate vectors. As opposed to scalar quantities that only have a 

magnitude, vector quantities have both magnitude and direction. Vectors are denoted 𝑎 and 

can be multiplied using dot product (e.g. 𝑎 ∙ 𝑏) or cross product (e.g. 𝑎×𝑏).  

 

 

Figure 5 – Cross Product 

Scaler product/ dot product 

𝑎 ∙ 𝑏 = 𝑎 𝑏 𝑐𝑜𝑠𝜃 

Vector product/ cross product 

𝑎×𝑏 = 𝑎 𝑏 𝑠𝑖𝑛𝜃 

where the magnitude of vector 𝑎 is denoted 

by 𝑎  [5] 

 

The resultant vector from the cross product has a direction that is perpendicular to both 𝑎 and 

𝑏, and has a magnitude equal to the area of a parallelogram with vectors 𝑎 and 𝑏 as sides [6]. 

The direction of the resultant vector can be determined by the right hand rule. It is important 

to note that the order in which the vector is written in determines the direction of the resultant 

vector, where 𝑎×𝑏 = −𝑏×𝑎 (Figure 5)   
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Section 3 : Moment of Inertia  

3.1 Torque and Angular Momentum of a Point Mass 

The angular momentum of an extended object is defined as 

the integral sum of its constituent particles [7]. That is, by 

adding up the angular momentum of particles that make up 

an object, I can find its angular momentum. To do so, I 

first considered the case of a point particle.  

 

Figure 6 – Diagram of Point 

Particle 

Let 𝑟 be the displacement of the particle from a point 𝑃 and  𝑝 = 𝑚𝑣 be the linear 

momentum of the particle, where 𝑚 is the mass of the particle and 𝑣 is its linear velocity 

(Figure 6). As angular momentum is defined as 𝐿 = 𝑟×𝑝 (section 2.1) then the angular 

momentum about point 𝑃 is would be 

     𝐿 = 𝑟×𝑝 = 𝑚𝑟×𝑣 [8] 

It is important to note that the magnitude of 𝐿 depends on the choice of reference point 𝑃.  

If there is a force 𝐹 acting on the particle, then according to Newton’s second law 𝐹 = !!
!"

 , 

there will be a change in momentum, 𝑝. This would result in a torque, τ 

𝐹 =
𝑑𝑝
𝑑𝑡  

→ 𝑟×𝐹 = 𝑟×
𝑑𝑝
𝑑𝑡  

τ = 𝑟×
𝑑𝑝
𝑑𝑡  

As angular momentum,  𝐿 = 𝑟×𝑝 , I can write torque in terms of angular momentum 

To do so, I used the product rule for cross product, !(!×!)
!"

= 𝑟× !!
!"
+ !!

!"
×𝑝 [9]. Thus 

τ = 𝑟×
𝑑𝑝
𝑑𝑡 =

𝑑 𝑟×𝑝
𝑑𝑡 −

𝑑𝑟
𝑑𝑡 ×𝑝 =

𝑑 𝑟×𝑝
𝑑𝑡 − 𝑣× 𝑚𝑣 =

𝑑𝐿
𝑑𝑡  
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Here, I have deduced that torque is proportional to the rate of change of angular momentum. 

This shows that without external torque, angular momentum is conserved. However, 

understanding this relationship alone is not sufficient to determine how do I minimize 

deceleration by external torques (such as air drag and friction). Thus, my next step will be 

establishing the relationship between torque, angular momentum and angular acceleration. 

 

3.2 From Angular Momentum to Angular Acceleration 

If the particle is undergoing any sort of circular motion (doesn’t necessarily have to be 

uniform), then I can rewrite linear velocity 𝑣 in terms of angular velocity 𝜔, defined via 

𝑣 = 𝜔×𝑟  

𝐿 = 𝑚𝑟× 𝜔×𝑟 = 𝑚𝑟!𝜔 

From this, I have established that 𝐿 ∝ 𝜔. The proportionality constant is called the moment of 

inertia of the particle with respect to the point P, which is conventionally denoted by 𝐼, thus 

𝐿 = 𝐼𝜔. 

In the case of a point particle, 𝐼 = 𝑚𝑟!. The moment of inertia will differ depending on the 

mass distribution of the object, but 𝐿 ∝ 𝜔 is general [11]. With this, I can rewrite torque 

acting on the point particle in terms of its moment of inertia. 

τ =
𝑑𝐿
𝑑𝑡 = 𝑚𝑟!

𝑑𝜔
𝑑𝑡 = 𝐼

𝑑𝜔
𝑑𝑡  

 

To simplify the relationship, I rewrote angular velocity in terms of angular acceleration, 𝛼, 

where 𝛼 = !!
!"

 . Hence 

τ =
𝑑𝐿
𝑑𝑡 = 𝐼

𝑑𝜔
𝑑𝑡 = 𝐼𝛼 
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The relationship τ = 𝐼𝛼 is generally true provided that the moment of inertia remains 

constant [12]. From τ = 𝐼𝛼, I realised that the greater the moment of inertia, the smaller the 

angular deceleration caused by air drag and friction. This is based on the earlier assumption 

that torque exerted by air drag is independent of the shape of the top. By assuming this, the 

product of 𝐼𝛼 remains a fixed value. Thus, the spinning time of a top will be maximized when 

the moment of inertia is maximized. 

 

3.3 Moment of Inertia of a Circular Disc 

As mentioned in section 3.1, the angular momentum of an extended object is defined as the 

integral sum of its constituent particles. Due to keeping the initial angular velocity constant, 

the angular momentum of a spinning top is directly proportional to its moment of inertia 

(𝐿 = 𝐼𝜔). Hence I can calculate the moment of inertia of an object by adding up the moment 

of inertia of its constituent particles.To simplify calculations, I will consider a spinning top as 

a stack of circular discs, where its moment of inertia will be the sum of the moment of inertia 

of the discs.  

Suppose there is a circular disk with 

area 𝐴, thickness ∆ℎ, radius 𝑅 and 

mass 𝑚. To calculate the moment of 

inertia of the disc, I broke it down 

into 𝑛 small fragments and treated 

each fragment as point particles 

(Figure 7). For the 𝑖th fragment, its 

moment of inertia would be 

 

Figure 7 – Diagram of Fragment and Disc 

 

∆𝐼! ≅ 𝑟!!∆𝑚!  
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Where 𝑟! is the distance from the axis of rotation to the 𝑖th fragment. Hence the sum of all 

particles would be 

𝐼! = ∆𝐼!

!

!!!

≅ 𝑟!!∆𝑚!

!

!!!

   

Where 𝐼! is the moment of inertia of a disc. At this point, I encountered complications in 

integrating ∆𝑚!. This is because ∆𝑚!  is dependent upon the location of the fragment (which 

makes it a function of 𝑟!. To proceed further, I rewrote ∆𝑚! in terms of 𝑟! . To do so, I first 

defined the density of the material as 𝜌 = !
!
= !

!!
 where 𝑉 is its volume [ 13]. Rearranging 

and subsituting for ∆𝑚! 

∆𝑚! = 𝜌∆𝑉! = 𝜌 ∆ℎ ∆𝐴! = 𝜌∆ℎ ∙ ∆𝑟 ∙ 𝑟!∆𝜃 

Then from Figure 7, I realised that the area of a fragment, ∆𝐴! can be obtained through 

multiplying its sides, thus  ∆𝐴! = ∆𝑟 ∙ 𝑟!∆𝜃 . With this, I can rewrite the equation as 

∆𝑚! =  𝜌 ∆ℎ ∆𝐴! = 𝜌∆ℎ ∙ ∆𝑟 ∙ 𝑟!∆𝜃 

Subsituting this into the formula for moment of inertia 

𝐼! ≅ 𝑟!! ∙ 𝜌∆ℎ ∙ ∆𝑟 ∙ 𝑟!∆𝜃
!

!!!

 

By taking the limit 𝑛 → ∞, the summation becomes an integral 

𝐼! = 𝑟! ∙ 𝜌∆ℎ ∙  𝑑𝑟
!"#$

𝑑𝜃 

where !"#$  is an abbreviation for integration over the whole disc. As the disc is circular 

with a radius of 𝑅, the r-intergral is from 0 to R and the 𝜃 integral is from 0 to 2𝜋. Therefore 

the integral would be 

𝑟! ∙ 𝜌∆ℎ ∙  𝑑𝑟
!

!

!!

!
𝑑𝜃 

Taking out the constant, 𝜌∆ℎ 
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= 𝜌∆ℎ 𝑟! 𝑑𝑟
!

!

!!

!
𝑑𝜃 

Integrating and substituting the boundaries of  𝑟! 𝑑𝑟!
!  

= 𝜌𝛥ℎ
𝑟!

4
!

!!!

!
 𝑑𝜃 

= 𝜌∆ℎ
𝑅!

4

!!

!
𝑑𝜃 

Finally integrating and subsituting the boundaries of  !!

!
!!
! 𝑑𝜃 

=
1
4𝜌𝑅

!∆ℎ 𝜃 !
!! 

=
1
4𝜌𝑅

!∆ℎ(2𝜋) 

𝐼! =
1
2𝜌𝜋𝑅

!∆ℎ  

With the moment of inertia of a single disc, I can then proceed further by using this to 

calculate the moment of inertia of a top.   
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3.3 Moment of Inertia of a Top 

As mentioned earlier, a cylindrically symmetric body, such as a top, can be considered as 

stacked discs, where its moment of inertia will be the sum of the moment of inertia of the 

discs. 

Figure 8 shows such a disc with height 𝐻, 

spilt into 𝑁 discs where each of them has a 

thickness ∆ℎ. The 𝑖-th disc at height ℎ! has a 

radius (as a function of height) 𝑟! = 𝑟(ℎ!). 

From what I have established above, the 

moment of inertia for one disc, ∆𝐼! would 

then be 

 

Figure 8 – Stacked Discs 

 

∆𝐼! =
1
2𝜌𝜋𝑟!

!∆ℎ 

Subsituding 𝑟! = 𝑟(ℎ!) 

∆𝐼! =
1
2𝜌𝜋𝑟!

!∆ℎ =
1
2𝜌𝜋 ∙ 𝑟(ℎ!)

!∆ℎ 

 

Hence the moment of inertia of the top, as the sum of the moment of inertia of its respective 

discs would be 

𝐼!!" = ∆𝐼!

!

!!!

=
1
2𝜌𝜋 ∙ 𝑟(ℎ!)

!
!

!!!

∆ℎ 

Taking the limit 𝑁 → ∞ 

𝐼!"# =
1
2𝜌𝜋 𝑟(ℎ)!

!

!
𝑑ℎ 

Where the ℎ-integral is from 0 to 𝐻 due to that being the height of the top. 
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Section 4 : Optimization 

4.1 Varying the Shape of a Top 

Now that I have the formula for moment of inertia of a spinning top, I wanted to investigate 

the effect changing the base shape has on its moment of inertia. To do so, I set the slope of 

the top as a function of ℎ and investigated the moment of inertia for various shapes. 

 

Figure 9 – top with sides 𝑟 ℎ = ℎ 

I started off by first considering the most basic top 

shape – a cone (Figure 9). By substituting 𝑟 ℎ = ℎ 

and integrating the function, the moment of inertia 

becomes 

𝐼 =
1
2𝜌𝜋 ℎ!

!

!
𝑑ℎ =

1
2𝜌𝜋  

1
5ℎ

!

!

!

=
1
10𝜌𝜋𝐻

! 

 

Substituting the volume of a cone,  𝑉 = !
!
𝜋𝐻! into the moment of inertia of the top 

𝐼 =
1
10𝜌𝜋𝐻

! =
3
10𝜌𝑉𝐻

! 

And from 𝑚 = 𝜌𝑉 

𝐼 =
3
10𝜌𝑉𝐻

! =
3
10𝑚𝐻

! 

 

Afterwards, I investigated the moment of inertia of tops with sides of various power 

coefficient of ℎ. To enable a better comparison between the moment of inertia of various 

shapes, I fixed the volume of the tops as V= !!
!

!
 (could be any consistent value, this is just 

for convenience).  
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Figure 10 – top with sides 𝑟 ℎ ∝ ℎ 

The volume of a top with sides 𝑟 ℎ = 𝑘 ℎ 

(Figure 10) can be written as the integral sum 

of its respective discs. As such a disc would 

have a volume of 𝜋𝑟 ℎ! !, the volume of such 

a top would be 

𝑉 ≅ 𝜋𝑟 ℎ! ! ∆
!

!!!

ℎ 

 

Taking the limit 𝑁 → ∞ 

𝑉 = 𝜋𝑟 ℎ !𝑑ℎ
!

!
 

The proportionality constant 𝑘 of a top with volume 𝑉 and sides 𝑟 ℎ = 𝑘 ℎ (Figure 10) 

could be obtained through substituting 𝑟 ℎ = 𝑘 ℎ  into its volume, where V= !!
!

!
 

𝜋𝐻!

3 = 𝜋(𝑘 ℎ)! 𝑑ℎ
!

!
 

Taking out the constant, 𝜋𝑘! 

𝜋𝐻!

3 = 𝜋𝑘! ( ℎ)! 𝑑ℎ
!

!
 

Integrating and substituting the boundaries of  ( ℎ)! 𝑑ℎ!
!  

𝜋𝐻!

3 = 𝜋𝑘!  
1
2ℎ

!

!

!

 

𝜋𝐻!

3 = 𝜋𝑘!
1
2𝐻

! 

Solving for 𝑘 

𝑘! =
2
3𝐻 
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𝑘 =
2𝐻
3  

Substituting into 𝑟(ℎ) 

𝑟 ℎ = !!!
!

  

With this, I can subsitute 𝑟 ℎ = !!!
!

  into the formula to obtain its moment of inertia 

𝐼 =
1
2𝜌𝜋

2𝐻ℎ
3

!
!

!
𝑑ℎ 

=
1
2𝜌𝜋

4
9ℎ

!𝐻!
!

!
𝑑ℎ 

=
4
18𝜌𝜋𝐻

! ℎ!
!

!
𝑑ℎ 

 

Integrating and substituting 

=
4
18𝜌𝜋𝐻

! 1
3ℎ

!

!

!

 

=
4
18𝜌𝜋𝐻

! ∙
1
3𝐻

! 

Substituting V= !!
!

!
 and from 𝑚 = 𝜌𝑉 

𝐼 =
2
9𝜌𝑉 𝐻! =

2
9𝑚 𝐻! 

From this, I realised that the moment of inertia of a top with sides 𝑟 ℎ ∝ ℎ is smaller than 

that of a cone-shaped top with sides 𝑟 ℎ = ℎ. Thus, I hypothesized that the sharper the base 

of the top, the larger its moment of inertia.  
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Figure 11 – top with sides 𝑟 ℎ ∝ ℎ! 

To investigate this, I considered the moment of inertia 

of a top with sides 𝑟 ℎ ∝ ℎ!, which has a sharper 

base than the 2 cases I have examined above 

(Figure 11). With 𝑉 = !!!

!
, the proportionality 

constant 𝑘 would be 

𝑉 =
𝜋𝐻!

3 = 𝜋 ∙ 𝑘!ℎ! 𝑑ℎ
!

!
 

𝑘 =
5
3  
1
𝐻 

Hence its moment of inertia would be 

     𝐼 = 1
2𝜌𝜋 𝑘ℎ2

4𝐻
0 𝑑ℎ = 𝑘4 ∙ 118𝜌𝜋 ∙𝐻

9 = 25
54𝜌𝜋𝐻

5 = 25
54𝑚𝐻

2 

As the moment of inertia of a top with sides 𝑟 ℎ ∝ ℎ! appears to have the highest moment 

of inertia among the cases I have examined so far, this supports my hypothesis that the 

sharper the base of the top, the larger its moment of inertia. 

 

4.2 Optimizing the Shape of a Top 

 

Figure 12 – top with sides 𝑟 ℎ ∝ ℎ! 

From the cases I examined so far, it appears to be a 

general trend where the larger the power coefficient 

of ℎ, the larger its moment of inertia. This raises a 

couple of questions : is there a power coefficient of ℎ 

in which the moment of inertia is maximized ? If so, 

what is it ? To find out, I considered a top with sides 

𝑟 ℎ = 𝑘ℎ! (Figure 12) and volume 𝑉 = !!!

!
 .  
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The proportionality constant 𝑘 of such a top would be 

𝑉 =
𝜋𝐻!

3 = 𝜋 𝑘ℎ! ! 𝑑ℎ
!

!
 

Taking out the constant, 𝜋𝑘! and simplifying 

𝐻!

3 = 𝑘! ℎ!! 𝑑ℎ
!

!
 

Integrating and substituting the boundaries of ℎ!! 𝑑ℎ!
!  

𝐻!

3 = 𝑘!
1

2𝑥 + 1ℎ
!!!!

!

!

 

𝐻!

3 =
𝑘!

2𝑥 + 1  𝐻!!!! 

Rearranging and simplifying  

𝑘!

2𝑥 + 1  𝐻! !!! =
1
3 

Solving for 𝑘 

𝑘! =
2𝑥 + 1
3𝐻! !!!  

𝑘 𝑥 = ±
2𝑥 + 1
3  

1
𝐻!!! 

As the top is cylindrically symmetric, it doesn’t matter whether I take the positive or negative 

value of 𝑘(𝑥). Still, I will take the positive value of 𝑘(𝑥) so that r is positive.  

 

Substituting 𝑘(𝑥) into formula for the moment of inertia, 𝐼 = !
!
𝜌𝜋 𝑟(ℎ)!!

! 𝑑ℎ and 

integrating with respect to 𝑑ℎ 

 𝐼(𝑥) = !
!
𝜌𝜋 (𝑘 𝑥  ℎ!)!!

! 𝑑ℎ 

=
1
2𝜌𝜋 𝑘 𝑥 ! ℎ!!

!

!
𝑑ℎ 
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 𝐼(𝑥) = !
!
𝜌𝜋 ∙ 𝑘 𝑥 ! !

!!!!
 𝐻!!!!  

This gives me the moment of inertia for a a top with sides 𝑟 ℎ = 𝑘ℎ! and volume 𝑉 = !!!

!
 . 

 

To find the value of 𝑥 in which the moment of inertia is maximized, I will take the derivative 

of 𝐼(𝑥) and set it to zero, calculating !"(!)
!!

= 0 . Afterwards, I will plot the function to 

determine whether it is a maximum, minimum or point of inflexion.  

𝑑𝐼(𝑥)
𝑑𝑥 =

1
2𝜌𝜋 ∙

𝑑
𝑑𝑥 𝑘 𝑥 ! 1

4𝑥 + 1  𝐻!!!! = 0 

Although the derivative seems complicated at first glance, it can be tackled through a series 

of chain, product and quotient rules. Let 𝑢! be 𝑘 𝑥 ! and 𝑣!  be !
!!!!

 𝐻!!!!, thus 

𝑑
𝑑𝑥 𝑘 𝑥 ! 1

4𝑥 + 1  𝐻!!!! =
𝑑
𝑑𝑥 𝑢!𝑣! = 𝑢!

𝑑𝑣!
𝑑𝑥 + 𝑣!

𝑑𝑢!
𝑑𝑥  

First, I used chain rule to find !!!
!"

  

𝑑𝑢!
𝑑𝑥 =

𝑑
𝑑𝑥 𝑘 𝑥 ! = 4𝑘 𝑥 ! 𝑑𝑘 𝑥

𝑑𝑥  

Afterwards, I used product rule to find !!!
!!

  

𝑑𝑣!
𝑑𝑥 =

𝑑
𝑑𝑥

1
4𝑥 + 1  𝐻!!!! = −

4
4𝑥 + 1 ∙ 𝐻

!!!! ∙ ln𝐻 −
4

4𝑥 + 1 ! ∙ 𝐻
!!!!  

Here, I used a series of chain rules to find !
!"

!
!!!!

 and !
!"

𝐻!!!!  

Subsituting !!!
!"

 and !!!
!"

 into !
!"
𝑢!𝑣! 

𝑑
𝑑𝑥 𝑢!𝑣! = 𝑢!

𝑑𝑣!
𝑑𝑥 + 𝑣!

𝑑𝑢!
𝑑𝑥  

= 𝑘 𝑥 ! ∙ −
4

4𝑥 + 1 ∙ 𝐻
!!!! ∙ ln𝐻 −

4
4𝑥 + 1 ! ∙ 𝐻

!!!! + 4𝑘 𝑥 ! 𝑑𝑘 𝑥
𝑑𝑥 ∙

1
4𝑥 + 1  𝐻!!!!  

Rearranging and simplifying  
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𝑑
𝑑𝑥 𝑘 𝑥 ! 1

4𝑥 + 1  𝐻!!!! = 𝑘 𝑥 ! 4
4𝑥 + 1𝐻

!!!! 𝑘 𝑥 ln𝐻 −
1

4𝑥 + 1 +
𝑑𝑘 𝑥
𝑑𝑥  

Subsituting back into !"(!)
!"

 

𝑑𝐼(𝑥)
𝑑𝑥 =

1
2𝜌𝜋 ∙ 𝑘 𝑥 ! 4

4𝑥 + 1𝐻
!!!! 𝑘 𝑥 ln𝐻 −

1
4𝑥 + 1 +

𝑑𝑘 𝑥
𝑑𝑥  

Solving for !"(!)
!"

= 0 

1
2𝜌𝜋 ∙ 𝑘 𝑥 ! 4

4𝑥 + 1  𝐻!!!! ln 𝐻 −
1

4𝑥 + 1 𝑘 𝑥 +
𝑑𝑘 𝑥
𝑑 𝑥 = 0 

 

To proceed further from this point, I found the derivative of 𝑘 𝑥  via !"(!)
!"

= !
!!

 𝑘(𝑥). 

Subtituding 𝑘 𝑥 = !!!!
!

 !
!!!!

 

𝑑𝑘(𝑥)
𝑑(𝑥) =

𝑑
𝑑𝑥

2𝑥 + 1
3

1
𝐻!!! 

Here, I used the product rule. Let 𝑢! be !!!!
!

 and 𝑣!  be !
!!!!

, thus 

𝑑
𝑑𝑥

2𝑥 + 1
3

1
𝐻!!! =

𝑑
𝑑𝑥 𝑢!𝑣! = 𝑢!

𝑑𝑣!
𝑑𝑥 + 𝑣!

𝑑𝑢!
𝑑𝑥  

Using chain rule, 

𝑑𝑢!
𝑑𝑥 =

𝑑
𝑑𝑥

2𝑥 + 1
3 =

3

4 2𝑥 + 1
3

!
! 

=
1
3
2𝑥 + 1
3

!!!
 

Using quotient rule,  

𝑑𝑣!
𝑑𝑥 =

𝑑
𝑑𝑥

1
𝐻!!! = −𝐻!!!! ∙ ln𝐻 

Subsituting !!!
!"

 and !!!
!"

 into !
!"
𝑢!𝑣! 
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𝑑
𝑑𝑥 𝑢!𝑣! = 𝑢!

𝑑𝑣!
𝑑𝑥 + 𝑣!

𝑑𝑢!
𝑑𝑥  

= −
2𝑥 + 1
3

!
!
∙
1

𝐻!!! ln𝐻 +
1
3
2𝑥 + 1
3

!!!
∙
1

𝐻!!! 

Rearranging and simplifying  

=
1

𝐻!!!
2𝑥 + 1
3

!
! 1
2𝑥 + 1− ln𝐻  

Subtituding 𝑘 𝑥 = !!!!
!

 !
!!!!

 

𝑑𝑘(𝑥)
𝑑(𝑥) = 𝑘 𝑥

1
2𝑥 + 1− ln𝐻  

 

Subsituding !"(!)
!(!)

 back into !"(!)
!(!)

 

𝑑𝐼(𝑥)
𝑑(𝑥) =

1
2𝜌𝜋 ∙ 𝑘 𝑥 ! 4

4𝑥 + 1  𝐻!!!! ln𝐻 −
1

4𝑥 + 1 𝑘 𝑥 +
1

2𝑥 + 1− ln𝐻 𝑘(𝑥) = 0 

Taking out the constant, 𝑘 𝑥  

1
2𝜌𝜋 ∙ 𝑘 𝑥 ! 4

4𝑥 + 1  𝐻!!!!𝑘 𝑥 ln𝐻 −
1

4𝑥 + 1 +
1

2𝑥 + 1− ln𝐻 = 0 

Dividing both sides by !
!
𝜌𝜋 ∙ 𝑘 𝑥 ! !

!!!!
 𝐻!!!!𝑘 𝑥  

ln𝐻 −
1

4𝑥 + 1+
1

2𝑥 + 1− ln𝐻 = 0 

=
2𝑥

(4𝑥 + 1)(2𝑥 + 1) = 0 

𝑥 = 0 

However !"(!)
!!

= 0 doesn’t indicate the nature of the function – this could be a maximum, 

minimum or point of inflexion. As calculating the 2nd derivative would be unefficient, I 

decided to plot the anti-derivative of !"(!)
!!

 , which is 𝐼(𝑥), on a graph. This will enable me to 

examine the nature of this point. 
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𝐼(𝑥) =
1
2𝜌𝜋 ∙ 𝑘 𝑥 ! 1

4𝑥 + 1  𝐻!!!!  

Subsituding 𝑘 𝑥 = !!!!
!

 !
!!!!

 

𝐼(𝑥) =
1
2𝜌𝜋 ∙

2𝑥 + 1 !

9 4𝑥 + 1 ∙ 𝐻! 

In order to ensure that the function does not have a dimension, I divided both sides by 𝜌𝐻! 

Plotting ! !
!!!

= !
!
𝜋 ∙ !!!! !

! !!!!
 

 

Figure 13 – Graph of ! !
!!!

 

 

Figure 14 – Graph of 𝑟(ℎ) = ℎ!" 

The graph shows that when 𝑥 = 0, !"(!)
!!

 is a 

minimum. As 𝐼 < 0 is not physically 

possible, values of 𝐼 < 0 will be ignored. 

From its derivative, I know that there is no 

maximum, hence as x tends to infinity, 

moment of inertia I tends to infinity. 

 

This is in accordance with my hypothesis, 

where I proposed that the sharper the base of 

the top, the larger its moment of inertia. 

However, it is physically impractical to have 

a  top with sides 𝑟 ℎ ∝ ℎ! where x is a 

really large number (demonstrated in 

Figure 14). This is because such a top would 

have easily wobble over and could not 

maintain a steady state due to the 

fundamental laws of physics.  
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For instance, the top would easily come into 

contact with the ground when precession 

occurs, which immediate stops the top from 

spinning. A possible alternative solution and 

area of further investigation would be to 

impose physical constraints to the shape of 

the top (Figure 16). By limiting the angle 

between the base of the top and its maximum 

radius for example, this could decrease the 

chances of the top falling over due to the 

sides being in contact with the ground. M 

 

 

Figure 16 – Possible physical constrains to 

the shape of the top 
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Section 5 : Conclusion 

5.1 Conclusion 

The aim of my exploration is to maximize the spinning time of a top through varying its base 

shape. To do so, I first analyzed forces acting on a spinning top. This has enabled me to 

identify factors that affect the spinning time of the top. Through my analysis, I realised that to 

maximize the spinning time of a top, I would have to minimize the deceleration caused by air 

drag and friction. To do so, I first looked into the relationship between angular momentum 

and torque of a point mass. Then, I used this knowledge to derive the relationship between 

angular acceleration and angular momentum. With this, I established that 𝐿 = 𝐼𝜔. As initial 

angular velocity is kept constant in my exploration,  the spinning time of a top will be 

maximized when the moment of inertia is maximized. This is because the larger the moment 

of inertia, the smaller the angular deceleration caused by air drag and friction thus the longer 

the duration span. 

 

With the new focus of my exploration on maximizing the moment of inertia of a top through 

varying its base shape, I looked into how could I calculate the moment of inertia of a spinning 

top. To do so, I first started by considering the case of a point particle, before moving on to 

circular discs. By considering a spinning top as a stack of circular discs, I have successfully 

derived an equation for the moment of inertia of a top based on its slope.  

 

Afterwards, I applied my equation to tops of various shapes, including a cone-shaped top, a 

top with a circular base and a top with a thin base. From my calculations, I have realised that 

the top with a thin base had the largest moment of inertia. Thus, I hypothesized that the 

sharper the base of the top, the larger its moment of inertia. 
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To test my hypothesis, I considered a top with sides 𝑟 ℎ = 𝑘ℎ! and volume 𝑉 = !!!

!
. To 

find the value of 𝑥 in which the moment of inertia is maximized, I calculated the value of 𝑥 in 

which !"(!)
!"

= 0 . Through a complex series of algebraic manipulations, I arrived at a 

solution. However !"(!)
!(!)

= 0 doesn’t indicate the nature of the function – this could be a 

maximum, minimum or point of inflexion. As calculating the 2nd derivative would be 

unefficient, I plotted the anti-derivative of !"(!)
!(!)

 (which is 𝐼(𝑥)) on a graph to examine the 

nature of this point. My graph of 𝐼(𝑥) reveals that there is no maximum to the function, thus 

as x tends to infinity, moment of inertia I tends to infinity. 

 

Relating this to the aim of my exploration, I realised that it is physically impartical to have a 

top with sides 𝑟 ℎ ∝ ℎ! where x is a really large number. This is due to a number of 

physical limitations, outlined in section 4.2. However, additional criterias could be imposed 

to create a spinning top with the maximum moment of inertia. Such areas of further 

investigations will be explored in section 5.3. 

 

5.2 Evaluation of Findings : Assumptions and Limitations 

There are multiple assumptions that I made, which would have affected the validity of my 

findings. First, I assumed the torque exerted by air drag is independent of the shape of the 

top. In reality however, drag force depends on both surface area and shape of the top. This 

was done to simplify the problem, which enabled me to focus on how the shape of the top 

affects its moment of inertia, hence time span. Moreover, I made an implicit assumption of 

the tops having the same maximum height 𝐻 when comparing between tops of different 

shapes. This was done to allow effective comparison, but if time allows, the influence of 

varying the height 𝐻 of the top should be investigated. Furthermore, I only invested tops with 
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slopes that obey the function, 𝑟 ℎ ∝ ℎ!. This is mainly to simplify my exploration, and to 

allow my exploration to remain focused on a goal. Further areas of research could include 

slopes of other functions, such as sinusoidal functions and piecewise functions. Additionally, 

I only investigated the base of the top, disregarding the handles. Although this limits how 

generalizable my findings are, its effects could be easily calculated by adding the moment of 

inertia of the handle into the moment of inertia of the whole top. Lastly, I ignored the 

complications in precession when angular speed of a top drops below the threshold required 

to remain a steady precession. This is because at that point, the top starts to wobble and the 

precession becomes complicated (beyond my understanding of physics). However, it is still a 

general case where the lower the deceleration, the longer the top spins for. This is also a 

reason why it will be challenging to calculate the exact duration the top spins for. Realising 

such complications, I decided to focus my investigation on the relationship between spinning 

time of the top and its base shape as opposed to determining an exact duration. 
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