CS EE World
https://cseeworld.wixsite.com/home

May 2018
17/34
C

Extended Essay

Computer Science

Depth first Search vs. Breadth first Search

To what extent would Depth first search or Breadth first search be suitable for search in graph data structures
used by social networks, taking time and memory as determining factors, in the java virtual machine?

Student Id: glx661

NI Kept Anonymous by CS EE World

Word count: 4047

TABLE OF CONTENTS

Heading Page
Introduction 3
Big data with reference to social networks 4
Why is data from Social networks classified as 4
Big data?
Data Structures 6
Social Network Graphs 9
Methodology and Experimental Set-up 12
Analysis and Evaluation 16
References

21

Appendix

23

1. Introduction

The digital era in computing today, has been greatly affected by a huge desire to protect, store and access data
due to the fact that the usage of computer systems have quadrupled over the years and as a result, given birth
to Big Data analysis. Data is growing faster than ever before and by the year 2020, about 1.7 megabytes of
new information will be created every second for every human being on the planet ." The number of social media
users worldwide from 2010 to 2016 with projections until 2020 has exponentially increased, and in 2018 alone

consisted of an estimated 2.67 billion social media users around the globe, up from 2.34 billion in 20162

As a result, the research question “To what extent would Depth first search or Breadth first search be suitable
for search in graph data structures used by sacial networks, taking time and memory as determining factors in
java”, seeks to investigate which algorithms used in graph data structures would be better suited for search in
data structures implemented by social networking sites like Facebook, Twitter, Google plus etc. as there are
more users on these platforms every day. This research is quite important because, users of such social
networking platforms, perform searches to connect with more people on such networks daily. Thus, the speed of
the search as well as the manageability of the search algorithms that make these features available, is very

important to the user and provider respectively.

Data management interventions and speed to access data has been craved for in recent years, and in a bid to
efficiently help manage all and any type of data (ranging from numerical values to Objects) being produced,

computer scientists produced the concepts of data structures such as arrays, lists, linked lists, queues, stacks,

! Marr, Bernard. “Big Data: 20 Mind-Boggling Facts Everyone Must Read.” Forbes, Forbes
Magazine, 19 Nov. 2015, www.forbes.com/sites/bernardmarr/2015/09/30/big-data-20-mind-
boggling-facts-everyone-must-read/#62e17e3c17b1.

2= All products require an annual contract. Prices do not include sales tax (New York residents
only). “Number of Social Media Users Worldwide 2010-2021.” Statista,
www.statista.com/statistics/278414/number-of-worldwide-social-network-users/.

trees and graphs. Computer scientists also came up with sequential ‘step by step’ ways through which such data

can be processed, managed and then churned into information while stored in such data structures.

1.1 Big Data with Reference to Social Networks

The word “Big Data” comes from the concept that describes one dataset whose size exceeds the typical
database software acquisition and storage, management and analysis. There are comprehensively three broad
categories of Big data that is Structured data, Semi-structured Data and Unstructured data. Structured data is
data that is contained in a field and saved in a record or file. A common example of this is data that is stored in
a relational database or a log file. Conversely, unstructured data can be understood as not being organised in a
particular way. An important example of this will be content on a social media site, such as Facebook. This
content would include images, videos, text and advertisements to name a few, but the content will usually be too
difficult to organise to be stored in a database or log file.3 The data used by any Social network architecture,
could fall into any of such three categories depending on the module being used by the organization needing

the data and for their own purpose.

1.2 Why is data from Social networks classified as Big data?

There are many common features of Big Data, otherwise known as “V” features coined by different researchers

which stand for Volume, Variety, Velocity, Veracity.

Volume: The amount of data being generated by social networks is growing every day. Examples include, new

friendships between users as in Facebook and new face book groups created by users (known as clusters in the

3 Beal, Vangie. “Structured Data.” What Is Structured Data? Webopedia Definition,
www.webopedia.com/TERM/S/structured_data.html.

face book graph), new followers and retweets as in twitter and finally new profile accounts being created by
people joining these social networks to mention a few. Such logistical processes generate large gamut of data

about human beings who patronize such social networks.

Variety: In a bid to provide the best form of socialization and entertainment, social networks have integrated
variety of data - both generated by their users and the organization itself - forms for their users to enjoy. These
different types of data include: image, audio, video, diagram and others. They are derived from different sources
like GPS signals, sensors, ad- hoc network, social networks and many more that capture data and information

updates.

Velocity: For Social networks, data is continuously generated at every time but only useful data are needed for
the processing to give effective information. ‘Velocity’ refers to the increasing speed at which this data is
created, and the increasing speed at which the data can be processed, stored and analysed by relational
databases. The possibilities of processing data in real-time is an area of particular interest, which allows
companies to do things like display personalised ads based on the on the web pages you visit, based on your
recent search, viewing and purchase history as in face book where videos shown on your timeline are based on

your recent account activities.

Veracity: Although there’s widespread agreement about the potential value of Big Data, data is virtually
worthless if it's not accurate. This is particularly true in programs that involve automated decision-making, or
feeding the data into an unsupervised machine learning algorithm. The results of such programs are only as
good as the data they’re working with. Social Networks produce Big data due to the fact that majority of the
data provided by users is almost always authentic as these users are looking forward to reap the full benefits

from registering in these networks. 4

4 McNulty, Eileen, et al. “Understanding Big Data: The Seven V's.” Dataconomy, 8 May 2017,
dataconomy.com/2014/05/seven-vs-big-data/.

2. Data structures

A Data Structure is a way of collecting and organising data in such a way that we can perform operations on
these data in an effective way — It is a storage place for data. The concept of Data Structures is about rendering
data elements in terms of some relationship, for better organization and storage. Data Structures are structures
programmed to store ordered or unordered data, so that various operations can be performed on it easily in
order to churn such data into information. It is normally designed and implemented in such a way that it reduces

the complexity and increases the efficiency.

Anything that can store data can be called as a data structure. Hence, Integer, Float, Boolean, Char etc., all are
data structures. They are known as Primitive Data Structures. However, there are also some complex Data

Structures called Abstract Data structures, which are used to store large and connected data. Examples are:

e Linked List
e Tree
e Graph

o Stack, Queue etc.

All these data structures allow us to perform different operations on data. Data structure selection is normally

based on what type of operation is required for what kind of data being generated.

2.1 Graph data structures
Graphs are one of the most interesting data structures in computer science. Graphs and the trees are somewhat
similar by their structure as they are both considered abstract data structures. The tree data structure is derived

from the graph data structure. However, there are two important differences between trees and graphs:

1. Unlike trees, in graphs, a node can have many parents.

2. The link between the nodes may have values or weights.

The following example shows a very simple graph that can be abstractly represented on the computer:

00!: (2

In the above graph, A, B, C, D, E, F are called nodes and the connecting lines between these nodes are called
edges. The edges can be directed edges which are shown by arrows; they can also be weighted edges in which
some numbers are assigned to them. Hence, a graph can be a directed/undirected and weighted/un-weighted

graph. °

> Bijulsoni. “Introduction to Graph with Breadth First Search(BFS) and Depth First Search(DFS)
Traversal Implemented in JAVA.” Introduction to Graph with Breadth First Search(BFS) and
Depth First Search(DFS) Traversal Implemented in JAVA - CodeProject,
www.codeproject.com/Articles/32212/Introduction-to-Graph-with-Breadth-First-Search-BF.

&

An example of a directed graph on 4 vertices. An undirected graph on 4 vertices'

Since they are powerful abstractions, graphs can be very important in modelling data. In fact, many problems
can be reduced to known graph problems considering the fact that the nodes in the graphs could be
represented as objects, and the edges as relationship objects.

Some real-world solutions that use graph data structures include:

1. Social network graphs: Here, we find Graphs that represent who knows whom and who communicates
with whom. An example is the twitter graph of who follows whom. Such graphs can be used to determine

how information flows, how topics trend etc.

2. Transportation networks. In road networks vertices are intersections and edges are the road segments
between them, and for public transportation networks vertices are stops and edges are the links
between them. Such networks are used by many map programs such as Google maps and Bing maps.
They are used to find the best routes between locations, and also used for studying traffic patterns,

traffic light timings, and many aspects of transportation.

3. Social network Graphs

A social graph is a diagram that illustrates interconnections among people, groups and organizations in

a social network. The term refers to both the social network itself and a diagram representing the network.
Individuals and organizations, called actors, are nodes on the graph® For the purposes of this research, | am
going to discuss graph structures used by social networks and then analyse two algorithms that provide

information from the data stored in the graph.

3.1 Why do social networks use Graph data structures?

What makes graphs special is that they represent relationships between things from the most abstract to the
most concrete e.g., mathematical objects, things, events. A social network is an umbrella with nodes of

individuals, groups, organizations and related systems that tie in one or more types of interdependencies.

However, the social network and type of graph entirely depends on the architecture that is being used by the
company providing the online social network services — That is, for a social network that is going to be
bidirectional in terms of the relationship between nodes, an undirected graph structure is going to be used as in
the Face book graph. Conversely, if the relationship between nodes is going to be one directional, then a
directional graph is used. Social network analysis is focused on uncovering the patterning of people’s

interaction. A major habit of most users on social network involves the feature of Search.

6 “What Is Social Graph? - Definition from Whatls.com.” Whatls.com,
whatis.techtarget.com/definition/social-graph.

3.2 Graph Traversals

In the last years, huge graphs with billions of vertices and edges have become very common because accounts
are being created every day, more relationships are growing between users and finally, more data is being

produced by each node in the network.

Search in graph terminology is known as graph traversal, and is a means of visiting every vertex and edge
exactly once in a well-defined order. There are two basic graph traversals which are Breadth first search
(BFS)and Depth first search (DFS). These algorithms as their names denote, are coined from the manner in

which both traverse(search) a graph.

Breadith first search

Breadth first search is an algorithm used in traversing graphs where traversal is done from a selected node
called the source node and then layer wise thus exploring the neighbour nodes. The algorithm then moves
towards the next-level neighbour nodes. In other words, it explores the neighbours of the neighbours of a
particular node while moving towards the next-level nodes.

So, first move horizontally and visit all the nodes of the current layer, then move to the next layer.

Looking at the graph above, bfs first visits the source node which is 0, and immediately visits its immediate

neighbours all in the same layer 1, 2, and 3 before moving to the next layer to explore the others. The distance

10

between the nodes in layer 1 is comparatively lesser than the distance between the nodes in layer 2. Therefore,

in BFS, you must traverse all the nodes in layer 1 before you move to the nodes in layer 2.

BFS uses a queue used to store a node and mark it as 'visited' until all its neighbours (vertices that are directly
connected to it) are marked. The queue follows the First In First Out (FIFO) queuing method, and therefore, the

neighbours of the node will be visited in the order in which they were inserted in the node.

Depth first Search

Depth first search algorithm is a recursive algorithm that uses the idea of backtracking. It involves exhaustive
searches of all the nodes by going ahead, if possible, else by backtracking.” All the nodes will be visited on the

current path till all the unvisited nodes have been traversed after which the next path will be selected.

DFS
o o o
‘ e © - @
| Va\ AN
o e
e e o
o o o o

DFS is implemented using stacks. A starting node is picked and all its adjacent nodes are pushed into a stack.

A node is then popped from stack to select the next node to visit and all its adjacent nodes are pushed into a

7 Here, the word backtrack means that when you are moving forward and there are no more
nodes along the current path, you move backwards on the same path to find nodes to traverse.

1"

stack. This process is repeated until the stack is empty. However, the nodes that are visited have to be marked

else a node might be visited more than once, and an infinite loop would occur.®

Methodology and Experimental Setup

Concerning the memory used by both algorithms, | hypothesize that BFS would use significantly more memory
than DFS because in its execution, it selects a vertex, inserts its entire adjacent vertices in a queue, then takes
another vertex from memory and also inserts its entire adjacent vertices into the same queue without deleting
any. However, DFS does the same insertion and deletion as BFS, but it removes a node from memory once its
descendants have been expanded. | also hypothesize that there might not be a dominance of either algorithm

with regards to time as the search might depend on other factors that might be beyond the scope of this paper.

| plan to conduct an experiment in java using an external library called “Igrapht” - a popular library used for
implementing graph data structures and algorithms. | am going to be implementing a social network graph in java.
This graph is extracted from Facebook and consists of people (nodes) with edges representing friendship ties,
based on students from Colleges in the United States of America. These Colleges Include California Institute of
Technology, Reed University, Haverford College, Swarthmore College, Middlebury College, Bucknell College, John
Hopkins University and Massachusetts Institute of Technology. The data for these colleges can be found in the

appendix.

8 «“Breadth First Search Tutorials & Notes | Algorithms.” HackerEarth,
www.hackerearth.com/practice/algorithms/graphs/breadth-first-search/tutorial/.

12

| plan to use a mac book air 13’ whose operating system is MAC OS X 10.12.5, has a total of 4 processors and a
total physical memory of 8 Gigabytes. My Integrated development environment (IDE) will be the Eclipse neon.3

because that is what | am most proficient in using as well as the fact that it is a suitable IDE for java programming.

First off, | plan to implement a model graph that has the same number of nodes and relationships as the dataset
| obtained but with randomized relationships between the nodes. | am using the same number of nodes and
edges, but having randomized edges (relationships between the nodes) because it will be quite cumbersome to

implement, for example, a total of 6400 nodes and 251,200 edges(relationships) “manually”.

Nevertheless, because of the randomised nature of the graph | will initially produce, the relationships between
nodes might change every time the program is run thus, | plan to write the generated graph as a serialised object
to a file and then search for a particular node in each graph. | plan to do this in order to ensure that the graph

both algorithms traverse is constant to eliminate any disparities that may arise while collecting data.

| will then implement both DFS and BFS libraries using the Jgrapht library and then measure the time and memory

used by both algorithms by finding initial and final time and memory space, and then subtracting to find the

difference. | plan to use inbuilt java functions to find out the memory and time statistics of both algorithms.

13

Figure 1

public static class RandomGraphCreatorl {

Joe
* A simple class to create a random UndirectGraph

numVertices
numEdges
*/
public Graph<Integer, DefaultEdge> createRandomUndirectGraph(int numvertices, int numEdges) {
GniRandomGraphGenerator<Integer, DefaultEdge> GraphGenerator = new aph

nunVertices, numEdges);
Graph<Integer, DefaultEdge> sourceGraph = new SimpleGraph<>(DefaultEdge.class);

ator<Integer, Default

randomGraphGenerator . generateGraph(sourceGraph, new IntVertexFactory(), null);
return sourceGraph;
}

S
* Integer vertex factory

public class IntVertexFactory implements VertexFactory<Integer> {
private int nextVertex = 1;

@0verride
miblic Tntener createVertax() {

The method createRandomUndirectGraph () graph creates an undirected graph that has its nodes as Int objects who
are randomly connected. However, the number of edges and nodes as parameters for the method are derived from

the real-world dataset of colleges in Table 1.

Name of College | V] (No. of nodes in Graph) | E| (No. of edges in Graph)
California Institute of Technology 769 17000

Reed University 962 19000

Swarthmore College 2000 61000

Middlebury 3000 125000

Bucknell College 4000 159000

John Hopkins University 5000 187000
Massachusetts Institute of 6000 251000
Technology

The dfsSearch() and bfsSearch()methods — shown in figures 2 and 3 - were implemented with the help of Jgrapht

and traversed the graph to find a specific node which was randomly generated and recorded as 745.

private static <Int> void bfsSearch(Graph<Int, DefaultEdge> graph, Int search) {
GraphIterator<Int, DefaultEdge> iterator = new DepthFirstIterator<Int, DefaultEdge>(graph);

private static <Int> void dfsSearch(Graph<Int, DefaultEdge> graph, Int search) {

try { GraphIterator<Int, DefaultEdge> iterator = new DepthFirstIterator<Int, DefaultEdge>(graph);
while (iterator.hasNext()) {
try {
if (literator.next().equals(search)) { while (iterator.hasNext()) {
System.err.println("Not what you are looking for "); // System.out.println(iterator.next());
} else {
System.out.println("Found search in graph: " + search); if (literator.next().equals(search)) {
break; System.err.println("Not what you are looking for ");
} else {
System.out.printin("Found search in graph: " + search);
3} break;
} catch CException e) { }
System.err.println("Error in program ");
} 1
1 } catch (Exception e) {
System.err.println("Error in program ");
}
1

14

In order to get data to do with the time and memory used during the execution of a particular search, the java

code in figure 4 below was implemented.

[} Graph = ReadGraph(Graph);
32 System.gcQ);
Thread.sleep(5000);

long InitialMemory = runtime.totalMemory();
long begin = System.currentTimeMillis();

bfsSearch(Graph, 745);

41 long endd = System.currentTimeMillis();
4 long freeMemory = runtime.freeMemory();

long usedMemory = (InitialMemory - freeMemory);
long time = endd - begin;
System.out.println((usedMemory) / 1024 * 1024 + "mb");

50 System.out.println(time + "millisecs");

! fig. 4

| decided that after Reading the graph from the file, | needed to ensure that all unused objects generated from
the reading of the file were deleted from memory, so that it doesn't affect the memory measurements | get. Thus,
| run the Garbage collector explicitly. | then took measurements for memory and time by wrapping them around
the search method as shown in figure 4 above. The memory and runtime of both algorithms time were found with

the help of the java bench marking class Runtime.

An example of the whole Program — showing both writing and reading of the Caltech Graph - was executed as

shown below for all the Colleges and their respective number of nodes and edges (relationships).

1 package ee;
- L 22 public class jgraphtest {
5 3®import java.io.FileInputStream;[]
public static void main(String[] args) throws IOException, ClassNotFoundExcepti
Runtime runtime = Runtime.getRuntime();

18
19 public class jgrophtest { Graph<Integer, DefaultEdge> Graph = null;

) 55
20 |
public static void main(String[] args) throws IOException, (lassNotFoundException { 8 System.out.println("The node that will be looked for is " + "745");
) Graph = ReadGraph(Graph);
RandomGraphCreatorl RnmGraph = new RandomGraphCreatorl(); 31
3 System.ge();

System.out.printIn(" Making a Caltech Graph : 769 nodes , 17K edges "); Thread. sTeep(5000);

Graph<Integer, DefaultEdge> Graph = RnmGraph.createRandomUndirectGraph(769, 17000); 36 long InitialMemory = runtime.totalMemory();
3 long begin = System.currentTimeMillis();
HriteGraph(Graph); y bfsSearch(Graph, 745);
i long endd = System.currentTimeMillis();

System. out.println(Graph.toString());

long freeMemory = runtime.freeMemory();

System.out.printIn(" done writing Caltech Graph to file "); 44 long usedMemory = (InitialMemory - freeMemory);

long time = endd - begin;

35 System. exit(0);
3¢ System.out.println((usedMemory) / 1024 * 1024 + "mb");
System.out.println(time + "millisecs");
} 1
}
Markers Properties Servers Data Source Explorer [i Snippets [E) Console 53

15

Analysis and Evaluation

Despite the fact that the repository that provided me with information about the Facebook relationships of students
in many universities in the United States, | chose these Universities based on whether they were co-educational,

in order to alleviate any gender inconsistencies, and most importantly based on how much each university’s nodes

Comparison of the Time used by DFS and BFS to find node 745

W ers B DFs

Time for search /millisecs

Selected Universities

Graph 1.

and edges varied from each other in order to establish a huge difference to have significant effects.

Graph 1 shows that DFS used less time to find node 745 in Caltech, Reed, Haverford, Swarthmore, Bucknell and
MIT. However, BFS used less time to find node 745 in Middlebury and John Hopkins. Therefore, overall, DFS used
less time to search for node 745. However, with BFS finding node 745 in the graph structure of 2 schools in lesser
time compared to DFS, | was forced to explore other factors aside the design of both algorithms such as the
structure of the graph, the position of the node being searched for in the graph, or anomalies. | retook data for
the Middlebury and John Hopkins graphs to investigate whether | had an anomaly. However, the data still remained
consistent in terms of BFS using less time. Due to Jgrapht's limitations and my programming skills, there was no

way | could determine the structure of the tree or the position of the node in the implemented graphs of both

16

schools. Hence, | found out the number of edges node 745 had in the graph of Middlebury and John Hopkins, and

Node 745 had 85 and 66 edges respectively.

From this information, | could not find any reason why BFS had lesser time in finding node 745 however, thinking
about the approach both algorithms use — i.e. exploring the widest nodes first (as in BFS) and exploring the
deepest nodes first (as in DFS) — | am hypothesizing that perhaps node 745 was wider in the graphs of both

Schools, hence BFS took less time.

Graph 2.

Comparison of the Memory used by BFS and DFS to find node 745

@ ers @ DFS

175000000
50000000

Selected Universities

Memory Used / mb

The memory used by both algorithms during the search for node 745 was very close and sometimes even had
the same value. In Graph 2, the universities labelled with the green circle had BFS and DFS use the same amount
of memory in the execution of the search. However, all the universities in the black ellipses, had DFS use less
memory compared to BFS. The closeness of the memory used in Reed and Haverford — if we relate it back to
design of both algorithms — made me speculate that perhaps both BFS and DFS explored the same number of

nodes.

17

private static <Int> void dfsTraverse(Graph<Int, DefaultEdge> graph) {

GraphIterator<Int, DefaultEdge> iterator = ne
try {

}e

}

while (iterator.hasNext()) {
if (literator.next().equals(745)) {
System. err.printin(iterator.next().tostring());
} else {
System.out.println("Found search in graph: " + "745");

break;

1

atch (Exception) {

System.err.println("Error in program ");

w DepthFirstIterator<Int, DefaultEdge>(graph)wice

private

}
} catch (Exception e) {

Figure 5

wyuppressnarnn gs(_unusea)

static <Int> void bfsTraverse(Graph<Int, DefaultEdge> graph) {

GraphIterator<Int, DefaultEdge> iterator = new BreadthFirstIterator<Int, DefaultEdge>(graph);
try {
while (iterator.hasNext()) {

if (literator.next().equals(745)) {

System.err.println(iterator.next().tostring();

} else {

System.out.println("Found search in graph: " + "745");

break;

1

System.err.println("Error in program ");

However, after implementing a DFS and BFS traverse methods shown in fig. 5, | realised that in the graph for

Reed, BFS explored 481 nodes whereas DFS explored only 133 nodes.

Surprisingly, in the graph of Haverford, both BFS and DFS algorithms explored 500 nodes each before finding

node 745. Hence making my speculations not fairly accurate. To answer why both algorithms used up the same

memory, | think that perhaps memory profiler applications could be used to investigate this.

Nevertheless, out of curiosity, | decided to find out the number of nodes explored by each search algorithm in the

graphs of the universities in Graph 2 that had an “explicitly” significant difference when the graph is looked at (i.e.

Middlebury and MIT). | found out that in the Middlebury graph, DFS explored 304 nodes before finding node 745;

however, BFS explored an outstanding 1500 nodes before finding node 745. In the graph of MIT, DFS explored

869 nodes and BFS explored a massive 3000 nodes before finding node 745. Therefore, the number of nodes

explored could be a reason for the memory size.

University (BFS) No. of nodes | (DFS) No. of nodes
explored explored
Caltech 63 262
Reed 481 133
Haverford 500 500
Swarthmore 1000 1000
Middlebury 1500 304
Bucknell 2000 2000
John Hopkins 2500 2500
MIT 3000 869

18

However, after finding out the number of nodes explored in all graphs by both algorithms, | realised that my
speculation of memory size and nodes explored was quite inconsistent with John Hopkins, Haverford, Swarthmore
and Bucknell, as both algorithms had explored the same number of nodes, but still had DFS use less memory. In
the case of Caltech, DFS explored more nodes than BFS, however, DFS still used lesser memory compared to BFS

according to the data shown in Graph 2.

Even though the number of nodes explored did not have a direct relationship with the memory used by both
algorithms, it gave me a sense of the position of node 745 in the graphs where the number of nodes explored
were not same. For example, in the graph of Middlebury, | could predict that node 745 is deeper in the graph
because it took DFS less memory and time to get to it than it took BFS because BFS was exploring breadthwise
whereas DFS was exploring depth wise; Therefore, the DFS got to node 745 quicker using less memory than the
BFS. In the case of Caltech, due to the difference in the number of nodes explored by both algorithms, | could
predict that in its graph, node 745 was in a much wider position thus, BFS explored less nodes and got to it.
Intuitively, if BFS explored less nodes, then it should be faster than DFS in finding node 745. However, according

to graph 1, DFS took less time to find node 745.

Due to inconsistencies both in Graph 1 and Graph 2, | think a major flaw in my design is that fact that | did not
have any method that could provide information on the position of node 745 or the structure of the graph

implemented. Such an inclusion could have given better information to draw suitable conclusions from.

Possible extensions of this paper could include implementing one graph structure with a set number of nodes and
randomized edges, and finding randomized nodes in the graph using DFS or BFS. Another extension of this paper
could be the implementation of a graph that models an actual real-world data set of people’s relationships, and

finding out whether there might be values to do with time and memory that are more consistent.

19

Conclusions

According to my data, Depth first Search can generally be used for search in social graph data structures when
the priorities of the organization implementing the system has to do with conserving memory and time. However,
breadth first search can be used for search when such metrics are not priorities. Concerning the number of nodes
explored and memory used, depth first search is mostly efficient. However, it might not always be the case as
reflected by my data. Nevertheless, even though the time used by both search algorithms is dependent on the
path they take —that is, whether deep first or wide first- there might still be other factors that are beyond the

scope of this paper that are responsible for determining how much time and memory can be used by DFS or BFS.

20

References

Marr, Bernard. “Big Data: 20 Mind-Boggling Facts Everyone Must Read.” Forbes, Forbes
Magazine, 19 Nov. 2015, www.forbes.com/sites/bernardmarr/2015/09/30/big-data-20-mind-

boggling-facts-everyone-must-read/#62e17e3c17b1.

* All products require an annual contract. Prices do not include sales tax (New York residents
only). “Number of Social Media Users Worldwide 2010-2021.” Statista,

www.statista.com/statistics/278414/number-of-worldwide-social-network-users/.

Beal, Vangie. “Structured Data.” What Is Structured Data? Webopedia Definition,

www.webopedia.com/TERM/S/structured_data.html.

McNulty, Eileen, et al. “Understanding Big Data: The Seven V's.” Dataconomy, 8 May 2017,

dataconomy.com/2014/05/seven-vs-big-data/.

Bijulsoni. “Introduction to Graph with Breadth First Search(BFS) and Depth First Search(DFS)
Traversal Implemented in JAVA.” Introduction to Graph with Breadth First Search(BFS) and
Depth First Search(DFS) Traversal Implemented in JAVA - CodeProject,

www.codeproject.com/Articles/32212/Introduction-to-Graph-with-Breadth-First-Search-BF.

21

“What Is Social Graph? - Definition from Whatls.com.” Whatls.com,

whatis.techtarget.com/definition/social-graph.

“Breadth First Search Tutorials & Notes | Algorithms.” HackerEarth,

www.hackerearth.com/practice/algorithms/graphs/breadth-first-search/tutorial/.

“Time and Space Complexity Tutorials & Notes | Basic Programming.” HackerEarth,
www.hackerearth.com/practice/basic-programming/complexity-analysis/time-and-space-

complexity/tutorial/.

22

Appendices

Appendix 1

Breadth first search Depth first search
No. of Nodes|NO. of Edges| memory/mb | Time /ms memory/mb | Time /ms
745 trial 1 trial 2 trial 3 avg.time trial 1 trial 2 trial 3 avg. Time
University
Caltech 769 17,000 | 118717440 77 78 66 73.67 118716416 64 60 59 61.00
Reed 962 19,000 117965824 58 78 71 69.00 117965824 58 68 56 60.67
Haverford 1000 60,000 134845440 146 184 135 155.00 132119552 136 139 131 135.33
Swarthmore 2000 61,000 134251520 166 166 177 169.67 134250496 158 111 169 146.00
Middlebury 3000 125,000 | 109386752 164 176 167 169.00 106659840 195 171 188 184.67
109387776 199 179 164 180.67 106659840 213 178 166 185.67
Bucknell 4000 159,000 94415872 184 186 176 182.00 97141760 165 181 176 174.00
John hopking 5000 187,000 87044096 861 774 718 784.33 84320256 1840 717 761 1106.00
87044096 698 700 716 704.67 87042048 748 788 789 775.00
MIT 6000 251,000 173066240 877 1052 882 937.00 173041664 909 856 876 880.33
this shows the data table that was used in plotting Graph 1 and Graph 2.
Appendix 2
-
Graph Name 4 M 4 El ¢ dnx ¢ davg r M ¢ Tag Tmax ¢ Kavg K K & Oneu Size ¢ Download
ocfb-Caltech36 43 007 | 359K | 466 aK 0.41 029 36 12 46 KB & Download
39 002 | 20K | 302 aK 032 022 35 |10 52KB & Download
PT— 82 007 | 2M 1K 13K 032 025 64 |17 152 KB & Download
43 006 | 506K | 333 5K 031 021 35 |10 91KB & Download
73 006 | 2M 999 20K 030 023 &1 |1 157 KB & Download
fb-Amhersta1 81 006 | 3M 1K 15K 031 023 64 |10 235kB & Download
fb-Bowdoind7 74 006 | 2M 946 22K 020 022 59 |9 219KB & Download
2 96K 602 83 003 | 3M 1K 19K 030 022 64 |15 249KB & Download
3K 12K 404 85 007 | 3M 1K 12K 0.29 023 68 |1 290kB | & Download
fb-USFCA72 3K 65K 405 48 009 | M 415 7K 0.27 019 44 |10 179 KB & Download
3K mK | 610 20 004 | 3M 1K 19K 0290 021 63 14 295KB | & Download
3K 3K 769 2 067 273 52 0.03 000 |4 4 12K8 & Download
3K 90K | 478 61 005 | 2M 570 11K 026 |07 |50 |1 241K8 & Download
3K 97K 349 65 004 | 2M 641 7 0.28 019 49 |9 261KB & Download
3K 95K | 746 63 006 | 2M 613 20K 026 |07 |52 10 254KB | & Download
3K MoK | 482 77 010 | 3M 830 12K 0.25 018 61 |10 315K8 & Download
3K 125K 008 | 3M 1K 13K 0.28 021 63 |13 327kB | & Download

473 ‘51

23

4K 159K lsoe 83

a 138K | 2K 70
f socfb-Howard90 4K 205K 1K 101
ax 185 | 581 90
f socfb-Rochester3s 5K 161K 1K 70
5K 198K | 973 78
.m 5K 187K I 886 72
f socfb-Wake73 5K 279K | K 103
6K | 218K | 930 68
I 6K | 251K I 708 78

4am

3Mm

™

&M

5M

oM

am

™

1K 10K
784 62K
2K 52K
K 18K

954 16K
2K 49K
689 17K
1K 28K

60

57

82

73

57

63

65

86

57

73

425 KB

371KB

536 KB

490 KB

442 KB

543 KB

510 KB

747 KB

610 KB

691KB

& Download

& Download

& Download

& Download

& Download

& Download

& Download

& Download

& Download

& Download

This shows the repository from which | took the number of nodes and edges from according per university

Facebook data.

Appendix 3.

public static void WriteGraph(Graph<Integer, DefaultEdge> Graph, String name) {

try {
FileOutputStream file

ObjectOutputStream wri
write.writeObject(Grap

write.close();
} catch (I0Exception e) {

= new FileOutputStream(name+".txt");

te

h);

= new ObjectOutputStream(file);

// TODO Auto-generated catch block

e.printStackTrace();

}

@SuppressWarnings("unchecked")

public static Graph<Integer, DefaultEdge> ReadGraph(Graph<Integer,

throws ClassNotFoundException {

try {
FileInputStream fileln

ObjectInputStream read

Graph = (org.jgrapht.Graph<Integer, DefaultEdge>) read.readObject();

read.close();
} catch (I0Exception e) {

new FileInputStream(name+".txt");

new ObjectInputStream(fileln);

// TODO Auto-generated catch block

e.printStackTrace();
}

return Graph;

this shows my write graph and read graph method used in my program.

DefaultEdge> Graph , String name)

Appendix 4.

Q_ caltechlixt

DOCUMENTS

B Caltech.txt

file_46622 (1).doc

b file_46622.doc
SIRI SUGGESTED WEBSITES
(¢ caltech.edu
cms.caltech.edu
gps.caltech.edu
WIKIPEDIA

@ california Institute of Technology
WEB VIDEOS

Il Ripples of Gravity, Flashes of Light
El The Sound of Two Black Holes Coll...

Il Variety of Gravitational Waves and...
MAPS

© cCaltex

/

“Isrorg.jgrapht.graph.SimpleGraph1536046@xr#org.jqrapht.gr
aph.AbstractBaseGraphOxd¥u?+Z
allowinglLoopsZallowingMultipleEdgesL
edgeFactorytLorg/jgrapht/EdgeFactory;LedgeMaptLjava/util/
Map;L specificst'lLorg/jgrapht/graph/specifics/
Specifics;xpsr'org.jgrapht.graph.ClassBasedEdgeFactory2636
7798L edgeClasstLjava/lang/
Class;xpvrorg.jgrapht.graph.DefaultEdge-8195227xrorg.jgrap
ht.graph.IntrusiveEdge-8195227LsourcetLjava/lang/
Object;Ltargetg~

xpsrjava.util.LinkedHashMap4iN\1.°Z
accessOrderxrjava.util.HashMap/iv ' —F

loadFactorl thresholdxp?@' wABhsg~)
srjava. lang.Integer,t§ A48Ivaluexrjava. lang.Numberl i

itaxpesg~.q~sge
sg~»>sg~Dg~sg~
sq~' g~Ssg~

sq~ sq~Lsg~
sg~Asg~eg~9sq~
sgq~Isg~<g~Bsg~
sg~nsg~égKsg~
sq~"g~Rg~Tsa~
sg~+sg~ta~\sqe
gq~esq~
sq~€sg~?g~gqsq~

sg~isgrdgahsge

sg~—sq~{g~sa~
sq~£sg-Ng~sa~

sq~USQaeg~'SQ~ SQNVASQNVENRSON
g~@sg~_ sqr—sq~gr3sg
sg~sq~Egresa~
sg~"sg~qa~Esq~
sg~esg~ga~Nsq~
sg~UsgqrgaVsa~
sq~Csqrige~_sg~

sg~-sq~Jg~sa
sq~"sqvkg~!sg~ sga—
sq~sq~§Q~—
sq~dsqgrmgabsge
sq~Msg~g~?san
sg~sq~%qrHs g~
sq~{sqvzg~sq~
sg~9sq~{g~Ysqg~
sq~isg~sag~bsgn
sq~/sg~fgvksgn
aq~Zsq~g~tsge

sg~*sg~?
sq~}sgeTgensge
sg~Vsg~!gavsge

sq~'sQvngeysqe sqv sqeia~|sqe sgvYsgeTgsge

...sh HD » Users » NKAY » Desktop » stuff » ExtendedEssay copy » Caltech

Q reed fxt

DOCUMENTS

B Reed.ixt
SIRI SUGGESTED WEBSITES

& Show allin Finder...

reed.co.uk

“Isrorg.jgrapht.graph.SimpleGraph1536046@xr#org.jgrapht.qr
aph.AbstractBaseGraphOxd¥u?+Z
allowinglLoopsZallowingMultipleEdgesL
edgeFactorytLorg/jgrapht/EdgeFactory; LedgeMaptLjava/util/
Map;L specificst'Lorg/jgrapht/graph/specifics/
Specifics;xpsr'org.jgrapht.graph.ClassBasedEdgeFactory2636
7798L edgeClasstLjava/lang/
Class;xpvrorg.jgrapht.graph.DefaultEdge-8195227xrorg.jgrap
ht.graph.IntrusiveEdge-8195227LsourcetLjava/lang/
Object;Ltargetg~

xpsrjava.util.LinkedHashMap4iN\1¢°Z
accessOrderxrjava.util.HashMap/iv'—F

loadFactorl

srjava.lang.Integer, 1§ Aa8Ivaluexrjava. lang.Number(i

itaxpsg~ig~sg~
g~sg~
sgsgreg~$sg
Q~—sqg~
sg~=sq~q~9san
sq~ésq~egBsg~
sq~ " sq~EgKsg~
sg~flg~Nsg~

sg~Bsq~Wg~Wsg~
sqrusgvige' sge
sgMmsQ~, g~isge
sq~, sq~figrsg
sq~Bsg~Sa~{sq~
sg~0sq~@g~Nsg~

sg~sq~Aq~sg~

sg~asq~q~0sg~

thresholdxp?@ wAJ8sg~
sg~IsqeBgesge sgeisge
sq~"sg~dgrsge

sq~Psg~}a~'sg~

sq~[sqrigelsge
SQMWSQNgVRS O sqg~,sa~/
sg~£sg~Ng~3sq~ sg~tsg~Ga~6sq~
sg~@sq~tg~<sg~ Sg~0SQege?Sa
sg~#sqlg~Esg~ sqesg~AgaHsge

sq~

sg~zsqvegq~Qsg~ sgvsqrageTsa~

sg~ sgq~; q~Zsge sq~ésq~Ig~]l s
sqv.sgeigecsge sqaRsgeégrfsge

sq~, sq-la~lsg~ sg~@sgrvgosge
sq~9sqrdgusq~ sg~§sgeEqexsge
sg~Gsqrqevsge sqasgedgaAsge
sq~.sq~Eqvésq~ sg~{sqvg~asa~

25

| Q_ haverford.txt

DOCUMENTS

B Haverford.txt

WIKIPEDIA

@ Haverford College
SIRI SUGGESTED WEBSITES

haverford.edu
2 haverford.org

“ en.wikipedia.org
NEWS

@® WATCH: Springfield, Haverford hig...

MAPS

%., Haverford, PA, United States
WEB VIDEOS

Bl Animaniacs Innuendos

Tom Haverford - No!

Dennis Prager Interviews Haverfor...

DEVELOPER

Q_ swarthmore.txt

DOCUMENTS

B swarthmore.txt

quickbrown.txt
WIKIPEDIA

@ Swarthmore College
SIRI SUGGESTED WEBSITES

E! swarthmore.edu
“ swarthmorepa.org

@ swarthmoreathletics.com
WEB VIDEOS

/ |
“Isrorg.jgrapht.graph.SimpleGraph1536046@xr#org.jgrapht.ar
aph.AbstractBaseGraphOxd¥u?+Z
allowinglLoopsZallowingMultipleEdgesL
edgeFactorytlLorg/jgrapht/EdgeFactory;LedgeMaptLjava/util/
Map;L specificst'Lorg/jgrapht/graph/specifics/
Specifics;xpsr'org.jgrapht.graph.ClassBasedEdgeFactory2636
7798L edgeClasstLjava/lang/
Class;xpvrorg.jgrapht.graph.DefaultEdge-8195227xrorg.jgrap
ht.graph.IntrusiveEdge-8195227LsourcetLjava/lang/
Object;Ltargetg~
xpsrjava.util.LinkedHashMap4iN\1¢°Z
accessOrderxrjava.util.HashMap/iV'—-F
loadFactorl thresholdxp?@Awi* sq~)
srjava.lang.Integer,t§ A48Ivaluexrjava. lang.Number(~i
itaxpsg~jg~sg~ sq~Esq~Hg~sg~ sgvsga~Tgesge
sq~asqvhgvsa~ gvsa~gesa~ sq~"sgMla~ sg~
sg~YsgeLgaisge sqresqQe=ga&sQe~ SQasqege) sae
sg~esgr0g~, sq~ sg~3sge~ge/sq~ sQ~TsgaGaa2sge .
sq~sqPq~5sg~ sgeBsqegeBsge sgaEqa%ge;sge sgeIsge
g~=sq~ sq~EsgvXg~@sq~ sq$sgepa~Csge sg~{sqrog~Fsg~
sq~@sg~)g~Isge sga{goEqelsge sgeOsgeigaNsg~
sgr~vsgelg~Qsg~ sg~{sgq~“g~Tsq~ sg~@sg~ gaWsg~
q~Psg~g~Zsg~ sg~/sq~Ba~\sg~ sgvSgWg~_San
sq~ésgvcgvbsge sqr=sge+gresge sglsgeigehsge gaJsge.
gvksg~ sgqr=sg~igvmsge~ | sqa#sqePaepsqe sg~?sgeEgessge

sgq~sQ=qavsa~ sga&sqeEgeysge sq~Usq~bq~jsq~ sq~
sg~2g~sq~ 5q~0sg~'g~(sg~ sq#sqrga~0sq~
sq~Ksgrqeasgr sga\sqezgeasqe sqebsged4geésqge

/]
“Isrorg.jgrapht.graph.SimpleGraph1536046@xr#org.jgrapht.gr
aph.AbstractBaseGraphOxo¥u?+Z
allowinglLoopsZallowingMultipleEdgesL
edgeFactorytLorg/jgrapht/EdgeFactory; LedgeMaptLjava/util/
Map;L specificst'Lorg/jgrapht/graph/specifics/
Specifics;xpsr'org.jgrapht.graph.ClassBasedEdgeFactory2636
7798L edgeClasstLjava/lang/
Class;xpvrorg.jgrapht.graph.DefaultEdge-8195227xrorg.jgrap
ht.graph.IntrusiveEdge-8195227LsourcetlLjava/lang/
Object;Ltargetg~
xpsrjava.util.LinkedHashMap4iN\1:°Z |
accessOrderxrjava.util.HashMap/iv'—F
loadFactorI thresho ldxp?@Aw0Hsq~ |
srjava.lang.Integer, 1§ A48Ivaluexrjava. lang.Numberl i
itaxpIsq~#g~sq~ sg~!sg~
g~sg~ sg~9sgQvsgesan

sg~%sqrIgesge sglsgeflgvsgn

®H Swarthmore Campus Tour
MAPS

%, Swarthmore, PA, United States
DEVELOPER

E] jgraphtest.java
SPREADSHEETS

Extended Essay primary research

sg~osq~?g~!sge
sq~'g~xsg~
sq~nsq~age3sqe
sg~sg~ige<sge
sq~xsqigrEsge
sq~»5q~.fq~qu~
sg~isgrEgeVsg
sq~sqige_sa~

g~esq~ sg~lsge’

sg~0sq~Hg~qsq~
sq~Xg~zsa~
SQ~=SGTVQ~ESQ~

SQ~ysq~za~$sg~
sq~?sqa#ge-sgn
sqr#sgQag~bsgn
sq~Usq~9g~7sg~
sq~ sq~ g~Hsg~
sq~9q~g~Qsq~

sq~]sg~ a~Ysg~
sg~ésq~Ra~bsgn

g~hsgq~ sg~¥sge:

sq~sq~0g~tsa~
sq~/sg~eg~}sqe
SQ~.SQ~IQ~PSQ~

sg~\sq~eg~' s~
sq~Ksq~ja~0sq~
sq~Isq~"g~9sg~
sq~dsq~"g~Bsg~
sq~, sq~0a~Ksq~
sg~%sg~0q~5sq~
sgq~Usg~Ag~\sg~
sg~isge

a~ksq~ sgaMsqegensas

sq~sq~!gewsge
SQ~«SQeWa~ASQ

sq~AsqEqedsge sga—

sg~!

sq~

26

| Q. Middlebury.txt

DOCUMENTS

B Middlebury.txt
WIKIPEDIA

@ Middlebury College
SIRI SUGGESTED WEBSITES

% middlebury.edu
< athletics.middlebury.edu

w# nndb.com
WEB VIDEOS

Ml Middlebury College protest against...
BB Life at Middlebury

Bl Protesters confront scholar at Mid...
WEBSITES

@ usnews.com
SPREADSHEETS

Extended Essay primary research
POF DOCUMENTS

/

“Isrorg.jgrapht.graph.SimpleGraph1536046@xr#org.jqrapht.gr
aph.AbstractBaseGraphOxd¥u?+Z
allowinglLoopsZallowingMultipleEdgesL
edgeFactorytLorg/jgrapht/EdgeFactory;LedgeMaptLjava/util/
Map;L specificst'Lorg/jgrapht/graph/specifics/
Specifics;xpsr'org.jgrapht.graph.ClassBasedEdgeFactory2636
7798L edgeClasstLjava/lang/
Class;xpvrorg.jgrapht.graph.DefaultEdge-8195227xrorg.jgrap
ht.graph.IntrusiveEdge-8195227LsourcetlLjava/lang/
Object;Ltargetg~

xpsrjava.util.LinkedHashMap4iN\1:°Z
accessOrderxrjava.util.HashMap/iV'—F

loadFactorl thresholdxp?@wEHsq~)
srjava.lang.Integer,t§ A48Ivaluexrjava.lang.Number(i
itaxpAsq~"grsge SqaEsQe «qSQe 5@

“sq~Ugesge sgrmsgrOgrsa~ sgrosgelgasge sqrbsae
Ng~!sq~ sq~&sg~

gv$sq~ g~EsgaCge'sge sge)

;5q~?q~) sq~ sq~ ~sg~Ng~, sg~ sq~Asq~ba~/sqg~
sg~éisqe

zq~2sq~ SQ~

sg~—Q~55Q~ sg~Usg~Wg~Bsq~ sg~vsg~ag~; sq~ SQ~sge~

&g~>sq~ sq~Fsg~
gq~Asq~ sgq~Osge§g~Dsq~ sg~Bsg~ Gg~Gsg~ sg~dsqe.g~lsge
sq~?sg~

gqMsgq~ sg~(sg~
@q~Psg~ sg~sg~
PSsa~_savisay

At .

Q_ bucknell txt

DOCUMENTS Show all...

B Bucknelltxt

Philosophy.txt

Humanities.txt
WIKIPEDIA

€ Bucknell University
WEB VIDEOS

B Bucknell Professor Threatened His...
BB Milo Yiannopoulos Speaks at Buck...

B Michigan vs Bucknell waterpolo 2017
SIRI SUGGESTED WEBSITES

Bl bucknell.edu
Z bucknellbison.com

Bl bucknell.edu
WEBSITES

@ usnews.com

mS00EADCHECTS

/

“Isrorg.jgrapht.graph.SimpleGraph15360460xr#org.jarapht.gr
aph.AbstractBaseGraphOxo¥u?+Z
allowinglLoopsZallowingMultipleEdgesL
edgeFactorytLorg/jgrapht/EdgeFactory;LedgeMaptLjava/util/
Map;L specificst'Lorg/jgrapht/graph/specifics/
Specifics;xpsr'org.jgrapht.graph.ClassBasedEdgeFactory2636
7798L edgeClasstLjava/lang/
Class;xpvrorg.jgrapht.graph.DefaultEdge-8195227xrorg.jgrap
ht.graph.IntrusiveEdge-8195227LsourcetLjava/lang/
Object;Ltargetg~

xpsrjava.util.LinkedHashMap4iN\1¢°2Z
accessOrderxrjava.util.HashMap/iV'—F

loadFactorl thresholdxp?@wmsg~
srjava.lang.Integer,t§ A48Ivaluexrjava.lang.Number(~i
itaxpysq~Sqvsg~ sgqaisqey dgvsqe s dsg~ q~sge
sg~“sq~¥gesan SQ~XSQ~qQ~Sg~ sg~Esq~#g~!sge sg~
Nsg~fq~$sg~ sg~

{sq~

\g~'sg~ sg~

Qsq~_g~ksqg~ sg~isgrgar-sq~ sqaEsge>gaBsge
sg~usQezg~3sqe SQhesge
Eq~6sg~ sgq~]lsg~ »q~O9sge sqn

&sqr<gr<sgn sqQ~
isq~hge?sg~ sg~ “sge~
g~Bsg~ sg~3sq~og~Esg~ sg~
sq~$g~Hsa~ sqmsq~

ig~Ksg~ sg~sg~lgaoNsg~
q~Qsg~ sg~sg~Hg~Tsa~

sq~ésg~
sg~Qsg~Hg~Wsq~ sqresg~geZsqge

27

Q. hopkins.txt

DOCUMENTS

B hopkins.txt

i Show all in Finder...

Q. MIT.TXT

DOCUMENTS

LICENSE-MIT.txt — html-to-text
LICENSE-MIT.txt — tough-cookie
LICENSE-MIT.txt
LICENSE-MIT.txt — dkim-signer

LICENSE-MIT.txt
MAPS

., Myths 2 KTV & Disco Pub
DEVELOPER

jquery.flot.navigate.js

g~@sg~ sg~ *sqQ~q~35Q~ sq~
= validate.js — com.adobe.experimen... sq~Eq~6sa~ sq~6g~ gq~9sg~ sg~sqaJge;sae S
‘sq~7geesge sg~¥sg~ag~Asq~ sg~Bsg~"g~Dsge
= links.js — com.adobe.experimentati... sg~sqrjaaGsqe SQ~
&sq~figedsge sq~ csqa#gMsg~ sq~usgvigePsge
= links.js — jsprim sq~sQaeQaSsge SQe
dsq~1gVsge sq~EsgeqQrYsg~ SQvsgaxgae\sa~ sgaEsage
g Iinks.js ¢q~_sqg~ 5q~—sq~iq~bsq~ sg~
= L isq~(g~esg~ sg~ Gsg~ig~hsg~ sq~1sgvigrksge

/ |
“Isrorg.jgrapht.graph.SimpleGraph1536046@xr#org.jqrapht.gr
aph.AbstractBaseGraphOxd¥u?+Z
allowinglLoopsZallowingMultipleEdgesL
edgeFactorytLorg/jgrapht/EdgeFactory; LedgeMaptLjava/util/
Map;L specificst'lLorg/jgrapht/graph/specifics/
Specifics;xpsr'org.jgrapht.graph.ClassBasedEdgeFactory2636
7798L edgeClasstLjava/lang/
Class;xpvrorg.jgrapht.graph.DefaultEdge-8195227xrorg. jgrap
ht.graph.IntrusiveEdge-8195227LsourcetLjava/lang/
Object;Ltargetg~
xpsrjava.util.LinkedHashMap4iN\1.°2Z
accessOrderxrjava.util.HashMap/iV'—F
loadFactorl thresholdxp?@w/xsqg~
srjava.lang.Integer,t§ A4d8Ivaluexrjava.lang.Number(i
itaxp(sq~{g~sg~ sg~msgeeg~sge SQaSQaYQesge sq~

25Q~—Q~sa~ 5Q~sQ~

=q~sg~ sg~sg~lg~lsg~ sg~

6sq~Agq~Ssan sqQ~ -sq~Cg~'sg~ sq~
Isq~pQ~*sq~ sq~ sg~

$g~—sq~ sg—sqg~7g~@sq~ sgeBsq~$g~3sqe~ sgeisge gebBsge
sg~

{sq~=q~9sgn sg~bsg~ig~<sq~ sg~{sqge

“g~?sq~ sg~fsqrng~Bsqr sgasqQe

og~Esg~ sg~

“sg~Gg~Hsg~ sg~

fsq~¢g~Ksg~ sq~

§sq~g~Nsg~ sq~ B
asg~zq~Qsq~ sg~@sq~ Ng~Tsg~ sq~0sg~

“Isrorg.jgrapht.graph.SimpleGraph1536046@xr#orq.jgrapht.gr
aph.AbstractBaseGraphOxd¥u?+Z
allowinglLoopsZallowingMultipleEdgesL
edgeFactorytLorg/jgrapht/EdgeFactory;LedgeMaptLjava/util/
Map;L specificst'Lorg/jgrapht/graph/specifics/
Specifics;xpsr'org.jgrapht.graph.ClassBasedEdgeFactory2636
7798L edgeClasstLjava/lang/
Class;xpvrorg.jgrapht.graph.DefaultEdge-8195227xrorg.jgrap
ht.graph.IntrusiveEdge-8195227LsourcetLjava/lang/
Object;Ltargetg~

xpsrjava.util.LinkedHashMap4iN\1.°Z
accessOrderxrjava.util.HashMap/iv'—F

loadFactorl thresholdxp?@w’xsg~

srjava.lang.Integer,t§ A48Ivaluexrjava.lang.Number(i
itaxp

sg~Ug~sqg~ sqQ~ 75q~XQ~sge sqQ~ 7sq~ag~sgn
SQ~sQ~ .
4g~sq~ sq~flsg~¥g~vsg~ sga0sgegelsge sgaSsgeflge$sge

sq~ysg~Jg~'sgqe sg~TsSQv gavkSQe SQMrsQvTgv-sge Sg/Sg

These show all the files generated.

28

29

