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1. Introduction

1.1 Societal Applications and Importance of Speech Recognition

Speech recognition technology has been influential to society for over a decade.

The most obvious application of speech recognition is digital voice assistants such as

Siri (Apple) and Alexa (Amazon). Integrated into many people’s lives through

smartphones and home assistance devices, virtual assistants help out with digital tasks

like web searches, messages, and calls, as well as smart tasks such as daily reminders

and health tracking. Advanced speech recognition software is a big factor in the

convenience of digital voice assistants.

Other speech recognition systems integrated into different platforms also allow

for similar convenience. For example, Google and YouTube search both have a “search

by voice” option for those who type slowly, or are unable to type due to mental or

physical challenges. Google docs provides a “voice typing” option that speeds up the

process of writing papers. Google translate, Duolingo and other foreign language

learning platforms utilize speech recognition to analyze and enhance students’ oral

speaking skills.

1.2 Computational Approach to Audio Waves and Audio Processing Tools

Automatic speech recognition systems have been around since the beginning of

the 21st century. However, it is only in recent years that speech recognition software

has made significant advancements and gained popular traction, thanks to the deep

learning (DL) subset of artificial intelligence (AI). The concept of speech recognition is
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simple; a computer converts the spoken audio detected by the microphone into written

text. However, this process is much more complicated in practice.

To begin with, sound is originally in the form of an analog wave picked up by the

microphone, representing the longitudinal waves that move through the air. For

computational use, the analog wave is converted into a series of digital values through a

process called analog to digital conversion. The resulting array of binary numbers

sampled at the correct rate give a relatively accurate representation of the original

sound wave. (Anvarjon)

There are many ways to represent sound. Most commonly, amplitude-time

graphs are used to display audio files in audio editing softwares (Figure 0). In these

graphs, the amplitude, which corresponds to the intensity, is scaled and plotted against

time (in seconds). In comparison, spectrograms plot frequency against time, and use a

range of colors to display sound intensity at different frequencies (Figure 0.5). Every

representation of audio provides some valuable information, but no single graph can

show every property of a sound wave. Hence, each of these graphs are often used in a

specific audio processing application. (“Understanding”)
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Figure 0. Amplitude-Time graph of a .wav audio file1

Figure 0.5. Spectrogram with a dBFS range of -100 to -20 (dark purple to light yellow), a

10 kHz maximum frequency, and 100 millisecond time intervals2

2 “Understanding Spectrograms.” IZotope, 11 Apr. 2019,
www.izotope.com/en/learn/understanding-spectrograms.html.

1 Nathan, Mathura. “Plot Audio File as Time Series Using Scipy Python.” GaussianWaves, 2 Aug. 2020,
www.gaussianwaves.com/2020/01/how-to-plot-audio-files-as-time-series-using-scipy-python/.
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1.3 The Advantages of Deep Learning for Speech Recognition

The reason DL methods involving neural networks are preferred over traditional

speech recognition algorithms is because of the efficiency and flexibility of DL. Due to

their nature, neural networks can successfully identify spoken syllables and words with

a range of variation, which may be caused by difference in voice, accent, or simply

mispronunciation. Additionally, thanks to advancements in the programming language

python and many of the cloud based integrated development environments (IDEs), it

has become exceptionally easy to code neural networks with less powerful computers,

thus making the application of DL more convenient.

One question that comes up while planning to develop a speech recognition

system using deep learning is “what type of neural network is best for the task?” Some

of the most commonly used neural networks for speech recognition are convolutional

and recurrent neural networks. In this extended essay, I will be describing them and

experimenting with both to ultimately answer the question of which is more accurate and

faster for speech recognition: convolutional neural networks or recurrent neural

networks?
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2. Theoretical Background

2.1 Neural Networks

Neural networks (NNs) are a subcategory of machine learning (ML) that deal with

the tasks of classifying or creating data by making a model that learns from particular

sets of inputs. NNs consist of individual nodes connected in multiple layers, each of

which manipulate the data as it passes from the input layer, through the hidden layer,

and into the output layer (An). At a given layer, the nodes of a NN weigh the input data,

sum up all of the values, add a bias, and pass the result through an activation function

and into the next layer (Figure 1). From a mathematical approach, this process can be

demonstrated using matrix operations. The input matrix is multiplied with the weights

matrix, and added with the bias matrix (Jordan). Each result is passed through an

activation function (eg. Sigmoid, ReLu, Softmax) to create the output matrix (Equation

1).

Figure 1. Individual neuron of a Feed Forward NN3

3 An, Sungtae. “Feedforward Neural Networks.” Sungtae's Awesome Homepage, Georgia Institute of
Technology, 8 Oct. 2017, www.cc.gatech.edu/~san37/post/dlhc-fnn/.
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Equation 1. The matrix operations that demonstrate the workings of a Feed Forward

layer4

This is the foundational idea behind a simple “feed forward” neural network

model. The NN “learns” by adjusting the weights throughout layers until the outputs are

accurate with respect to what is expected as a correct output (Jordan). Each weight

represents the so-called importance or influence of the data which passes through that

point, and can be increased or decreased as the neural network sees fit (An). A larger

weight places more significance on the information for that input, and vice versa. Each

node also has a bias, which is a constant added to the weighted input. The bias at each

node for every layer can be adjusted as well to give the neural network more precision

(An). The activation function takes the resultant value (which is the summation of the

weighted inputs and the biases), and outputs a value corresponding to the chosen

function (Jordan). For example, a Sigmoid activation function will take any input and

pass it through the function so that the output value is between 0 and 1,1/(1 + 𝑒−𝑥)

whereas a ReLu activation function will convert negative inputs to zero but leave

positive inputs unaltered (Figure 2).

4 Jordan, Jeremy. “Neural Networks: Representation.” Jeremy Jordan, 26 Jan. 2018,
www.jeremyjordan.me/intro-to-neural-networks/.
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Figure 2. Some of the common activation functions5

The neural network passes the error for each run through a loss function, which

generates a loss that is used to change the adjustable variables of the NN’s layers

(weights and biases) accordingly. It is important to note that the term “error” is defined

as the deviation from an actual value by a prediction or expectation of that value,

whereas “loss” is defined as a quantified measure of how consequential it is to get an

error of a particular size or direction6. An example of a common loss function is Mean

Squared Error (MSE), which squares the errors throughout the dataset and outputs the

average, and is most commonly used in Linear Regression models (“Introduction”). The

generated loss is passed through an optimizer algorithm, which adjusts the weights and

biases of the neural network in order to minimize the loss (Nielsen). One of the most

basic and heavily used optimizer algorithms is Gradient Descent (Figure 3)(Raschka). It

6 Errors and losses are explained in detail by Michael Nielsen in his book “Neural Networks and Deep
Learning.”

5 “Introduction to Loss Functions.” Algorithmia Blog, 28 Apr. 2021,
algorithmia.com/blog/introduction-to-loss-functions#types-of-loss-functions.
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uses the first order derivative of the loss function, and calculates how the weights

should be adjusted for the function to reach a minima (local or global).7

Figure 3. A graphical representation of the Gradient Descent optimizer algorithm’s

conceptual workings8

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have specialization for picking out

patterns and deriving meaning from them, and thus they are used almost always for

image analysis (Saha). A CNN differs from a traditional Multilayer Perceptron NN

because of the convolutional layers. To begin with, most images come in either a 3D or

5D format: the height times the breadth (dimensions), and the number of color channels

8 Raschka, Sebastian. “Gradient Descent and Stochastic Gradient Descent.” Gradient Descent and
Stochastic Gradient Descent - Mlxtend, Mlxtend, 2014,
rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/.

7 General information about NNs and DL can be found at
https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf



12

(3 for RGB, 1 for grayscale). In grayscale, each pixel has a value between 0 and 255.

Feeding this information into a standard Feed Forward NN is inconvenient because

corresponding a node to each pixel overwhelms the computer and significantly slows

down the training process. Furthermore, hardwiring each pixel to a node only works for

identification of objects of the exact same scale and at the exact same position in the

image. If the image was scaled by a small factor, or rotated by a small angle, the simple

Feed Forward neural network would fail to classify it successfully.

In comparison, a convolutional layer uses simple filters (aka kernels), which are a

grid of pixels with specific values adjusted throughout training, to identify special

features in the image (like lines and curves). By sliding each filter through the image,

from the top left to the bottom right corner, a CNN is able to capture the spatial and

temporal properties of an image, thus classifying it more successfully, even with small

changes such as scaling and rotating (Saha). The convolution operation works by lining

up the filter with a same size patch in the image, multiplying the pixel values of the filter

with the corresponding pixel values in the chosen patch of the image, summing the

resultant values for each multiplication, and dividing the sum by the number of pixels

(averaging). The result is stored in the location of the center pixel for a newly created

image of corresponding size to the original, called the feature map, which is passed on

to the next layer (Sewak). The pixel values of the individual filters are essentially the

“weights” in a convolutional layer, and are adjusted through training.

Nevertheless, multiple convolution operations take a relatively long time to

complete, so to scale down the data, CNNs also use pooling layers, which reduce the

pixel count between convolutional layers (depending on the pooling algorithm). Some
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common pooling options are Max Pooling (which picks out the maximum value in a

small grid of pixels), Min Pooling (the opposite of the former), and Average Pooling

(Saha). Finally, following the last convolutional layer, the CNN “Flattens” the data by

changing it from a grid (which is the shape of the feature map) to an array format. The

array is fed into a traditional Dense layer, consisting of an output layer that classifies the

data (Figure 4). 9

Figure 4. Visualization of a traditional CNN10

10 Saha, Sumit. “A Comprehensive Guide to Convolutional Neural Networks - the eli5 Way.” Towards Data
Science, 17 Dec. 2018,
towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b11
64a53.

9 The following book explains the types, workings, and applications of CNNs in depth:
https://www.google.com/books/edition/Practical_Convolutional_Neural_Networks/bOlODwAAQBAJ?hl=en
&gbpv=0
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2.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) specialize in modeling sequential data

through the use of memory. Thus, they’re often used for audio and natural language

processing (Venkatachalam). An RNN works by looping previous information forward to

the next layers. In a Multilayer Perceptron, each neuron in a layer uses only the input

data to produce an output. However, RNN layers also consider previous data that has

passed through the network before producing an output. In addition to weighting the

input data, the neurons weigh the previous data (Figure 5). This small difference allows

RNNs to make sense of sequences much more efficiently.

Figure 5. The structure of an RNN11

There are also multiple types of Recurrent Neural Networks. However, most of

them suffer from short term memory, due to the vanishing gradient problem (which

causes the earlier weights in the network to barely adjust through training due to the

11 Venkatachalam, Mahendran. “Recurrent Neural Networks.” Towards Data Science, 22 June 2019,
towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce.
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nature of backpropagation). Because of this, RNNs often fail to effectively use

information earlier in the sequence to influence the final classification in the output layer.

To combat this, Long-Short Term Memory (LSTM) neural networks, which are an

evolved version of RNNs, are used (Kostadinov). LSTMs expand the scope of the

memory and don’t show a positive bias toward later information in a sequence.12

12 Coding RNNs with Python:
https://www.google.com/books/edition/Recurrent_Neural_Networks_with_Python_Qu/cC59DwAAQBAJ?h
l=en&gbpv=0
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3. Experiment Methodology

3.1 Programming Platform, Language, and Libraries

For the purposes of coding convenience and better visual presentations of

processes, I used the Jupyter Notebook IDE in this experiment. Jupyter Notebook is

free, open source, highly interactive, and advantageously structured for programming

NNs. Each line of code can be programmed and run separately, but are consecutive in

the execution of the written program. For example, one line can be used to import

libraries, and another line to define a function. This way, the program is much easier to

troubleshoot and modify. In the case of NNs, training a model usually takes a relatively

long period of time. With the structure of Jupyter Notebook, changes in individual

sections of the code can be made without re-training the NN.

I used the python programming language for this experiment. Python (v3) is the

most common language in nearly all fields of machine learning, including deep learning.

This is because of its high level and simple syntax, and the number of libraries that have

been created to aid in the programming of NNs.

The most important library, however, is Tensorflow. It is developed and owned by

Google, and used for both research and production. Tensorflow provides easy ways to

define and create multilayer models with various types of layers, including deep,

convolutional, and recurrent layers. Creating, training, and testing NNs with tensorflow

is much easier than coding a NN from scratch. Going into how exactly tensorflow works

is not necessary, as it is quite complicated and overwhelming, but essentially a layer in

a model in tensorflow is a number of nodes representing mathematical operations in a

graph, connected by tensors (multidimensional data arrays).
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3.2 The Dataset

The dataset for this experiment consists of 3,000 audio samples of the spoken

digits zero through nine. There are 6 different speakers, and each digit is repeated 50

times per speaker. The dataset is free for use online on GitHub13, and is of course in

English. The training and testing data are split 90% to 10%, meaning there are 2,700

samples for training and 300 for testing. Each sample is an approximately 1.5 second

WAV audio file that is labeled as follows: {the digit spoken}_{name of the

speaker}_{iteration of the digit}. There are also additional python programs included

along with the dataset that trim the silence out of each sample, convert the WAV audio

file into a grayscale JPEG spectrogram image of size 64 pixels by 64 pixels, and cross

validate the data (split between testing and training). On a separate file, the metadata of

the speakers are provided (including the name, gender, and accent).

3.3 CNN Preprocessing and Model Architecture

I used the 64x64, grayscale spectrogram pictures of the audio files as input to the

CNN. A python function ‘create_train_data()’ defines the two arrays ‘training_data’ and

‘training_labels.’ Using a simple ‘for’ loop, for every image in the training directory, the

function opens the image utilizing the PIL library (python interpreter with image editing

capabilities) and saves each pixel value in the grayscale image to the ‘training_data’

array. Then, another function ‘label_img(img)’ is called to get the label (spoken digit) of

the image, which is then added to the ‘training_labels’ array. The function returns the

two arrays. The training data array is reshaped into the shape (2700, 64, 64, 1), with the

13 https://github.com/Jakobovski/free-spoken-digit-dataset



18

2700 representing the number of images, the first 64 representing the number of rows

of pixels, the second 64 representing the number of pixels per row, and the 1

representing the number of color dimensions (1 for a grayscale value between 0 and

255). This procedure is repeated for the testing portion of the dataset. Finally, each

value in the training and testing data arrays are divided by 255 for the purposes of

normalization. It is much easier for NNs to operate when all weights, variables, and

inputs are within the same range. In order to achieve this, a process called

normalization is used, where every value in a dataset is divided by the same constant

so that each value is in a 0 to 1 range. In this case, 255 is the maximum value any of

the pixels can have, so that is the constant.

The convolutional neural network is first defined as a sequential model (as most

other NNs), which requires the ‘keras’ import from the tensorflow library. We begin by

defining the number of filters in the layer (64), and the input shape of the image (64x64),

along with the filter size and activation function. The filter size in this case is 3 by 3,

which may sound small, but this is perfectly normal given that the input image is also

very small and blurry. A smaller filter may lead to a much longer training period, and a

larger filter may fail to train successfully, even through many iterations. The activation

function used most often in convolutional layers is the rectified linear (ReLu) function.

This is because ReLu converts negative values to zero, which makes sense because

pixels shouldn’t have negative values, but the function also preserves the positive

values without converting them to either 1 or 0, as a sigmoid function would.

The convolutional layer is followed by a pooling layer, which has a grid size of 2

by 2 pixels. A pooling grid too large will result in the loss of many pixel values that may
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come in handy for successful classification, but no pooling layer will make the training

significantly slower.

There are three more convolutional layers of size 64 (neurons) in the NN, each

with a 3 by 3 filter, a relu activation function, and a pooling layer afterwards (except for

the last one). The last convolutional layer is followed by a flattening layer, which allows

the data to be then passed on to a deep layer (of same size and activation function),

and finally into an output layer of size 10; one neuron for each spoken digit.

The “Adam” optimizer is used, which is a stochastic gradient descent method that

takes into account the first and second order moments before an estimation. The

algorithm itself is complicated, but this optimizer performs much better than some others

that I tested. The “Sparse Categorical Cross Entropy” loss function was used, which

computes the crossentopy loss between the labels and predictions.14

3.4 RNN Preprocessing and Model Architecture

I chose to use the spectrograms of the audio samples as input to the RNN for a

more fair comparison. Because of this, the preprocessing for the RNN is the same as

that for the CNN. The only difference is that instead of a grid, the image is in an array

format. Creating the model for the recurrent neural network is also a similar process.

The model is first defined as sequential, then the individual recurrent layers are added.

The arguments passed into the first recurrent layer are as follows: the number of

neurons (128), the input data shape (64 by 64), the activation function (rectified linear),

and a boolean called ‘return_sequences.’ As mentioned in section 2.3, RNNs are

14 The code for my CNN is a modification of the code from this tutorial:
https://colab.research.google.com/drive/1ZZXnCjFEOkp_KdNcNabd14yok0BAIuwS
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special because they loop data. The ‘return_sequences’ variable lets the network know

whether the current sequence of data should be kept for looping. If there is another

recurrent layer after the current one, this boolean variable will be set true. This RNN

consists of two recurrent layers, so this variable will be set true for the first layer. The

second recurrent layer also has 128 neurons and a relu activation function. Next, there

is a dense layer of 32 neurons with a ReLu activation function, and finally an output

layer with a softmax activation function. The softmax function is used to ensure that all

of the probabilities in the output layer combined add up to one, so that the output with

the highest probability is chosen.

After every hidden layer, there is a “dropout” layer. Dropout is a technique used

to limit overfitting. Though all types of neural networks are naturally prone to overfitting,

RNNs and Deep Neural Networks (DNNs) are highly vulnerable, especially over many

epochs. So, during every run, weights at a given layer are chosen at random and

multiplied with the dropout constant. This puts less significance on those weights, and

thus prohibits the NN from over-relying on them.

For the sake of a fair comparison, the optimizer and loss function for the RNN are

the same as that of the CNN (the Adam optimizer, and the SCGD loss function).15

3.5 The Independent Variable

The only independent variable in this experiment that is shared by both neural networks

is the number of epochs. The independent variables specific to the CNN are the filter

15 The code for my RNN is a modification of the code from this tutorial:
https://pythonprogramming.net/recurrent-neural-network-deep-learning-python-tensorflow-keras/
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size and the pooling layer grid size. The independent variable specific to the RNN is the

dropout constant.

3.6 The Dependent Variables

There are two dependent variables in this experiment: training duration and test dataset

accuracy. Training duration is the amount of time the NN takes to train (calculated using

the duration per epoch), and test dataset accuracy is the percentage accuracy of the

model performing on the test dataset.

3.7 The Hypothesis

I have never before coded recurrent or convolutional neural networks, and therefore am

not sure what to expect for the speed of each, in terms of the magnitude of time they will

take to train (whether they will train in seconds, minutes, or hours). I am confident,

however, that the RNN will train faster, because the CNN has more weights to adjust,

due to the nature of its filters. In terms of accuracy, however, I believe that the two will

be close, with the RNN slightly beating the CNN. I believe this because memory is

important for audio classification, since audio is sequential data. Therefore, the absence

of memory is a disadvantage to the CNN in my eyes.
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4. Experiment Result Analysis and Conclusion

4.1 CNN Results

Following 10 epochs, the CNN yielded an accuracy of 94.67% over a training

period of around 125 seconds. Following 16 epochs, the CNN yielded an accuracy of

96.67% over a training period of around 201 seconds. Following 24 epochs, the CNN

yielded an accuracy of 96% over a training period of around 298 seconds.
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4.2 RNN Results

Following 10 epochs, the RNN yielded an accuracy of 29% over a training period

of around 71 seconds. Following 16 epochs, the RNN yielded an accuracy of 87% over

a training period of around 110 seconds. Following 24 epochs, the RNN yielded an

accuracy of 90.67% over a training period of around 165 seconds.
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4.3 Comparison and Analysis

My CNN’s Performance Table and Graph (epoch vs accuracy) made using the Desmos

Graphing Calculator, with x1 representing epochs and y1 the test dataset accuracy

My RNN’s Performance Table and Graph (epoch vs accuracy) made using the Desmos

Graphing Calculator, with x1 representing epochs and y1 the test dataset accuracy
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The accuracy of the CNN was significantly greater than that of the RNN for all

three trials. The accuracy for the CNN increased on trial two (16 epochs), but decreased

on trial three (24 epochs). This was likely because of slight overfitting to the training

dataset, since 24 epochs is relatively large for a dataset of 2700 samples. The accuracy

of the RNN was surprisingly low for trial one (10 epochs), but increased greatly from trial

one to trial two. This suggests that the RNN has a “warm up” period during which the

loss function and the optimizer slowly adjust the weights in different directions, followed

by a period of much more progressive set of epochs. The accuracy of the RNN

continued to increase for trial 3. This shows that the dropout method worked

successfully to prevent overfitting the small training dataset. I would hypothesize that

more epochs would continue to increase the RNN’s accuracy.

The training duration of the RNN was significantly shorter than that of the CNN

for all three trials. This was likely because the weights of the RNN are simple, classical

NN weights, whereas the weights of the CNN are pixel values between 0 and 255 for

each filter of size 3x3.

Finally, an important factor was the amount of troubleshooting each NN took to

work successfully. I was able to code CNN and achieve the above accuracy in under 8

hours. In comparison, the RNN took over 20 man hours to code.

4.4 Conclusion

The final drop in accuracy of the CNN due to overfitting leads me to conclude

that, keeping the size of the dataset constant, there is a limit to the CNN’s accuracy (in
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this case, roughly 97%), achieved at the right number of epochs. Less epochs will not

be enough to reach this maximum, and more will lead to overfitting. This is not the case

for the RNN. Because the accuracy of the RNN continued to rise with an increase in

epochs, I believe that the RNN will be able to come closer to 100% accuracy, but over a

very large number of epochs. However, because the CNN was more accurate for each

trial, I will conclude that it is more accurate in speech recognition applications.

Nevertheless, the difference in training duration proves that the CNN was slower than

the RNN when training on the same dataset. Thus, the RNN is a faster approach to

speech recognition, because it is easier to adjust variables such as the layer size, the

optimizer algorithm, and the loss function, and see the corresponding effects on training

and testing accuracy for the RNN.
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Appendices

Python Code for the CNN
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Terminal Output for the CNN

100%|███████████████████████████████████████████████████

██████████████████████████| 2700/2700 [00:19<00:00, 141.09it/s]

100%|███████████████████████████████████████████████████

████████████████████████████| 300/300 [00:02<00:00, 129.04it/s]
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2021-08-10 11:13:01.049707: W

tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic

library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found

2021-08-10 11:13:01.049882: I tensorflow/stream_executor/cuda/cudart_stub.cc:29]

Ignore above cudart dlerror if you do not have a GPU set up on your machine.

2021-08-10 11:13:05.075755: W

tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic

library 'nvcuda.dll'; dlerror: nvcuda.dll not found

2021-08-10 11:13:05.075906: W tensorflow/stream_executor/cuda/cuda_driver.cc:326]

failed call to cuInit: UNKNOWN ERROR (303)

2021-08-10 11:13:05.081306: I

tensorflow/stream_executor/cuda/cuda_diagnostics.cc:169] retrieving CUDA diagnostic

information for host: DESKTOP-GJ6KHSP

2021-08-10 11:13:05.081560: I

tensorflow/stream_executor/cuda/cuda_diagnostics.cc:176] hostname: DESKTOP-GJ6

KHSP

2021-08-10 11:13:05.081974: I tensorflow/core/platform/cpu_feature_guard.cc:142] This

TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to

use the following CPU instructions in performance-critical operations: AVX

To enable them in other operations, rebuild TensorFlow with the appropriate compiler

flags.
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2021-08-10 11:13:07.956747: I

tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR

Optimization Passes are enabled (registered 2)

Epoch 1/24

85/85 [==============================] - 14s 155ms/step - loss: 1.9459 -

accuracy: 0.2815

Epoch 2/24

85/85 [==============================] - 13s 148ms/step - loss: 0.9275 -

accuracy: 0.6937

Epoch 3/24

85/85 [==============================] - 12s 144ms/step - loss: 0.5315 -

accuracy: 0.8248

Epoch 4/24

85/85 [==============================] - 13s 154ms/step - loss: 0.3486 -

accuracy: 0.8822

Epoch 5/24

85/85 [==============================] - 14s 159ms/step - loss: 0.2183 -

accuracy: 0.9289

Epoch 6/24

85/85 [==============================] - 14s 159ms/step - loss: 0.1653 -

accuracy: 0.9452

Epoch 7/24
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85/85 [==============================] - 13s 155ms/step - loss: 0.1254 -

accuracy: 0.9578

Epoch 8/24

85/85 [==============================] - 13s 156ms/step - loss: 0.1079 -

accuracy: 0.9648

Epoch 9/24

85/85 [==============================] - 12s 146ms/step - loss: 0.0919 -

accuracy: 0.9670

Epoch 10/24

85/85 [==============================] - 15s 174ms/step - loss: 0.0848 -

accuracy: 0.9704

Epoch 11/24

85/85 [==============================] - 16s 185ms/step - loss: 0.0658 -

accuracy: 0.9789

Epoch 12/24

85/85 [==============================] - 15s 172ms/step - loss: 0.0560 -

accuracy: 0.9819

Epoch 13/24

85/85 [==============================] - 15s 175ms/step - loss: 0.0595 -

accuracy: 0.9822

Epoch 14/24

85/85 [==============================] - 15s 181ms/step - loss: 0.0404 -

accuracy: 0.9874
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Epoch 15/24

85/85 [==============================] - 15s 176ms/step - loss: 0.0297 -

accuracy: 0.9904

Epoch 16/24

85/85 [==============================] - 14s 164ms/step - loss: 0.0410 -

accuracy: 0.9844

Epoch 17/24

85/85 [==============================] - 13s 158ms/step - loss: 0.0642 -

accuracy: 0.9807

Epoch 18/24

85/85 [==============================] - 14s 164ms/step - loss: 0.0344 -

accuracy: 0.9881

Epoch 19/24

85/85 [==============================] - 15s 174ms/step - loss: 0.0326 -

accuracy: 0.9889

Epoch 20/24

85/85 [==============================] - 15s 179ms/step - loss: 0.0344 -

accuracy: 0.9881

Epoch 21/24

85/85 [==============================] - 15s 171ms/step - loss: 0.0370 -

accuracy: 0.9889

Epoch 22/24
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85/85 [==============================] - 14s 164ms/step - loss: 0.0104 -

accuracy: 0.9956

Epoch 23/24

85/85 [==============================] - 13s 148ms/step - loss: 0.0076 -

accuracy: 0.9981

Epoch 24/24

85/85 [==============================] - 14s 161ms/step - loss: 0.0267 -

accuracy: 0.9922

10/10 - 1s - loss: 0.1988 - accuracy: 0.9667

0.9666666388511658
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Python Code for the RNN
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Terminal Output for the RNN

100%|███████████████████████████████████████████████████

██████████████████████████| 2700/2700 [00:18<00:00, 146.43it/s]

100%|███████████████████████████████████████████████████

████████████████████████████| 300/300 [00:01<00:00, 153.55it/s]

(2700, 64, 64)
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(2700, 1)

2021-08-10 11:28:55.410371: W

tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic

library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found

2021-08-10 11:28:55.410536: I tensorflow/stream_executor/cuda/cudart_stub.cc:29]

Ignore above cudart dlerror if you do not have a GPU set up on your machine.

2021-08-10 11:28:58.510744: W

tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic

library 'nvcuda.dll'; dlerror: nvcuda.dll not found

2021-08-10 11:28:58.511072: W tensorflow/stream_executor/cuda/cuda_driver.cc:326]

failed call to cuInit: UNKNOWN ERROR (303)

2021-08-10 11:28:58.518412: I

tensorflow/stream_executor/cuda/cuda_diagnostics.cc:169] retrieving CUDA diagnostic

information for host: DESKTOP-GJ6KHSP

2021-08-10 11:28:58.518682: I

tensorflow/stream_executor/cuda/cuda_diagnostics.cc:176] hostname:

DESKTOP-GJ6KHSP

2021-08-10 11:28:58.519533: I tensorflow/core/platform/cpu_feature_guard.cc:142] This

TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to

use the following CPU instructions in performance-critical operations: AVX

To enable them in other operations, rebuild TensorFlow with the appropriate compiler

flags.



43

2021-08-10 11:28:59.272410: I

tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR

Optimization Passes are enabled (registered 2)

Epoch 1/24

85/85 [==============================] - 10s 92ms/step - loss: 2.2899 -

accuracy: 0.1315

Epoch 2/24

85/85 [==============================] - 8s 89ms/step - loss: 2.7080 -

accuracy: 0.1807

Epoch 3/24

85/85 [==============================] - 7s 81ms/step - loss: 2.4055 -

accuracy: 0.1837

Epoch 4/24

85/85 [==============================] - 8s 91ms/step - loss: 2.2728 -

accuracy: 0.1415

Epoch 5/24

85/85 [==============================] - 7s 85ms/step - loss: 2.0897 -

accuracy: 0.2237

Epoch 6/24

85/85 [==============================] - 7s 83ms/step - loss: 1.8103 -

accuracy: 0.3148

Epoch 7/24
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85/85 [==============================] - 8s 94ms/step - loss: 3969.2903 -

accuracy: 0.3733

Epoch 8/24

85/85 [==============================] - 8s 89ms/step - loss: 2.5946 -

accuracy: 0.1311

Epoch 9/24

85/85 [==============================] - 8s 91ms/step - loss: 2.2648 -

accuracy: 0.1663

Epoch 10/24

85/85 [==============================] - 8s 99ms/step - loss: 2.0859 -

accuracy: 0.2093

Epoch 11/24

85/85 [==============================] - 8s 92ms/step - loss: 1.9029 -

accuracy: 0.2493

Epoch 12/24

85/85 [==============================] - 7s 85ms/step - loss: 1.7761 -

accuracy: 0.3026

Epoch 13/24

85/85 [==============================] - 7s 78ms/step - loss: 1.6150 -

accuracy: 0.3804

Epoch 14/24

85/85 [==============================] - 10s 115ms/step - loss: 1.7884 -

accuracy: 0.3015
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Epoch 15/24

85/85 [==============================] - 9s 102ms/step - loss: 1.5950 -

accuracy: 0.4004

Epoch 16/24

85/85 [==============================] - 7s 83ms/step - loss: 1.3970 -

accuracy: 0.4630

Epoch 17/24

85/85 [==============================] - 8s 91ms/step - loss: 1.3381 -

accuracy: 0.4993

Epoch 18/24

85/85 [==============================] - 7s 84ms/step - loss: 1.2130 -

accuracy: 0.5585

Epoch 19/24

85/85 [==============================] - 7s 86ms/step - loss: 1.0974 -

accuracy: 0.5948

Epoch 20/24

85/85 [==============================] - 7s 84ms/step - loss: 1.0235 -

accuracy: 0.6244

Epoch 21/24

85/85 [==============================] - 7s 85ms/step - loss: 0.9381 -

accuracy: 0.6659

Epoch 22/24
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85/85 [==============================] - 7s 85ms/step - loss: 0.8594 -

accuracy: 0.6941

Epoch 23/24

85/85 [==============================] - 7s 82ms/step - loss: 0.8534 -

accuracy: 0.6900

Epoch 24/24

85/85 [==============================] - 7s 86ms/step - loss: 0.8193 -

accuracy: 0.7074

10/10 - 1s - loss: 0.5634 - accuracy: 0.8400

0.8399999737739563




