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Introduction 
In the past few years, the scientific scene for Artificial Intelligence has been revolutionized. This was 
made possible due to various ground-breaking inventions like the Transformer model [1], and 
realizations that as AI models get larger in scale, they begin to elicit emergent capabilities [2]. As the 
industry-wide usage of AI expands, researchers have begun to explore many different possible use-
cases of this technology. Among these emerging applications, the use of Large Language Models 
(LLMs) for automating tasks that often require human expertise in various fields is becoming more 
prevalent. One instance is software code vulnerability detection. 
This study aims to examine and evaluate LLMs in the detection of software source-code vulnerabilities 
in comparison with static code analysis tools. It will begin by providing a background on LLMs, 
highlighting their capabilities in understanding and generating human-like text. Following this, the 
discussion will move to the specifics of vulnerability detection, exploring how such LLM models can 
interpret code and identify vulnerabilities. The topic of static code analysis will also be discussed. The 
study will analyze existing research, case studies, and practical examples to evaluate the effectiveness, 
limitations, and implications of using LLMs for code vulnerabilities. A primary research will also be 
performed to measure compatibility of LLMs with traditional tools. Finally, comparisons with static 
code analysis tools will be drawn to contextualize the potential advantages and challenges posed by 
LLMs. 
The scope of this investigation will be limited to the examination of LLMs’ capabilities in the context of 
software vulnerability detection and their comparison against static analysis tools. It will focus on the 
most recent advancements in the field, primarily considering models developed or significantly 
updated in the last five years. The analysis will include a variety of programming languages and 
software types, acknowledging the diverse landscape of software development. However, the study 
will not delve into the broader implications of AI in Cybersecurity or other unrelated applications of 
LLMs. 
The investigation into LLMs’ potential for automatic software vulnerability detection and repair is 
useful, insightful, and relevant. As software systems become increasingly complex and integral to their 
users, ensuring their security and reliability is of very high importance. Traditional methods of 
vulnerability detection are time-consuming, often requiring extensive expert knowledge, and can still 
result in false detections. LLMs offer a novel approach that could significantly enhance the efficiency 
and effectiveness of these processes. Furthermore, understanding the capabilities and limitations of 
LLMs in this context can contribute to the broader discourse on the practical implications of AI in 
software engineering, providing valuable insights for all developers, researchers, and policymakers.  
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Methodology 
Literature review 
For this section, a number of previous works on the topic LLMs will be compiled into a comparative 
analysis. Throughout the literature review, various works along with their results will be discussed in 
relation to the research question in an evaluative and comparative manner in order to both 
qualitatively and quantitatively compare and evaluate the effectiveness of LLMs in comparison to 
static code analyzers for detecting vulnerabilities. 

Experiment 
The experiment methodology has been designed with all available tools and best practices according 
to previous studies in mind. This contains 4 main parts: Dataset, Models, Parameters, Prompts and 
CWEs. The methodology is designed to maximize reliability of the results and performance of the 
models. The code for gathering the LLM response data for the experiment is in Appendix II. 
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Investigation 
Literature review 
Large Language Models 
Large Language Models (LLMs) are often a representation of the deep-learning algorithms, a form of 
Artificial Intelligence, categorized as Transformers [3]. They are referred to as Large because of their 
often extremely large training dataset size and sometimes even the number of their parameters. 
Originating from the 2017 “Attention is All You Need” research paper [4], a Transformer is a neural 
network architecture. One of the advantages of this specific, ground-breaking architecture is that the 
model training and usage can be parallelized [1], allowing for a much faster training and response 
time, giving it an edge over other previously popular language model architectures like Recurrent 
Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks, which were the standards 
before the introduction of Transformers [5]. 
Today, some of the many popular examples of LLMs are OpenAI’s GPT-4 [6], Google’s Gemini 1.0 Ultra 
[7], Gemini 1.5 Pro [8], and Anthropic’s Claude 3 [9].  

Static code analysis 
Static code analysis, sometimes referred to as source code analysis [10], is the act of analyzing the 
source code of an application without running the application, hence the name ‘static’ [11]. This 
process, often an important part of the software development life-cycle (SDLC), is usually done by 
running a static code analysis tool [10]. Such code analysis can be performed for various means, one 
important one being the detection of software vulnerabilities. There exists many open-source and 
closed-source implementation of such software [12], [13], [14], [15], [16] but the underlying ideas and 
methods are often similar. 
Static application security testing (SAST) tools are static code analysis tools that make use of static 
code analysis in order to locate and identify any security vulnerabilities within ‘static’ software code 
[17]. These tools are often incorporated into and are utilized in the early stages of SDLC, in the 
development stage. By using SAST tools, software developers can decrease the likelihood of security 
vulnerabilities, possible application downtime, etc. [17]. 
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Vulnerability detection 
LLMs have been shown to have a thorough understanding of programming languages [6], [18], even 
though this understanding can sometimes be unreliable [19]. This understanding enables them to 
analyze code not just syntactically but semantically, allowing for the detection of vulnerabilities that 
may not be apparent just through the syntax. For instance, LLMs can identify patterns and anomalies 
in code that resemble known vulnerabilities, even in snippets that are syntactically incomplete or in 
the process of being written, as highlighted by [20]. 
Table 1 bellow contains the evaluation of a number of LLM models on 5 different vulnerability 
datasets. The highlighted scores depict the model that was made by the authors of the paper, 
“DeepDevVuln”, performing better than most of the other models on each dataset. 

 
In the same work, the capability of LLMs in detecting vulnerable code patterns at edit time are 
suggested by the authors to be surprisingly good [20]. This somewhat outstanding result is visible in 
Table 1 where the performance of their model, “DeepDevVuln” is highlighted. Furthermore, there is a 
significant benefit to using such LLM-based tools and that is the fact that the syntax of the code does 

Table 1: "Performance of DeepDevVuln model on Vuldeepecker, SeVC, Reveal, and 
FFMPeg+Qemu datasets" [20, Tbl. 5] 

 



5 

not require to be correct. Correct syntax is often very key to how static code analysis techniques work. 
In this case, LLMs have a huge advantage as the code can be checked in edit-time, without the 
requirement of a syntactically correct code. As the work mentions [20], this benefit can become a 
large advantage as “the cost of fixing a fault is positively correlated with the fault ignorance time” [20]. 
In this case, the fault ignorance time is referring to the time taken before a fault, or a vulnerability, is 
detected. 
Another significant note is that this study makes use of currently “old” models that are inferior to the 
latest most performant models like Claude 3 [9], GPT-4 [6], Gemini 1.5 Pro [8], etc. 
On another note, one study [21] points out the non-deterministic responses and non-robustness of 
LLMs, particularly in real-world scenarios and outside their training data’s temporal scope. This is a 
great disadvantage for LLMs as their non-deterministic responses can hinder academic creditability of 
studies within the field. Repeatability of results is an important factor in academic research and this 
feature of LLMs can be degrading. This fact is also applied to this study. 
This unreliability further extends to the validity of classifications. One work by Ullah et al. [21] 
suggests that while LLMs can be powerful tools for vulnerability detection, their reliability can be 
compromised by relatively minor code modifications, both trivial and non-trivial. Example 
modifications include: “Rename function randomly” and “Add a useless function” [21]. In a real-world 
scenario, where developers write code in very different ways, LLMs can become ineffective and only 
work with the code-styles that they were mostly trained on. 
Table 2 bellow contains evaluation scores of 3 different models with various different input prompt 
and 3 different datasets (2 synthetic and 1 real-world). As visible in the table, the performance of 
larger language models like GPT-4 is significantly better than that of smaller models like Coda-Llama-7 
and -13B. This is at least the case for the synthetic datasets, “OWASP” [22] and “Juliet Java” [23].  
 

 
However, this changes with the real-world dataset as the performance of GPT-4 goes below the other 
two. This might hint at the fact that the dataset that the Code-llama is being tested on was in the 
training of the model, which would explain why it performs better than GPT-4. The same could be said 
for all the models and the synthesized datasets. The real-world classifications of the models fall short 

Table 2: "Effectiveness of LLMs in Predicting Security Vulnerabilities (Java)" [33, Tbl. 5]  
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in general. This implies that LLMs are likely not ready for real-world use cases as the accuracy rates of 
the classifications are all low, and the false negative rates are often high. 
One problem that can be mentioned about LLMs are the lack of a large enough context window 
length, or the number of tokens (a chunk of text processed by the model [24]) the LLM can take as 
input. This problem puts a large amount of limit in the side of a file or code-base that can be used for 
detecting vulnerabilities using LLMs. This limiting factor can prevent a full source code file to be used 
for vulnerability classification. Using the complete code-base source code may also be useful as it can 
provide more context that the LLM can rely on for classifying vulnerabilities. This is also made 
impossible for most real-world applications, as they contain more than thousands of lines of code. 
Another important factor to consider in the evaluation of LLMs in any area is its growth. The 
previously mentioned problem was initially proposed for models like GPT-4 with context lengths going 
up to a few thousand [25]. This, however, has changed drastically with the latest released models like 
Gemini 1.5 Pro which promise a context window of 1 million tokens that may even be extended up to 
10 million tokens [8], all while reportedly maintaining very high retrieval rates (measurement of how 
well the model retrieves data throughout the context window) [8]. This certainly raises the limit for 
complete code-base source codes that can be fully checked using LLMs, but it may still not be enough 
for large code-bases within companies that may contain millions of lines of code. 
Moving away from LLMs, static analysis tools have been reported to effectively detect potential 
security violations, runtime errors, and logical inconsistencies in software code without running it [26], 
something that aids development for software developers. Such tools are often much more light-
weight as well, not requiring even nearly as much compute as an LLM. LLMs, often require huge 
computational power and memory. With GPT-4 having a reported parameter count (number of 
weights and biases) of 1.76 trillion [27], LLMs are far inferior in their computational performance in 
comparison to many lightweight static code analyzers. 

 Figure 1: "Per CWE performance metrics for the C/C++ CWEs" [39, Figs. 2-b]  
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As depicted by Figure 1, static code analysis, given the fact that it has existed for a long time [11], still 
has many short-comings on various CWEs, like CWE-197 or CWE-835. The recall — fraction of correctly 
classified vulnerabilities [28] — for these CWEs are very questionable. The accuracy — how close the 
classifications are to the truth — of the tool however, as visible in Figure 2, are on average above 40%. 
These measurements depict the negative aspects of static code analysis tools. In comparison to LLMs, 
the measurements do not show a stark contrast. In fact, in some cases, LLMs may perform better than 
static analysis tools, as depicted in Table 3. The table presents the evaluative score of two models, 
GPT-4 and CodeQL, on three synthetic datasets. However, It is important to consider that this might 
not be a valid evaluation of LLMs as the datasets used for the evaluation have most likely been a part 
of the LLM model training data. 

Figure 2: "Per CWE performance metrics for the C/C++ CWEs" [39, Figs. 2-a]  



8 

 

Experiment 
Dataset 
A total of 23 real-world code scenarios were prepared along with specific metadata using the GitHub 
advisory database [29]. The database contains numerous reported, reviewed and labeled 
vulnerabilities found in open-source GitHub repositories. The 23 code scenarios were prepared and 
chosen given two criteria: 

1. the vulnerability report must have been published after the date up to which the LLM models 
were trained on 

2. the files that contain the vulnerabilities should not exceed the context token length limit for 
the models (in combination with the input prompt template content). 

The first condition provides reliability to the results of the experiment as it ensures that the LLM 
model has not been trained on any of the vulnerability reports before and hence will not merely recall 
whether the code scenario is vulnerable using its previous training data. In the case of this 
experiment, all the real-world code scenarios are ensured to be published after September 2021 [25]. 

Table 4: Number of code scenarios in each of the several programming languages 

Programming languages Code scenario count 
Solidity 1 

JavaScript 3 
PHP 2 

Python 8 
Go 1 

Java 5 
Swift 3 

Total: 7 Total: 23 
 

Models 
For this particular experiment, two LLMs have been selected: OpenAI’s GPT-4 and GPT-3.5 turbo. More 
specifically, the two models are: gpt-4-0613 and gpt-3.5-turbo-0125 [25]. Both of the models have 
training data up to the September 2021 [25]. Each model has been chosen for a specific reason: GPT-4 
is chosen because of its reported performance gains over other various models. While the model is 
much slower than GPT-4, it gains much higher scores on various vulnerability detection benchmarks 
even among other models like Claude 2.0, Gemini 1.0 Pro and other various open-source models. GPT-
3.5 turbo is chosen because of its relatively high performance given its fast response speed. By using 
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these two models, the results of the experiment should provide useful information about the real-
world possible use-cases of currently available LLMs. 

Parameters 
The models used in the experiment, GPT-4 and GPT-4 turbo, have temperature and top_p as two main 
parameters. OpenAI’s documentation advices to either change temperature or top_p but not both 
[30]. The experiment will therefore follow the procedures performed by previous research [21] and 
only modify temperature. Furthermore, the temperature will be set to 0 for consistency and 
deterministic responses, something that is a visible result of lower temperatures as both mentioned 
by OpenAI’s documentation [30] and also found in previous research [21]. According to the same 
research [21], the choice of temperature does not seem to have a strong correlation with performance 
of the models in detecting vulnerabilities. 

Prompts 
The prompts used for evaluating the models in this experiment consist of 3 main variables: 

• CWE-specific (S) vs Basic (B): The evaluation is performed with two prompt types. The Basic 
prompt, asks the LLM to detect vulnerabilities without any target CWE that the LLM should try 
to look for and the CWE-specific prompt asks the LLM to detect vulnerabilities by providing the 
CWE code and title that the LLM should aim to detect. Both scenarios are valuable as they 
provide insight for different real-world possible use-cases for LLMs as vulnerability detection 
tools. The CWE-specific scenario might be useful and feasible in-practice given the higher 
speed and lower computing requirements of models like GPT-3.5 Turbo. On the other hand, 
the non-specific prompt may be more desirable for larger and more resource intensive models. 
The balance between speed, performance gains and computing requirements can be key for 
determining the best use-case of LLMs in vulnerability detection. This can bring comparable 
value to LLMs in comparison against static code analysis tools. 

• Role-oriented (RO) vs Task-oriented (TO): Another to variable is the orientation of the prompt 
which can either be Role-oriented with the prompt providing the LLM a description of a role or 
a profession that the model should have, or Task-oriented where the prompt just asks the LLM 
to have the goal of completing a task.   

• Reflection (R) vs No-reflection: Reflection is done after the actual response to the vulnerability 
detection has been received. In the reflection, the model is prompted to reflect on its response 
and ensure its validity [31]. If any analytical and logical problems exist, the model is prompted 
to find them and re-perform the evaluation with the goal of fixing those problems. 

The prompts for this experiment also contain 3 other constant patterns: 
• Zero-shot prompting: The models are prompted without any previous examples of a prompt-

response pair for the LLM to extrapolate from.  
• Chain-of-thought prompting: The models are prompted to state their reasoning and produce a 

chain-of-thought, something that has shown to give rise to reasoning capabilities [32]. 
• Data-flow analysis: The models are prompted to produce a simple data-flow analysis before 

stating their reasoning and solidifying their final verdict, inspired from previous work [33]. 
As discussed earlier, all these three patterns have shown promising improvements when used for 
vulnerability detection in LLMs. Figure 3 and Figure 4 displays the prompt templates for the 
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experiment. System message and user message are two message types provided by the OpenAI API. 
The system message is used to ground the model into a specific behavior [34]. 
 

 

Figure 3: 
The prompt template for the experiment. Made using Figma [38]  
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CWEs 
The selection of CWEs (Common Weakness Enumeration) are important for this experiment as they 
reflect on the basis on which the LLM will be compared against SAST software. For this study, the 
experiment will focus on CWEs that SAST software often struggle with. Various evaluations of SAST 
software on various CWEs can be found on previous works [35]. In this case, 6 CWEs were selected: 
CWE-835, CWE-190, CWE-129, CWE-78, CWE-480, CWE-391. By evaluating LLMs against the 
aforementioned CWEs, the feasibility of LLMs against SAST software will become available. 

Table 5: Number of code scenarios per CWE 

Common Weakness Enumeration (CWE) Code scenario count 
CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop') 5 

CWE-190: Integer Overflow or Wraparound  5 
CWE-129: Improper Validation of Array Index 1 

CWE-78: Improper Neutralization of Special Elements used in an OS 
Command ('OS Command Injection') 

5 

CWE-480: Use of Incorrect Operator 1 
CWE-391: Unchecked Error Condition 1 

None – No vulnerability 5 
Total: 7 Total: 23 

 

Scoring 

The results of the experiment will be evaluated using 4 scores that are often used for evaluating 
classification tools (More detail in Appendix I). 

Figure 4: The prompt template components for each prompt type. Made using Figma [38] 
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• Precision = 𝑇𝑇𝑇𝑇
𝑃𝑃𝑃𝑃

: It is the proportion of the true positives to the predicted positives. In other 
words, the proportion of the number of code scenarios correctly classified as vulnerable to the 
total number of code scenarios classified as vulnerable [28]. 

• Recall = 𝑇𝑇𝑇𝑇
𝑃𝑃

: It is the proportion of all true positives to all reported results, i.e. the proportion of 
the number of code scenarios correctly classified as vulnerable to the actual number of code 
scenarios that are vulnerable [28]. 

• Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑃𝑃+𝑁𝑁

: It is the proportion of all correct classification to the total number of 
classifications [36]. 

• F1 score = 2𝑇𝑇𝑇𝑇
2𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

: It is the harmonic mean of the Precision and Recall values. It provides a 
value for the representation of both of the two measurements [37]. 

These measurements will be used to measure the performance of the models in the experiment. 
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Results 
Table 6: Experiment scoring results for GPT-3.5 Turbo and GPT-4 with 8 prompt variations 

Model Prompt Accuracy Precision Recall F1 score 

GPT-3.5 Turbo 

RO+B 0.6 0.65 0.85 0.74 
RO+B+R 0.66 0.7 0.84 0.76 

RO+S 0.57 0.63 0.85 0.72 
RO+S+R 0.54 0.63 0.79 0.7 

TO+B 0.66 0.66 1 0.79 
TO+B+R 0.62 0.64 0.95 0.77 

TO+S 0.63 0.66 0.95 0.78 
TO+S+R 0.66 0.68 0.95 0.79 

GPT-4 

RO+B 0.63 0.79 0.83 0.81 
RO+B+R 0.48 0.92 0.65 0.79 

RO+S 0.43 0.71 0.59 0.69 
RO+S+R 0.41 0.90 0.56 0.75 

TO+B 0.67 0.79 0.83 0.81 
TO+B+R 0.52 0.73 0.65 0.73 

TO+S 0.52 0.75 0.63 0.73 
TO+S+R 0.42 0.69 0.50 0.64 

 

Table 7: Per CWE experiment scoring results for GPT-3.5 Turbo and GPT-4 with best each overall best 
performing prompts (TO+B for GPT-4 and TO+S+R for GPT-3.5 Turbo) 

Model CWE Accuracy Precision Recall F1 score 

GPT-3.5 Turbo 
835 N/A 
78 0.3 0.33 0.5 0.4 
190 0.45 0.5 0.8 0.62 

GPT-4 
835 0.55 0.56 1 0.71 
78 0.45 0.5 0.8 0.62 
190 0.45 0.5 0.8 0.62 

 
The accuracy of both the results seem around the same with both models and all prompt variations. 
Precision values are higher in GPT-4 in comparison to GPT-3.5 Turbo. Recall values however, are 
relatively higher in GPT-3.5 Turbo compared to GPT-4. The highest harmonic mean of the two is that of 
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GPT-4, more specifically, the prompt variation TO+B. TO+B is the Task-oriented basic prompt without 
reflection nor CWE-specificity. 
In terms of the prompts, in both GPT-4 and GPT-3.5 Turbo, GPT-4’s TO+B receives the highest accuracy 
of 0.67, GPT-4’s RO+B+R receives the highest precision score of 0.92, GPT-3.5 Turbo’s TO+S and 
TO+S+R receive the highest recall score of 0.95, and finally, GPT-4’s RO+B and TO+B both receive the 
highest F1 score. At another glance, the reflection variations of GPT-3.5 Turbo prompts have caused a 
gain in scoring 6 times meanwhile causing a loss of scores 8 times. The reflection variations of GPT-4 
prompts have furthermore caused a gain in scoring 4 times while causing a loss of scores 12 times. 

 

Findings 
The results of the experiment imply various points. Firstly, the performance of the model is on par 
with performance of static code analyzers as seen from Figure 1, Figure 2 and Table 3. By this, it can be 
concluded that LLMs are capable of performing vulnerability detection at rates on par with static code 
analysis tools. Secondly, measurements from Table 3 further depict the elevated recall of LLMs in 
comparison to static code analyzers in Figure 1. However, this is undermined by the low accuracy and 
precision levels which imply the high frequency of false positives produced by the LLM. False positive 
can cause developers to spend a long time trying to debug code that is most likely already safe which 
is a huge loss for any individual or business who may be interested in vulnerability detection software. 
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Conclusion 
In conclusion, the investigation into the capabilities of Large Language Models (LLMs) for vulnerability 
detection and its comparisons against static code analysis tools has demonstrated a promising 
capacity of LLMs for understanding and analyzing code. This is an innovative approach to both 
identifying vulnerabilities and suggesting repairs. Various points were discussed with reference to 
previous studies, ranging from the advantages of LLMs over static analysis tools like the lack of a need 
for a syntactically correct code for edit-time detection, to the disadvantages of LLMs in its often-
incorrect reasoning and resource intensive nature compared to static analysis tools. 
The investigation was successful in that it analyzed various aspects of large language models with 
reliance on both secondary and primary data. The primary experiment was also successful in depicting 
how LLMs may be able to improve on static analysis tools. One point that could have improved the 
investigation was to increase the number of code-scenarios to larger values and hence increasing the 
reliability of the results, but the investigation depicted similar results and implications to the 
secondary data and further emphasized both the advantages and disadvantages of LLMs in 
comparison to static code analyzers. Another improvement to the investigation could be to use more 
recent LLM models like Gemini 1.5 Pro and Claude 3. 
All in all, LLMs have shown significant potential for usage in detecting application source code 
vulnerabilities. As of this day, it can be argued that, although LLMs are tools powerful enough that can 
be used in the detection of vulnerabilities within software code, they are impractical in real-world 
cases. With high rates of false positive, illogical reasoning and various other problems, they are 
unlikely to be a feasible as static code analysis tools are both on par with LLMs and much less resource 
intensive and costly as LLMs. 
On a side note, this leads to one unifying idea, what if the two tools are combined? A combination of 
LLMs and static code analysis, if complementary, could drastically improve vulnerability detection. This 
topic, although out of the scope of this comparative investigation, could yield useful results in the field 
of LLMs. 
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Appendix I – Classification scoring 
The classification will often result in a number of predicted positives (𝑃𝑃𝑃𝑃) — code that the LLM labels 
as vulnerable — or predicted negatives (𝑃𝑃𝑃𝑃) — code that is labeled as non-vulnerable. Our dataset 
itself contains a number of positives (𝑃𝑃) — code that is actually vulnerable — and negatives (𝑁𝑁) — 
code that is actually non-vulnerable. The results of the experiment can be further classified into four 
categories listed bellow: 

• 𝑇𝑇𝑇𝑇: True positive (The LLM correctly classified the code as vulnerable) 
• 𝐹𝐹𝐹𝐹: False positive (The LLM incorrectly classified the code as vulnerable) 
• 𝑇𝑇𝑇𝑇: True negative (The LLM correctly classified the code as non-vulnerable) 
• 𝐹𝐹𝐹𝐹: False negative (The LLM incorrectly classified the code as non-vulnerable) 

 

Table 8: Classification categories, adapted from Wikipedia article [28] 

Total population = 𝑃𝑃 + 𝑁𝑁 
LLM predicted condition 

Predicted positive (𝑃𝑃𝑃𝑃) Predicted negative (𝑃𝑃𝑃𝑃) 

Actual 
condition 

Actual positive (𝑃𝑃) True Positive (𝑇𝑇𝑇𝑇) False Negative (𝑇𝑇𝑇𝑇) 

Actual negative (𝑁𝑁) True Positive (𝑇𝑇𝑇𝑇) True Negative (𝑇𝑇𝑇𝑇) 
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Appendix II – Experiment code 
A version of the code used for interacting with the OpenAI API for the investigation experiment. 
It is written in python and requires the opensource “openai” and “python-dotenv” pip modules: 
 
import json 
import os 
from copy import copy 
 
import openai 
from dotenv import load_dotenv 
 
from prompts import ( 
    CWE_NON_SPECIFIC, 
    CWE_SPECIFIC, 
    REFLECTION, 
    ROLE_ORIENTED, 
    TASK_ORIENTED, 
    SYSTEM_COMMON, 
    USER_COMMON, 
) 
 
load_dotenv() 
client = openai.Client(api_key=os.getenv("OPENAI_API_KEY")) 
 
class Prompt: 
    cwe_specific = False 
    cwe_code: int = 0 
    cwe_title: str = "" 
    role_based = False 
 
    messages = [] 
 
    def __init__( 
        self, 
        cwe_code: int, 
        cwe_title: str, 
        cwe_specific: bool, 
        role_based: bool, 
        file_name: str, 
        id: str, 
    ): 
        self.cwe_code = cwe_code 
        self.cwe_title = cwe_title 
        self.role_based = role_based 
        self.cwe_specific = cwe_specific 
        self.file = file_name 
        self.id = id 
 
    def __str__(self): 
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        return 
f"<Prompt>\n<path>{self.file}</path>\n<id>{self.id}</id>\n<cwe_code>{self.cwe_code}</cwe_code>\n<cwe_title>{self.cw
e_title}</cwe_title>\n<role_based>{self.role_based}</role_based>\n</Prompt>" 
 
    def output_file_path(self): 
        return f"data/{self.id}.txt" 
 
    def add_assistant_message(self, message): 
        self.messages.append({"role": "assistant", "content": message}) 
 
    def reset(self): 
        self.messages = [] 
        self.messages.append(self.prepare_system_message()) 
        self.messages.append(self.prepare_user_message()) 
 
    def execute(self): 
        self.reset() 
        with open(self.output_file_path(), "w") as file: 
            out = str(self) 
            out += "\n" 
            out += json.dumps(self.messages, indent=4) 
            out += "\n\n" + ("=" * 50) + "\n\n" 
            file.write(out) 
 
        try: 
            response = self.run_completion() 
        except Exception as e: 
            with open(self.output_file_path(), "a") as file: 
                file.write(str(e)) 
        else: 
            self.add_assistant_message(response) 
            with open(self.output_file_path(), "a") as file: 
                file.write(str(response)) 
 
        self.messages.append({"role": "user", "content": REFLECTION}) 
        with open(self.output_file_path(), "a") as file: 
            file.write("\n\n" + ("=" * 50) + "\n\n") 
            try: 
                response = self.run_completion() 
            except Exception as e: 
                file.write(str(e)) 
            else: 
                self.add_assistant_message(response) 
                file.write(str(response)) 
 
    def run_completion(self): 
        response = client.chat.completions.create( 
            model="gpt-4-0613",  # change based on experiment 
            messages=self.messages, 
            temperature=0.0, 
            max_tokens=4096, 
        ) 
        return response.choices[0].message.content 
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    def prepare_user_message(self): 
        with open(self.file, "r") as file: 
            code = file.read() 
 
        language = self.file.split(".")[-1] 
        text = copy(USER_COMMON) 
        text = text.replace("{{LANGUAGE}}", language) 
        text = text.replace("{{CODE}}", code) 
        return { 
            "role": "user", 
            "content": text, 
        } 
 
    def prepare_system_message(self): 
        text = copy(SYSTEM_COMMON) 
        text = text.replace( 
            "{{TO or RO}}", ROLE_ORIENTED if self.role_based else TASK_ORIENTED 
        ) 
        text = text.replace( 
            "{{S or B}}", 
            ( 
                CWE_SPECIFIC.replace("{{CWE-TITLE}}", self.cwe_title).replace( 
                    "{{CWE-CODE}}", str(self.cwe_code) 
                ) 
            ) 
            if self.cwe_specific 
            else CWE_NON_SPECIFIC, 
        ) 
 
        return { 
            "role": "system", 
            "content": text, 
        } 
 
 
CWEs = [ 
    ( 
        78, 
        "Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')", 
    ), 
    (129, "Improper Validation of Array Index"), 
    (190, "Integer Overflow or Wraparound"), 
    (391, "Unchecked Error Condition"), 
    (480, "Use of Incorrect Operator"), 
    (835, "Loop with Unreachable Exit Condition ('Infinite Loop')"), 
    (-1, "No CWE"), 
] 
 
# The file was modified based on each experiment 
# Some manual handling will be needed when using 
# the No CWE case with cwe_specific=True because a 
# fake cwe code will need to be inserted depending 
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# on the code. 
 
# Example usage: 
for cwe_code, cwe_title in CWEs: 
    if cwe_code == -1: 
        continue 
    files = os.listdir(f"CWE/{cwe_code}") 
    for i, file in enumerate(files): 
        extension = file.split(".")[-1] 
        file_id = file.split(".")[0] 
 
        print(f"Processing {cwe_code}-{i}...") 
 
        file_name = f"CWE/{cwe_code}/{file_id}.{extension}" 
 
        p = Prompt( 
            cwe_code=cwe_code, 
            cwe_title=cwe_title, 
            cwe_specific=False, 
            role_based=True, 
            file_name=file_name, 
            id=f"{cwe_code}-{i}-a", 
        ) 
        p.execute() 
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