
A Comparative Study of the Blowfish and RSA Encryption
Algorithms’ speed while encrypting data of different sizes.

To what extent does the time complexity of RSA Encryption compare to
Blowfish Encryption when encrypting data of varying sizes?

Subject: Computer Science

Word Count: 3950

CS EE World
https://cseeworld.wixsite.com/home
23/34 (B)
May 2022
Anonymous Donation

Table Of Contents

1 Introduction

2 Background Research
2.1 Cryptography and its types
2.2 RSA Encryption Algorithm Description
2.3 Blowfish Encryption Algorithm Description
2.4 Time Complexity and Big O Notation of the Encryption Algorithms

3 Experimental Methodology
3.1 Datasets Used and Processed
3.2 Independent Variable
3.3 Dependent Variable
3.4 Controlled Variables
3.5 The Experimental Procedure

4 Hypothesis and Theory
5 Data Processing and Graphs

5.1 Data Collection and Processing
5.2 Blowfish’s Graph of Time vs File Size
5.3 RSA’s Graph of Time vs File Size
5.4 RSA Vs Blowfish Bar Chart

6 Evaluation of the Data

7 Conclusion

8 Future Research

9 Works Cited

10 Appendices
Appendix A: Code for the Program
Appendix B: User interface for the GUI
Appendix C: Raw Data of times obtained
Appendix D: Controlled Variables

1

1 Introduction

Cryptography is the study of secure communications techniques that allow the sender and

intended recipient of a message to view its contents (Kaspersky). In Computer Science, it refers

to a field that utilizes mathematical equations and techniques to encrypt/decrypt data on the

internet or stored within local computers (Richards, Kathleen). This field has played an essential

role in the development of Computer Science and our modern society since it has made

transmission of information secure. The use of Cryptography is present everywhere in our daily

lives in applications such as email clients, bank servers and social media applications. (Ward,

Mark). The output of research on Cryptography is high and large organizations such as Microsoft

and IBM are major stakeholders in this research. (Newsroom.ibm)

Within the field of Cryptography, encryption algorithms practically apply cryptography’s idea of

securing data since they take in a plaintext file as an input and encrypt it into an encrypted file

through complex algorithms (Kath, Heath).

In this paper, I will focus on comparing the time complexity between 2 encryption algorithms

which use different architectures: Blowfish and RSA while they encrypt data of varying sizes.

Thus, the research question “To what extent does the time complexity of RSA Encryption

compare to Blowfish Encryption when encrypting data of varying sizes?”.

2

The research in this paper will be useful for advancing the speed of DNS (i.e Domain Name

System) security on the internet. Nowadays, asymmetric key encryption is used to encrypt online

data but since the algorithms it uses to encrypt data are computationally intensive (Torres,

Jessica), the speed of DNS security is slow. A slower deployment of DNS security means that

attackers can seize control over incoming mail and webpages by forging DNS records

(Bernstein, D.J.), leading to a loss of data privacy. Through this research paper, utilizing

symmetric key encryption to encrypt data could be considered as an alternative since they use

algorithms which encrypt DNS records much faster. A faster speed of encryption is useful since

DNS records can be encrypted faster, meaning that 3rd party attackers will have trouble

launching attacks and thus, thousands of DNS attacks can be potentially prevented.

To investigate this comparative study, a graphical user interface was programmed (Appendix B)

and made to encrypt varying sizes of data stored in my local computer using an industry standard

encryption API called BouncyCastle (Castle, Bouncy) that provides implementations of Blowfish

and RSA algorithms. The process of encrypting data was carried out 10 times and patterns in the

amount of time taken to encrypt were analyzed. Mathematical graphs and Computer Science

theory were used to explain the obtained results.

2 Background Research

3

2.1 Cryptography and its types

There are 3 main types of cryptographic algorithms: Asymmetric Key algorithms, Symmetric

Key algorithms and Hash Functions. (Mybestwriter). However, in the context of this paper, we

will focus on distinguishing between asymmetric key algorithms and symmetric key algorithms.

Asymmetric key encryption utilizes 2 keys called Private and Public Keys and are created

through generating large prime numbers and performing mathematical operations on them.

(Self-Defense, Surveilance) Public Key as the name implies, is available to the public through a

public directory such as the internet or a public key infrastructure server. Private Key on the

other hand, is only available to the key’s generator and is highly secure. If a public key encrypts

the input message, the corresponding private key decrypts that encrypted message and vice -

versa. This form of encryption is used in applications which secure and pass data through the

internet from a sender to a receiver such as the SSL cryptographic protocols (ie. Secure Sockets

Layer protocols which give secure connections) as well as Bitcoin. (Brush, Kate) The image

below shows the mechanism of asymmetric key encryption:

4

Figure 1: A diagram representing the encryption process of an asymmetric encryption algorithm
(Mishra, Neeraj)

Symmetric Key encryption algorithms utilize the same key for encrypting and decrypting data.

The key is commonly shared between 2 or more users (Libfeld, Roey). The process of encryption

runs the data through an encryption algorithm called a “cipher”, which generates a ciphertext as

output. 2 common symmetric encryption blueprints are Block and Stream Ciphers. Block

Ciphers group data into static blocks and are encrypted using the key and algorithm of the same

length as the block of data. Stream ciphers encrypt data by 1-bit increments. (1-bit plaintext data

is encrypted into 1-bit ciphertext at a time) (Academy, Binance). This form of encryption is used

where the user encrypts large amounts of data in a short time to share with others. The image

below shows the mechanism of symmetric key encryption:

5

Figure 2: A diagram representing the encryption process of a symmetric encryption algorithm
(Mishra, Neeraj)

2.2 RSA Encryption Algorithm Description

RSA encryption is short for Rivest Shamir Adleman encryption algorithm. The algorithm was

created by Ron Rivest, Adi Shamir, and Leonard Adleman in 1977 (Point, Tutorials) and is used

in data encryption of email and digital transactions through online retailers such as Amazon.

Since RSA is an asymmetric algorithm, both of its public and private keys are generated and

linked together. These keys are generated through large prime numbers, the private key is the

representation of 2 very large prime numbers whereas the public key is the product of the 2

prime numbers used to make the private key.

6

The encryption process of the RSA algorithm is shown below:

1. Two random prime numbers are chosen. The higher the digit of the prime number, the
higher the security of the encrypted data.

𝐿𝑒𝑡 𝑎 𝑏𝑒 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟, 𝐿𝑒𝑡 𝑏 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟

2. The next step is to then find out the modulus, using the following formula

𝑚𝑜𝑑𝑢𝑙𝑢𝑠 = 𝑎 · 𝑏

3. Once we have the modulus, we need to use the Carmichael’s Totient Function in order
to find out the private key for the future.

𝑙𝑐𝑚 = 𝑙𝑜𝑤𝑒𝑠𝑡 𝑐𝑜𝑚𝑚𝑜𝑛 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒
𝐿𝑒𝑡 𝐷𝑝 𝑏𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 1
𝐷𝑝 = (𝑎 − 1) · (𝑏 − 1)
λ(𝑚𝑜𝑑𝑢𝑙𝑢𝑠) = 𝑙𝑐𝑚 · (𝐷𝑝)

4. Now we have 1 piece of the public key, which is the modulus. We need to now get the
other piece of the public key, which is commonly called . We can assign to any𝑒 𝑒
random value, the higher the value, the more efficient the encryption.

5. We now have both pieces of our public key, so we are ready to encrypt the
plaintext/original data.

𝐿𝑒𝑡 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡/𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑏𝑒 𝑜

𝐿𝑒𝑡 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑇𝑒𝑥𝑡 𝑏𝑒 𝑐

The formula to encrypt the original data uses modular exponentiation, and the formula for that is:

𝑐 = 𝑜𝑒 𝑚𝑜𝑑 𝑚𝑜𝑑𝑢𝑙𝑢𝑠

6. Now that we have encrypted our data, it’s time to generate our private key for
decrypting the data. The private key can be generated by:

𝐿𝑒𝑡 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑘𝑒𝑦 𝑏𝑒 𝑑

𝑑 = 1/𝑒 𝑚𝑜𝑑 λ(𝑚𝑜𝑑𝑢𝑙𝑢𝑠)

7

* isn’t dividing 1 by , but calculating the modular multiplicative inverse of1/𝑒 𝑒 𝑒

7. We have now generated the private key, all that’s left for us to do is to decrypt the
encrypted data. This can be done by:

𝑜 = 𝑐𝑑 𝑚𝑜𝑑 𝑚𝑜𝑑𝑢𝑙𝑢𝑠

2.3 Blowfish Encryption Algorithm Description

Designed by Bruce Schneier in 1993, Blowfish is a symmetric block cipher algorithm, meaning

that it rearranges data into static length blocks during the process of encryption and decryption

(ForGeeks, Geeks). Blowfish is used in file and disk encryption, password management, email

encryption, etc (Blowfish Encryption: Strength & Example).

The encryption process of the Blowfish algorithm is shown below:

1. Initialize an array with 18 slots.

𝐿𝑒𝑡 𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑦 𝑜𝑓 18 𝑠𝑙𝑜𝑡𝑠 𝑏𝑒 𝑎

2. Initialize 18 subkeys which will have 8 digits of hexadecimal, the hexadecimal values can

be randomly generated but are constant values.

𝐿𝑒𝑡 𝑡ℎ𝑒 𝑠𝑢𝑏𝑘𝑒𝑦𝑠 1 − 18 𝑏𝑒 𝑆
𝑁

3. Feed in all of the subkeys into the empty array of 18 slots.

𝑎[𝑁] = 𝑆
𝑁

4. Generate an input key which has a key length ranging from 8-56 digits of hexadecimal,

the hexadecimal values are randomly generated but are constant values.

8

5. Perform the XOR operation on all the individual elements on the array to 32 bits of the

input key. (It’s important to note that if the input key is larger than 32 bits, then it’s

necessary to divide it by 32 bits to get the individual keys that are used to XOR the

individual elements of the array instead of the original input key. If there are no more

individual keys of length 32 bits remaining, then XOR the remaining elements of the

array from the beginning of the input keys until the array has finished being initialized)

(Sharma, Abhishek).

𝑎[𝑁] = 𝑎[𝑁] ⊕ 32 𝑏𝑖𝑡𝑠 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑘𝑒𝑦

6. Now that the array of 18 slots has been initialized, an array of 4 substitution boxes is

initialized, (). Each of the elements in the array will have 256𝑆[0], 𝑆[1], 𝑆[2], 𝑆[3]

entries that will be 8 digits of hexadecimal each. (In total, each of the entries in the

substitution box will have 2048 digits of hexadecimal). The hexadecimal values are

randomly generated but are constant values.

7. Now, we can start encrypting the input data by splitting it into 64 bit blocks and then

passing it through a Feistel Network Structure.

The diagram for the Feistel Network Structure that the Blowfish Encryption Algorithm uses is

shown below:

9

Figure 3: Diagram showing the Inner Workings of the Feistel Network Structure

A Feistel Network Structure is a blueprint from which many different block ciphers are

derived. Any block cipher algorithm that utilizes a Feistel Structure will have the same process

for encrypting and decrypting a plaintext, the steps that it takes to encrypt the input text of

Blowfish is shown below:

1. It will first split the 64 input data block into two 32 bit blocks which are fed into 2 halves,

()𝐿 𝑎𝑛𝑑 𝑅

10

2. This data will then be propagated through the first round in the network which is then

performed an XOR operation with the first element of the array and then passed into𝑎

the function F, producing the output of F(L[0]) and then performed an XOR

mathematical operation with the other 32 bits of data located on the R side of the

network. When the operations on the first round are finished, the final values produced in

the and sides of the network are then swapped and propagated into the next round.𝐿 𝑅

3. The process in step 2 repeats until the end of the 16th round when the values on the and𝐿

sides of the network are swapped again and then finally concatenated to get the𝑅

ciphered output text.

The diagram of the Function F, that the Feistel Network Structure uses is shown below:

Figure 4: Diagram showing the inner workings of the Function F used in the Feistel Network Structure

11

The Function F in the Feistel Network Structure works by:

1. Taking in a 32-bit input and splitting it into four 8-bit blocks.

2. Feeding in the four 8-bit blocks into substitution boxes (Substitution boxes makes the

relationship between the key and cipher text non linear, and plays a part in securely

encrypting the data) (Chandrasekaran, Jeyamala, et al.).

3. Adding the values of the first 2 substitution boxes, then performing the XOR

mathematical operation with the value on the 3rd substitution box. Then adding the value

from the 3rd substitution box value to the 4th substitution box to finally get a 32-bit

output.

2.4 Time Complexity and Big O Notation of the Encryption Algorithms

Time complexity is defined as the amount of time taken by an algorithm to run corresponding to

the length of the input (Cormen, Thomas). It gives us an indication of the execution time of an

algorithm depending on the input size; the length of the input data highlights the number of

operations to be performed by the algorithm (GreatLearning). One of the most widely used ways

to measure time complexity is through the Big O notation. The Big O notation consists of 2 parts

and , where is the order of growth and is the length of the input. Therefore, timeΘ 𝑛 Θ 𝑛

complexity denoted by the Big - O notation can be written as . It should be noted that RSAΘ(𝑛)

has a time complexity of (Hub, Algo) and Blowfish has a time complexity ofΘ(𝑛2) Θ(𝑛)

(Saranya, V., and K. Kavitha). The general information about the time complexities of these

algorithms are explained below:

12

- This represents that the order of growth corresponding to the input is in linear time, andΘ(𝑛)

that running time increases similarly with the length of the input.

Figure 5: Graph showing the time complexityΘ(𝑛)

- This represents that the order of growth corresponding to the input is in quadraticΘ(𝑛2)

time, and that running time increases non linearly with the input length.𝑛2

Figure 6: Graph showing the time complexityΘ(𝑛2)

3 Experimental Methodology

The methodology that will be used in this paper is the experimental method. The main reason

why this methodology was chosen is because of its ability to manipulate the independent variable

13

which is especially useful in this paper since I want to identify the cause of why encryption

algorithms take more time as the sizes of different types of data increases. However, a limitation

of this methodology is that data can be unequally distributed which is poor experimental design

since it leads to increased outliers in data. The primary experimental data is the main source of

data in this paper, an RSA and Blowfish algorithm was programmed (code in Appendix A, using

the Bouncy Castle Library (Castle, Bouncy)) and fed in text files generated from a public dataset.

A GUI was created to interact with the algorithms and view the results (refer to Appendix B for

design).

3.1 Datasets Used and Processed

The datasets used in this paper were plaintext files that all had varying amounts of text generated

from a public website called Lorem Ipsum (Ipsum, Lorem). In Section 3.2, the amount of varying

bytes that would be required in the experiment were detailled, and those amount of bytes were

used to generate 10 random texts which were then exported as text files and ten copies were

made which corresponded to the amount of trials in the experiment. These files were then fed

into the algorithms, and the results were processed and analysed.

3.2 Independent Variable

The independent variable being measured is the size of the data. Each set of data are text files

whose sizes are incremented by 10 kilobytes each, starting from 10 kilobytes and ending at 100

kilobytes. 10 sets of data will provide enough data points to be plotted on a 2D graph and

observe the encryption algorithms’ behaviour but will not be overwhelmingly large so that the

experimental procedure becomes convoluted.

14

3.3 Dependent Variable

The dependent variable being measured in this experiment is the amount of time it takes for the

encryption algorithms to encrypt data of varying sizes. This will be measured by utilizing the

Stopwatch class and after encryption, the time will be displayed in the program in milliseconds.

Displaying time in milliseconds is the most precise form of measurement that is available in the

Stopwatch class.

3.4 Controlled Variables

Refer to Appendix D for the controlled variables in the experiment.

3.5 The Experimental Procedure

The procedure for the experiment is as follows:

1. Open Visual Studio 2019 and start the program, insert text files into the program

periodically based on their sizes (10-100 KB) and then encrypt each of the files back and

forth using the Blowfish and RSA encryption methods.

2. Repeat step 1 for all of the 10 trials until all the times of the text files of varying sizes

have been recorded with each encryption algorithm.

3. Calculate the mean times for all of the encrypted text files with each encryption algorithm

and then insert those values into a processed table which will be presented in the data

collection stage of the paper.

15

4 Hypothesis and Theory

Now that we have covered the experiment’s details and explained the background of each

algorithm, the next step is to determine which encryption algorithm is more efficient while

encrypting the data. This can be determined by comparing the time complexity of the algorithms

(refer to section 2.4). As mentioned in Appendix D, this experiment will take into account that

the data being passed through the RSA algorithm will be processed in blocks of 200 bits,

whereas the source stating that RSA has a time complexity of doesn’t take this factor intoΘ(𝑛2)

account. As a result, the time complexity of RSA in this experiment may differ.

It was mentioned in section 2.3 that Blowfish uses a Feistel Network Structure which includes

the function F. Both these structures perform bitwise operations to encrypt data whereas in

section 2.2 it was mentioned that RSA uses modular arithmetic to encrypt data. Bitwise

operations are less costlier than Modular Arithmetic since they perform less CPU Operations.

Summing up all of these factors, it can be predicted that encrypting data with the Blowfish

algorithm will take much less time to encrypt data compared to RSA.

This experiment will measure the relationship between time, , and size of sets being inserted, .𝑦 𝑥

By varying the size of the sets of values inserted into the encryption algorithms, a relationship

between these variables can be determined and how this relationship differs between Blowfish

and RSA should be observed.

16

Taking into consideration of all of the factors above, I hypothesize that the Blowfish encryption

algorithm will have a time complexity of and the RSA encryption algorithm will have aΘ(𝑛)

time complexity of . I also believe that Blowfish will take much shorter times to encryptΘ(𝑛2)

data compared to RSA.

5 Data Processing and Graphs

5.1 Data Collection and Processing

Below shows the mean times for all of the data sets that have been tested. For the raw data that

displays times for all 10 trials, please refer to Appendix C.

Average Time
(milliseconds)

File Size
(KB)

Blowfish
Algorithm

RSA
Algorithm

10 0.21064 130.68711
20 0.41839 224.97667
30 0.62572 353.23467
40 0.80175 596.46189
50 1.08937 817.11564
60 1.27587 1064.47159
70 1.40936 1207.97618
80 1.66577 1476.38887
90 1.84731 1632.91879

100 1.99947 1822.91281
Figure 7: Average Encryption Times of Files tested for both encryption algorithms

17

5.2 Blowfish’s Graph of Time vs File Size

The graph below shows the relationship of time against sizes of the files fed into the Blowfish
algorithm.

Figure 8: Graph showing Blowfish’s graph of time vs file size.

5.3 RSA’s Graph of Time vs File Size

The graph below shows the relationship of time against sizes of the files fed into the RSA
algorithm.

18

Figure 9: Graph showing RSA’s graph of time vs file size.

19

5.4 RSA Vs Blowfish Bar Chart

Figure 10: Bar Chart Comparison between Blowfish and RSA’s time vs file size

6 Evaluation of the Data

My hypothesis which predicted that Blowfish would have a time complexity of and RSAΘ(𝑛)

would have a time complexity of have been proven as seen from Figure 8 and 9Θ(𝑛2)

respectively since Figure 8 has a linear fit that has a correlation of 0.9986 and the root square

mean error of 0.03429 milliseconds suggests that the data points are highly concentrated around

the line of best fit which supports my argument that Blowfish is an algorithm which running time

increases linearly to the length of the input. Figure 9 has a quadratic fit that has a correlation of𝑛

20

0.9973 and the root square mean error of 50.19 milliseconds indicates that the data points are

highly concentrated around the line of best fit, supporting the argument that the algorithm’s

running time increases non linearly with the input length.𝑛2

My other hypothesis which stated that Blowfish will take much shorter times to encrypt data has

also been proven as seen from Figure 10. However, when I looked at Figure 10, I observed that

there was a huge disparity between the encryption times of the 2 algorithms on all sets of data.

As an example, for the 40KB file, Blowfish took 595.66014 milliseconds less than RSA! To find

out the exact multiplier Blowfish was faster than RSA for all sets of data, I divided the time

taken for the RSA from Blowfish to encrypt all sets of data and found the mean. I was shocked to

see that Blowfish was faster than RSA by a multiplier of 758.396!.

I initially linked this result to step 2 of section 3.5 which stated how I will collect data for the

experiment. The times recorded for encryption were done manually, as a result random errors

could have occurred while recording the times and thus, the chances of outliers in the data were

increased which affected the average encryption times.

I then linked this result to the background research I did on Blowfish on section 2.4 and

wondered if this is due to the fact that Blowfish encrypts data through a Feistel Round Structure

(Figure 3) that uses the function F (Figure 4) both of these sub-modules of the algorithm utilize

the bitwise operations of ADD and XOR. It should be noted that both of these operations are

extremely fast and have the bit complexity of (What Is the Complexity of BitwiseΘ(1)

21

Operations?). RSA on the other hand mainly uses Modular Exponentiation and Multiplication

while encrypting data (refer to the background research on section 2.2). It should be noted that

these operations take the bit complexity of and respectively (Menezes, AΘ((𝑙𝑜𝑔 𝑛)3) Θ((𝑙𝑜𝑔 𝑛)2)

J, Oorschot P. C. Van, and Scott A. Vanstone). A graph comparing the bit complexities of these

operations are shown below:

Figure 11: Graphs of , , andΘ(1) Θ((𝑙𝑜𝑔 𝑛)2) Θ((𝑙𝑜𝑔 𝑛)3)

[XOR and ADD Operations] = Red GraphΘ(1)

[Modular Multiplication Operation] = Blue GraphΘ((𝑙𝑜𝑔 𝑛)2)

[Modular Exponentiation Operation] = Green GraphΘ((𝑙𝑜𝑔 𝑛)3)

22

As seen from Figure 11, it can be seen that modular multiplication and exponentiation start

outgrowing the bitwise operations in terms of CPU Operations performed with increasing input

size. This means that the CPU operations of and will take far moreΘ((𝑙𝑜𝑔 𝑛)2) Θ((𝑙𝑜𝑔 𝑛)3)

CPU Operations than , which only performs 1 CPU Operation at any given input size and asΘ(1)

a result, it can be said that RSA produces much larger encryption times than Blowfish in the long

run.

7 Conclusion

This paper aimed to use background information of Blowfish and RSA encryption algorithms

and apply it to determine the relationship between encryption times and sizes of the text files

inserted into the encryption algorithms. As expected, there is a linear relationship between the

time and sizes of the text files inserted for the Blowfish algorithm which is apparent in Figure 8

and it’s apparent that there is a quadratic relationship between the time and sizes of the text files

for the RSA algorithm which is visible in Figure 9. To further the scope of the paper, the

investigation utilized the theory behind the encryption algorithms to justify the results of their

time - file size relationship.

The data was incremented in sizes of 10KB from 10KB to 100KB to ensure that both the

encryption algorithms were given plenty of varying sizes of data to encrypt and patterns from the

amount of time both algorithms took could be analysed. As the above results and explanation

show, due to the higher amounts of CPU Operations that the RSA’s modular exponentiation and

23

multiplication use compared to Blowfish’s XOR and ADD operation, I am concluding that

Blowfish is a faster and more efficient encryption algorithm compared to the RSA

encryption algorithm for all sets of data by an extremely large multiplier of 758.396.

Hopefully, the research in this paper will be useful for advancing the speed of DNS Security by

encouraging software developers that constantly encrypt data through asymmetric encryption

algorithms to consider utilizing symmetric encryption algorithms like Blowfish, DES, Twofish.

Additionally, through this research, developers could also consider encrypting data with

symmetric encryption algorithms and then encrypting the key of that symmetric encryption

algorithm with an asymmetric encryption algorithm (i.e hybrid encryption). That being said, the

use of asymmetric encryption in cryptography is still hard to replace with symmetric

cryptography due to the mechanism of asymmetric encryption encrypting data much more

securely and giving less room for 3rd parties to crack and intercept.

8 Future Research

An important criteria for assessing the performance of an encryption algorithm is to test how

securely it encrypts the data. (Stine, Kevin, and Quynh Danh). Comparing RSA and Blowfish

encryption algorithms in terms of their strength could be a suitable further research since it

provides another benchmark to assess the algorithms in terms of efficiency.

24

To measure the strength of an encryption algorithm, the key sizes and the architecture it uses

while encrypting data needs to be analyzed. In this paper, RSA had a larger key length and

encrypted data in larger block sizes of 200 bits. The mechanism that RSA used to encrypt data

performed mathematical operations on prime numbers, which produced cipher texts that were

harder to crack compared to Blowfish. Thus, it can be concluded that although the Blowfish

encryption algorithm took less time to encrypt data, RSA outperformed Blowfish by producing

cipher texts which were more secure.

25

9 Works Cited

Academy, Binance. "What Is Symmetric Key Cryptography?" AcademyBinance, 8 Apr. 2019,

academy.binance.com/en/articles/what-is-symmetric-key-cryptography. Accessed 8 Apr.

2019.

Bernstein, D.J. "High-speed Cryptography." Cr.yp.to, 9 Feb. 2006, cr.yp.to/highspeed.html.

Accessed 15 Sept. 2021.

"Blowfish Encryption: Strength & Example." Study.com, 1 June 2016,

study.com/academy/lesson/blowfish-encryption-strength-example.html

Brush, Kate. "Asymmetric Cryptography (Public Key Cryptography)." SearchSecurity, 10 May

2011, searchsecurity.techtarget.com/definition/asymmetric-cryptography. Accessed 25

July 2021.

Castle, Bouncy. Bouncy Castle C# API. Bouncycastle.org, 7 Dec. 2003. Accessed 18 June 2021.

Cormen, Thomas, et al. "Untitled post." KhanAcademy, Khan Academy,

www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/bi

g-o-notation. Accessed 23 July 2021.

ForGeeks, Geeks. "Blowfish Algorithm with Examples." GeeksforGeeks, 14 Oct. 2019,

www.geeksforgeeks.org/blowfish-algorithm-with-examples/.

GreatLearning, Great Learning, 24 Mar. 2020,

www.mygreatlearning.com/blog/why-is-time-complexity-essential/.

26

Hub, Algo. "Rsa Cryptography Algorithm." AlgorithmHub - RSA Cryptography Algorithm, 2017,

web.archive.org/web/20190614084338/algohub.me/algo/rsa-cryptography-algorithm.htm

l.

Ipsum, Lorem. “Lorem Ipsum.” Lorem Ipsum - All the Facts - Lipsum Generator, 3 Dec. 2001,

www.lipsum.com/.

Kaspersky. “Cryptography Definition.” Www.kaspersky.com, 13 Jan. 2021,

www.kaspersky.com/resource-center/definitions/what-is-cryptography.

Kath, Heath. "How Encryption Works: Everything You Need to Know." GoAnywhere,

HelpSystems, 28 July 2021,

www.goanywhere.com/blog/how-encryption-works-everything-you-need-to-know.

Accessed 15 Sept. 2021.

Libfeld, Roey. "What Is Symmetric Key Cryptography Encryption?: Security Wiki." Secret

Double Octopus, 9 Feb. 2019,

doubleoctopus.com/security-wiki/encryption-and-cryptography/symmetric-key-cryptogra

phy/.

Mishra, Neeraj. "Types of Cryptography." TheCrazyProgrammer, 19 Sept. 2020,

www.thecrazyprogrammer.com/2019/07/types-of-cryptography.html. Accessed 26 July

2021.

Mybestwriter. MyBestWriter, 14 Sept. 2019,

mybestwriter.com/three-main-types-of-cryptographic-algorithms/. Accessed 6 Aug. 2021.

27

Menezes, A J, Oorschot P. C. Van, and Scott A. Vanstone. Handbook of Applied Cryptography.

Boca Raton: CRC Press, 1997.

Newsroom.ibm. 15 Mar. 2021, newsroom.ibm.com/IBM-Explores-the-Future-of-Cryptography.

Accessed 14 Sept. 2021.

Point, Tutorials. "Understanding RSA Algorithm." Understanding Rsa Algorithm, 26 Nov. 2018,

www.tutorialspoint.com/cryptography_with_python/cryptography_with_python_understa

nding_rsa_algorithm.htm.

Richards, Kathleen. “Cryptography.” SearchSecurity, 19 Mar. 2011,

searchsecurity.techtarget.com/definition/cryptography.

Saranya, V., and K. Kavitha. A Modified Blowfish Algorithm for Improving the Cloud Security.

22 Apr. 2018. Ejerm,

www.ejerm.com/vol4_june_2017/img/pdf/3.A-Modified-Blowfish-Algorithm-for-Improv

ing-the-Cloud-Security.pdf. Accessed 14 Sept. 2021.

Self-Defense, Surveilance. "A Deep Dive on End-to-End Encryption: How Do Public Key

Encryption Systems Work?" Surveillance Self-Defense, 10 Aug. 2021,

ssd.eff.org/en/module/deep-dive-end-end-encryption-how-do-public-key-encryption-syst

ems-work#:~:text=The%20public%20key%20and%20private,very%20large%20secret%

20prime%20numbers.

Sharma, Abhishek, narrator. Blowfish Algorithm in Cryptography and Network Security | Easiest

Explanation for Students. YouTube, 2020. YouTube,

www.youtube.com/watch?v=CxAfmNQG0yk. Accessed 10 July 2021.

28

http://www.tutorialspoint.com/cryptography_with_python/cryptography_with_python_understanding_rsa_algorithm.htm
http://www.tutorialspoint.com/cryptography_with_python/cryptography_with_python_understanding_rsa_algorithm.htm

Stine, Kevin, and Quynh Danh. "Encryption Basics." NIST, National Institute of

Standards and Technology, 2 May 2011, csrc.nist.gov/publications/detail/

journal-article/2011/encryption-basics. Accessed 21 Sept. 2021.

Torres, Jessica. "Cryptography: Symmetric vs Asymmetric Encryption." Gitconnected, 18 May

2020,

levelup.gitconnected.com/cryptography-symmetric-vs-asymmetric-encryption-db36277c

8329. Accessed 15 Sept. 2021.

Ward, Mark. "How the Modern World Depends on Encryption." British Broadcasting

Corporation. BBC News Services, www.bbc.com/news/technology-24667834. Accessed

14 Sept. 2021.

"What Is the Complexity of Bitwise Operations?" CodeForces, 13 Jan. 2014,

codeforces.com/blog/entry/10337. Accessed 20 Sept. 2021.

29

10 Appendices

Appendix A: Code for the Program

using System;

using System.Windows.Forms;

using Org.BouncyCastle.Crypto.Generators;

using Org.BouncyCastle.OpenSsl;

using Org.BouncyCastle.Crypto.Utilities;

using Org.BouncyCastle.Crypto.Engines;

using System.IO;

using System.Security.Cryptography;

using System.Diagnostics;

using Org.BouncyCastle.Crypto;

using Org.BouncyCastle.Security;

using Org.BouncyCastle.Crypto.Parameters;

using Org.BouncyCastle.Crypto.Encodings;

using Org.BouncyCastle.Crypto.Paddings;

using Org.BouncyCastle.Utilities.Encoders;

namespace EE_EncryptionProgram

{

public partial class MainInterface : Form

{

Boolean[] options = new Boolean[1];

OpenFileDialog openFileDialog = new OpenFileDialog();

private const int bitSizeRSA = 2048;

private const int RSACipherBlockSize = 200;

private const int bitSizeBlowfish = 64;

string fileLocation = "";

private Boolean mouseDown;

Stopwatch stopwatch = new Stopwatch();

30

private int mousex;

private int mousey;

byte[] result = null;

Boolean RSAEnabled, BlowfishEnabled;

string outputTextFile = String.Empty;

public MainInterface()

{

InitializeComponent();

}

private void optionsEncryption_DropDownClosed(object sender,

EventArgs e)

{

int identifierEncryption = optionsEncryption.SelectedIndex;

try

{

switch (identifierEncryption)

{

case 0:

openFileDialog.Filter = ("text files(*.txt)|");

if (openFileDialog.ShowDialog() ==

System.Windows.Forms.DialogResult.OK)

{

fileLocation = openFileDialog.FileName;

outputTextFile =

@"C:\Users\Admin\OneDrive\Documents\EE_Output_Data\TextOutput";

options[0] = true;

}

break;

}

}

catch (Exception ex)

{

Console.WriteLine(ex.ToString());

31

}

startEncryption.Visible = true;

}

private void pictureBox2_Click(object sender, EventArgs e)

{

Application.Exit();

}

private void pictureBox3_Click(object sender, EventArgs e)

{

this.WindowState = FormWindowState.Minimized;

}

private void pictureBox4_MouseDown(object sender, MouseEventArgs e)

{

mouseDown = true;

}

private void pictureBox4_MouseMove(object sender, MouseEventArgs e)

{

if (mouseDown == true)

{

mousex = MousePosition.X - 225;

mousey = MousePosition.Y - 2;

this.SetDesktopLocation(mousex, mousey); //Sets the desktop

location to be the mouseX and mouseY coordinates

}

}

private void pictureBox4_MouseLeave(object sender, EventArgs e)

{

mouseDown = false;

}

private void EncryptFileRSA(string filePath)

{

byte[] finalOutput = null;

try

32

{

byte[] data = System.IO.File.ReadAllBytes(filePath);

RsaKeyPairGenerator rsaKeyPairGenerator = new

RsaKeyPairGenerator();

rsaKeyPairGenerator.Init(new KeyGenerationParameters(new

SecureRandom(), bitSizeRSA));

AsymmetricCipherKeyPair keyPair =

rsaKeyPairGenerator.GenerateKeyPair();

RsaKeyParameters PublicKey =

(RsaKeyParameters)keyPair.Public;

IAsymmetricBlockCipher cipher = new OaepEncoding(new

RsaEngine());

cipher.Init(true, PublicKey);

stopwatch.Start();

int dataLength = data.Length;

for (int i = 0; i < data.Length; i = i + 1)

{

finalOutput = cipher.ProcessBlock(data, 0,

RSACipherBlockSize);

dataLength = dataLength - 200;

}

stopwatch.Stop();

timeDuration.Text =

stopwatch.Elapsed.TotalMilliseconds.ToString();

stopwatch.Reset();

StreamWriter streamWriter = new StreamWriter(fileLocation);

streamWriter.WriteLine(finalOutput);

} catch (CryptographicException c)

{

33

Console.WriteLine(c.Message);

}

}

private void EncryptFileBlowfish(string filePath)

{

try

{

byte[] data = System.IO.File.ReadAllBytes(filePath);

BlowfishEngine engine = new BlowfishEngine();

PaddedBufferedBlockCipher cipher = new

PaddedBufferedBlockCipher(engine);

CipherKeyGenerator cipherKeyGenerator = new

CipherKeyGenerator();

cipherKeyGenerator.Init(new KeyGenerationParameters(new

SecureRandom(), bitSizeBlowfish));

KeyParameter blowFishKeyParameter = new

KeyParameter(cipherKeyGenerator.GenerateKey());

byte[] outputData = new

byte[cipher.GetOutputSize(data.Length)];

cipher.Init(true, blowFishKeyParameter);

stopwatch.Start();

cipher.ProcessBytes(data, 0, data.Length, outputData, 0);

stopwatch.Stop();

timeDuration.Text =

stopwatch.Elapsed.TotalMilliseconds.ToString();

stopwatch.Reset();

} catch (CryptographicException c)

34

{

Console.WriteLine(c.Message);

}

}

private void RSA_Encryption_Click(object sender, EventArgs e)

{

BlowfishEnabled = false;

RSAEnabled = true;

}

private void Blowfish_Encryption_Click(object sender, EventArgs e)

{

RSAEnabled = false;

BlowfishEnabled = true;

}

private void startEncryption_Click(object sender, EventArgs e)

{

if (BlowfishEnabled == true)

{

EncryptFileBlowfish(fileLocation);

}

if (RSAEnabled == true)

{

EncryptFileRSA(fileLocation);

}

}

}

}

35

Appendix B: User interface for the GUI

Appendix C: Raw Data of times obtained

C1: Raw and Average Times for RSA encryption algorithm

Data-Size(KB) 10 20 30 40 50 60 70 80 90 100

Trial 1
151.15

88

217.59

02

347.32

37

448.33

52

1077.5

307

1168.7

091

1090.2

477

1395.2

201

1575.904

9

1989.8

048

Trial 2
151.15

88

177.02

35 339.35

454.43

57

811.64

21

1217.7

013

1555.9

948

1620.9

25

1523.187

3

1765.5

393

Trial 3
151.15

88

210.48

65

339.15

54

534.16

42

557.43

29

948.83

89

1131.8

158

1551.2

303 1501.378

1887.4

394

Trial 4
151.15

88

268.58

33

383.68

24

774.33

45

994.03

78

969.90

79

1151.2

158

1536.5

786

1403.974

1

1889.9

275

Trial 5
151.15

88

281.72

17

349.54

05

782.73

53

790.72

75

678.48

82

1002.3

408

914.77

17

1577.707

7

1748.5

754

Trial 6 151.15 221.83 364.55 502.94 881.49 1297.0 1318.4 1426.2 1562.324 1988.6

36

88 91 14 27 26 396 609 356 5 518

Trial 7
151.15

88

190.18

23

316.65

54

676.41

9

878.38

81

1286.6

631

1159.5

854

1677.6

818

1764.668

4

1990.7

627

Trial 8
151.15

88

234.52

78

326.65

62

428.68

57

673.65

93

796.92

1

1285.7

766

1605.7

174 1572.345

1721.3

603

Trial 9
151.15

88

229.92

74

369.83

1

664.81

88

608.59

34

988.08

49

1090.6

82

1595.1

481

1853.789

9

1868.8

677

Trial 10
151.15

88

217.88

49

395.60

07

697.74

78

897.65

2

1292.3

619

1293.6

42

1440.3

801

1993.908

1

1378.1

992

Average
151.15

88

224.97

667

353.23

467

596.46

189

817.11

564

1064.4

7159

1207.9

7618

1476.3

8887

1632.918

79

1822.9

1281

C2: Raw and Average Times for Blowfish encryption algorithm

Data

Size (KB) 10 20 30 40 50 60 70 80 90 100

Trial 1 0.2135 0.4253 0.6364 0.8562 1.019 1.2561 1.4787 1.6906 1.9553 2.1437

Trial 2 0.2134 0.3481 0.6361 0.6946 1.3144 1.291 0.9333 1.925 1.9517 2.2233

Trial 3 0.212 0.4247 0.6369 0.8454 1.4986 1.0423 1.4897 1.6025 1.9527 1.3886

Trial 4 0.2134 0.4254 0.6424 0.8542 1.0128 1.2897 1.8466 1.1582 1.3819 2.1649

Trial 5 0.2253 0.4234 0.6473 0.8538 0.8707 1.348 1.33 1.7041 1.9494 1.554

Trial 6 0.2134 0.4303 0.6371 0.8915 1.0658 1.2872 1.4836 1.7042 1.8767 2.233

Trial 7 0.2165 0.4254 0.5038 0.7178 1.4259 1.635 1.484 1.7354 1.5326 1.909

Trial 8 0.2119 0.4222 0.637 0.598 0.6567 0.7637 1.0673 1.707 1.9645 2.1372

Trial 9 0.1748 0.4332 0.6399 0.8524 0.9348 1.2953 1.489 1.7382 1.9506 2.1207

Trial 10 0.2122 0.4259 0.6403 0.8536 1.095 1.5504 1.4914 1.6925 1.9577 2.1203

Average 0.21064 0.41839 0.62572 0.80175 1.08937 1.27587 1.40936 1.66577 1.84731 1.99947

Appendix D: Controlled Variables

Variable Description Specifications (if any)

Computer and Operating
System

This experiment will be run
on my personal laptop:

Processor: 1.80 GHz Intel
Core i7-8565U

37

Thinkpad E490s Memory: 8GB DDR4 2400
MHz

Integrated Development
Environment used

The program will be run in
the Visual Studio IDE only

IDE: Visual Studio 2019
C# Runtime Environment:
.NET Framework 4.7.2
C# Virtual Machine:
Common Language Runtime

Same algorithms used The algorithm’s code from
Appendix A will be used.

RSA Key Bit Size: 2048 bits
RSA Cipher Block Size
(constant): 200 bits

Blowfish Key Bit Size: 64
bits
Blowfish Cipher Block Size
(constant): 64 bits

Same methods called The functions
“EncryptFileRSA” and
“EncryptFileBlowfish” will
be called for every set of data
being tested.

Same data type used The program will only use the
STRING data for all the text
files being tested.

38

