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1 Introduction

This essay will focus on the application of a general-purpose graphics processing unit
(GPGPU) on an approximate string matching (ASM) algorithm. GPGPUs are graphics
processing units that can be used for general-purpose calculations as opposed to solely
graphics-based calculations. Due to GPUs having thousands of processing cores, they are
extremely well versed at running thousands of small tasks simultaneously. This is
referred to as parallel programming and it can lead to dramatic speed increases in
specific scenarios. This essay will investigate to what extent using the GPU to process a
Levenshtein’s Distance-based ASM algorithm can increase the processing speed of the
algorithm, leading to the research question: To what extent is the speed of a
Levenshtein’s distance approximate string-matching algorithm different when being

processed on a CPU vs. on a GPU.



2 Theory & Concepts

2.1 Approximate String Matching (ASM)

Approximate String Matching is the process of finding the closest, or n-closest
matches of a given Search Term in a dictionary. To do so, given an array of strings
which serves as our dictionary, named ‘D’, and a Search Term ‘S’, then for each string
in D, where the current element index is ‘X’, we must find the number of
transformations required to morph Dx into S. There are a few valid types of
transformations for Levenshtein’s Distance, these arelll:

Insertion, adding a character into the query string: “Wrld” - “World”
Deletion, removing a character from the query string: “Woarld” — “World”
Substitution, replacing a character from the query string: “Wurld” - “World”

The number of transformations between two strings is known as the Edit Distance,
and there are several algorithms available to determine this distance. A couple
examples include: The Longest Common Subsequence, The Hamming distance, The
Jaro Distance, and the Levenshtein distance. The difference between each algorithm
is which transformations they count as valid. For example, the Hamming distance
only allows substitution, thus it only applies to strings of the same length. This essay
will focus on an ASM algorithm built on the Levenshtein’s distance paradigm, whose
valid transformations are shown above.

The process of finding the n-closest strings of a given search string in a brute-force

manner can be summarized in the following 3-steps:



Step 1: For each string in the algorithm’s dictionary:
Step 2: Compute the Levenshtein Distance, store the score and the current
dictionary string within a binary search tree.
Step 3: Once each string has been computed, traverse the tree in order and output
up to n strings.

While ASM is a niche field, it has had a large influence in not only computer science,
but also external fields, such as biology, among others. It plays a crucial role in
several real-world problems. For example, detecting plagiarism, bioinformatics,
digital forensics, spell checkers, spam filters, and search engines(?l. In certain cases,
such as search engines, the dictionary of strings to search from can become massive.
There are existing optimizations to speed up the time it takes to complete an ASM
query, such as indexing, which reduces the total number of strings we must iterate
through using some indexing method, such as the first couple characters of each
string. Existing ASM optimization methods are all software-based, but unless we find
a software-based optimization with an O(1) runtime - meaning it would take the
same amount of time to run regardless of the size of the input, which as far as we
know is impossible - software-based optimizations can only speed up our query up
to a point. This is where the massively parallel nature of the GPU comes in. Being
able to take advantage of a GPU’s immense parallel computing capabilities can
theoretically dramatically increase the speed of ASM on large databases. Combined
with the possibility for a data centre to possess dozens, to hundreds of computers
each with GPUs installed within, having a parallelized version of ASM could allow for

blazing fast ASM queries even for massive dictionaries.



2.2 Levenshtein’s Distance
Levenshtein’s Distance (LD) is a method of calculating the Edit Distance between 2

strings that considers the previously discussed Insertion, Deletion, and Substitution
operations. Unlike some other methods, it does not incorporate Transposition
(Swapping the positions of two characters).
This essay focuses on the LD algorithm as opposed to other Edit Distance algorithms
due to its ease of implementation as well as it being able to consider three Edit
Operations. Calculating the Levenshtein Distance of two strings will be done using
the following matrix, shown in Figure 2.2.1 below:
0 - len(S) +1
len(D;() +1 L:D
Figure 2.2.1: Matrix used to determine Levenshtein’s Distance
Where ‘S’ is the Search Term, ‘Dx’ is the current Dictionary Term, and the function
‘len()’ returns the number of characters in the inputted term. Initially, this matrix is
empty. To fill it, there are a couple of possible methods. This essay will use an
[terative method with a full matrix, I chose this method as GPUs are known to be
able to accelerate matrix-based calculations. The algorithm used in an iterative full
matrix approach to finding LD involves traversing through the matrix in row-major
order with two for-loops, then setting the element at the current coordinates given

by the for-loops to the result of the following piecewise function shown in Figure

2.2.2 below:
max(x,y),  if min(x,y) =0,
M(x—1,y)
M(x,y) = min M(x,y — 1) else

M(X - 1,y - 1) + 1(DXx¢Sy)

Figure 2.2.2: Function used to determine the LD in matrix ‘M’ at indices x, y



2.3 Graphical Processing Unit

The Graphical Processing Unit (GPU) is a piece of hardware that is most commonly
connected to a computer via a serial expansion bus, such as PCle, a peripheral
connection interface which allows for the highspeed transfer of dozens of gigabytes
per second. This amount of speed is required to have reasonable interoperability
speeds between the CPU and GPU; For example, one of the most common uses of a
GPU is real-time computer graphics (Hence the name). To achieve real-time speeds,
potentially several gigabytes of data stating what and where to draw things on the
screen must be transferred between the computer’s Main Memory to the GPU’s
onboard memory via a PCle expansion bus. The transfer of data from Main Memory
to GPU Memory poses an overhead. There are 3 major sources of overhead when
programming on the GPUI3I:
o CPU Wrapper Overhead: This is the overhead created by the wrappers around
GPU API (i.e., OpenCL / CUDA) functions, which are called from the CPU.
o Memory Overhead: This is the overhead created by moving data back and forth
between Main Memory and the GPU’s memory.
o GPU Launch Overhead: This is the overhead created by the time it takes for the
GPU to retrieve the command given to it and begin executing it.
GPUs are structured differently from CPUs. The main difference is that whereas
modern CPUs have between two and 64 cores or so, with most consumer processors
containing four to 16 cores/*l; modern GPUs have two to three thousand specialized
cores. Additionally, whereas according to Flynn’s Taxonomy, multi-core CPUs
operate using Multiple Instruction, Multiple Data (MIMD) techniques, GPUs operate

with Single Instruction, Multiple Data (SIMD) techniques.
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Figure 2.3.1 (Left): A Diagram showing MIMD architecture

Figure 2.3.2 (Right): A Diagram showing SIMD architecture
This difference in processing architectures creates notable differences between how
things are processed on each device. For example, the GPU’s or SIMD’s main
advantage is that it can compute mathematical operations on large sets of data-
points extremely quickly relative to other architectures, with minimal memory costs,
as the instruction and data pool is loaded into the SIMD device’s memory once and is
then shared with the totality of the processing units. The main disadvantage of SIMD
architecture is that not every algorithm can be efficiently applied to it. It also takes a
considerable amount of extra human interaction to create SIMD / parallel
programs.[51In contrast to SIMD, MIMD’s main advantage is that it is trivial to
program, as there is no explicit need for communication between processing units[®],

since every processing unit has its own memory.



3 Methodology & Testing

3.1 Preface

Primary experimental data is the main source of data for this paper, for which two
logically identical programs were created. The first implemented in Java, which is to
be ran on the CPU. The second will be a kernel implemented in a variation of the C
programming language specialized for OpenCL. Both programs will be provided in
this paper’s appendix.

An experimental approach - where I conduct an experiment to create primary data -
was chosen to answer this paper’s research question due to a lack of broad
secondary data to answer the question. While some papers provided information on
parallelized string-matching algorithms, most used a specific API or algorithm. For
example, the paper “Using GPUs to Speed-Up Levenshtein Edit Distance
Computation” used exclusively CUDA as its GPU APIl7l. CUDA is only available on and
is highly optimized for Nvidia GPUs, possibly resulting in higher speeds than we
would expect for similarly powerful but differently branded GPUs. To avoid this
issue, this paper aims to use cross-platform software to answer the research
question at the most general scope possible, removing the performance
enhancements specific hardware manufacturers may be able to give to their own
hardware. To that end, both the Java Virtual Machine and the OpenCL API are cross-

platform.



3.2 Dependent & Control Variables

The variable I will be using to compare the CPU and GPU’s performance is the
average time taken to complete a single ASM query in milliseconds. While there are
other factors that can be considered, such as memory usage or power draw, time
will give us the most quantifiable measure of how performant ASM is on both
devices.

The average time taken was acquired by adding the time taken to complete each
individual query, then dividing it by 30 (Number of repeats). This value was then
converted to milliseconds by dividing it by 1,000,000.

The time taken to complete an individual query was acquired using 2 calls to Java's
System.nanoTime() function, surrounding the function that completes the ASM Query

on a given device, as shown in the pseudocode below:

long IndividualTime = System.nanoTime() ;
QueryCPULev (SearchTerm) ;
TotalTime += System.nanoTime() - IndividualTime;

Figure 3.2.1: Individual ASM Query Time Measurement Psuedocode
System.nanoTime() was chosen due to its high-resolution source and because time
was returned in nanoseconds. As such, I could be sure that the time values gathered

were accurate and precise.

Control Variables:

e The amount of ASM Queries done to find the average (repeats).
This will be set at 30 for every test. Because [ am calculating averages, the
more repeats, the better. However, the more repeats, the longer the execution
time. 30 stroke a good balance between precision and time taken.

e The hardware used for each test. This must be controlled as using different
hardware will evidently cause changes in performance.



3.3 Search Term Size - Hypothesis
This first experiment conducted investigated the effect of different Search Term
Sizes on the average time taken to complete an ASM Query.

Search Term Size
0 len(S) + 17

[len(Dy) + 1 LD |

Current Dictionary Term Size

Looking back at figure 2.2.1 above, we can see that the size of the matrix increases as
the size of the search term increases. This matrix must be filled for each term in the
dictionary, meaning that if the search term size increases, more work must be done
per dictionary term.

Both the CPU and GPU will have to complete the same amount of work per matrix;
However, the difference appears when we consider that the CPU only has one
processing unit available to iterate through the dictionary and compute the matrix
for each term. Here, we see the GPU’s massive advantage: it can assign each
dictionary term to one of its thousands of processing units.

The total work done by the CPU can be summarized as: O(S - D - D), while

the total work done by each GPU processing unit can be summarized as: 0(S - D,.);
Where ‘S’ is the length of the Search Term, ‘D’ is the length of the Dictionary, and ‘D,’
is the average length of a Dictionary Term. Looking at both equations, we can expect
linear growth for the processing time taken for both the CPU and the GPU, however
we can expect a much steeper gradient from the CPU due to the extra factor ‘D’.
While each processing unit is doing the same amount of work to fill one matrix,
because the work is divided across so many processors, I hypothesize that the effect

of increasing the search time size will be much greater on the CPU than on the GPU.



3.4 Search Term Size - Test

The independent variable for this test was the Search Term Size, measured in
character count. For example: “Hello” would have a size of 5.

Testing was conducted with a dictionary of random integers up to but not restricted
to 15 digits long. The dictionary consisted of 10,000 elements. The experiment had
30 repeats. Search terms with the following sizes were tested:

1,5,10,25,50,75,100,250,500,750,1000,2000,3000...,8000,9000,10,000.

Smaller values (From 1 to 1000) were used to investigate if there was a noticeable
difference in performance at very small search term lengths, the thought being that
due to the GPU'’s initial overhead, small search term lengths might perform better on

the CPU.

Larger values (From 1000 to 10,000) were used to more clearly highlight the
relationship between the dependent and independent variables. Small values do not
highlight the relationship as well due to the very small differences in processing

time between two search term sizes with a small difference between them.

The test simply consists of:

o Generating a random string of current Search Term Size

o Conducting a ASM Query on that string 30 times

o Measuring the Overall time taken for all 30 queries, and the Average time
taken for 1 query (By dividing Overall time taken by 30).

o Repeat for each Search Term Size tested



Percentage Percentage
Difference of Difference of
Search Term Size (# Average Time |Overall Time
of Chars) GPU Average (ms) |CPU Average (ms) |GPU Overall (ms) |CPU Overall (ms) [Taken Taken
1 170 5122 144.71%
5 168 5040
10 166 4994
25 173 5213
50 170 5112
75 175 5269 385.71%
100 172 5172 418.02%
250 179 5390 427.37%
500 192 5764 426.04%
750 206 6200 466.99%
1000 223 6719
2000 279 8382
3000 340 10229
4000 404 12130
5000 464 13929 969.18%
6000 537 16130 999.26%
7000 641 19240 968.95%
8000 681 20434 1019.38%
9000 741 22231 1067.21%
10000 796 23904 1093.59%
Figure 3.4.1: Results of the test in tabular form
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Figure 3.4.2: Results of the test in graphical form
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3.5 Dictionary Size Test — Hypothesis

Unlike in the test in section 3.4, here we are not measuring the effect of changing the
size of the matrix in which we evaluate Levenshtein’s Distance. Instead, as can be
seen in figure 3.5.1 below, we measure the effect of increasing the number of

matrices - the number of terms for which we calculate a Levenshtein’s Distance for.

0 v len(S) + 1

0 e len(S) + 1

0 e len(S) + 1

Current Dictionary Term Size

Llen(Dy) +1 LD |
Search Term Size
Figure 3.5.1: 3D Visualization of the Matrices used to evaluate the LD of every term in a dictionary

The reason for conducting this test is that the GPU operates with ‘work-groups’.
These work-groups represent a portion of data that the GPU must execute the
current kernel! with. As the GPU does not have an infinite amount of processing
units, the GPU maintains a pool of work-groups, which the processing units of the
GPU then retrieve one-by-one until the pool is emptied[®], at which point the GPU has
no more work to do and the task is complete.

My kernel was designed in such a fashion that each dictionary term represented a

single work-group. (Kernel Architecture is a point which will be discussed later)

1 A kernel is a set of user-defined instructions to be executed specifically on the GPU. It can be thought of as a
function within regular CPU programming.

14



This test will therefore compare the impact of the GPU having to swap out an
increasing amount of work-groups as the number of dictionary terms outnumber
the number of processing units available on the GPU, with the CPU who can simply

process the dictionary sequentially with no need to retrieve data from a pool.

[ hypothesized that despite the potential added overhead of having to retrieve data
from a work-group pool, the divide-and-conquer advantage that the GPU has thanks
to its thousands of cores will still allow it to vastly outperform the CPU. This is
exacerbated by the fact that modern GPUs possess exceedingly fast memory - the
GPU used for every test’'s memory has a bandwidth of 448GB/s[°l compared to the
RAM'’s average read/write speed of ~7GB/s. This means that while the GPU does

have a pool of work-groups to retrieve work from, it can do it extremely quickly.

Even if my hypothesis is correct and the GPU is still faster than the CPU, the results
of this experiment can be compared with the others to conclude which variable has
the greatest impact on the time taken to execute an ASM query. That conclusion can
be applied by developers to identify where to optimize their software to get the
fastest implementation of ASM possible. Additionally, there may be a difference in

which variable causes the greatest impact depending on the device used.



3.6 Dictionary Size Test — Test

The independent variable for this test was the Size of the Dictionary, measured in

the number of terms within it.

Testing was conducted with dictionaries of random integers up to but not restricted

to 15 digits long. The dictionaries had the following sizes:
1,10,50,100,500,1000,2500,5000,7500,10000,20000,30000,...,100000

The experiment had 30 repeats.

As with the previous experiment, smaller values from 1 to 10,000 were used to

investigate if there was a noticeable difference in performance with very small

dictionary sizes.

While larger values (From 10,000 to 100,000) were used to more clearly highlight

the relationship between the dependent and independent variables.

Methodology:

o Generate a random string with length 15.

o Conducting a ASM Query on that string 30 times with the current Dictionary
Size

o Measuring the Overall time taken for all 30 queries, and the Average time
taken for 1 query (By dividing Overall time taken by 30).

o Repeat for each Dictionary Size to test



Dictionary Size (Terms)

GPU Average (ms) |CPU Average (ms) |GPU Overall (ms)

1 <1

10 <1
50 <1
100
500
1000
2500
5000
7500

10000
15000
20000
25000
30000
35000
40000
45000
50000

Average Time Taken (ms)

CPU Overall (ms)

Percentage Difference |Difference of Overall
of Average Time Taken |Time Taken

Percentage

Figure 3.6.1: Results of the test in tabular form
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Figure 3.6.2: Results of the test in graphical form
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3.7 Additional Graphs

Search Term Size vs. Percentage Difference between Average Time Taken to
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Figure 3.7.1: Graph highlighting the percentage difference between the average time

taken per query on both devices when search term size is varied.
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Figure 3.7.2: Graph highlighting the percentage difference between the average time

taken per query on both devices when dictionary size is varied.
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4 Conclusion

4.1 Effect of varying Search Term Size
To begin, it should be stated that due to how both Search Term Size (STS) and

Average Dictionary Term Size shape the Levenshtein’s Distance matrix, as seen in
figure 2.2.1, it can be concluded that both variables have very similar effects on the
performance of an ASM query.

From the experiment conducted in section 3.4, we can conclude that STS is linearly
correlated with the average time taken to complete an ASM query. More
importantly, it is clear that the GPU caused a massive performance increase over the
CPU. We know this as we consistently saw the GPU completing ASM queries over
900% faster than the CPU from 8000 to 10000 search term characters.

However, as can be seen in figure 3.7.1, it appears as though the percentage
difference between the time taken for each device is logarithmically corelated. This
means that while the performance increase achieved by using the GPU increases
rapidly for smaller STSs, it begins to stagnate for larger STSs. In my case, the
stagnation occurred at around 5000 to 8000 search term characters with a
percentage difference of around 950% to 1100%.

However, in real-world applications, STS values realistically never reach the larger
experimental values I used. For example, according to WolframAlpha, the average
length of an English word is 5.1 characters. Hence, for an English Spellchecker that
uses ASM, you would expect the Average STS to be 5.1 as well. We saw in figure 3.4.1
that with an STS of 5, we can expect a percentage difference of 154% or a 76ms
decrease in time taken from CPU to GPU. While a performance increase is achieved,

it is almost negligible due to its magnitude.



One final consideration is that because the Search Term and the Dictionary’s Terms
are often interrelated (If the Search Term is an English word, then the Dictionary is
likely to be a Dictionary of English words, for example.), we may also conclude that
both variables (STS and Average Dictionary Term Size) will vary the performance of
an ASM query similarly. Nevertheless, while there was no space to do so in this
paper, it might be worth conducting an experiment to see the performance impact of

increasing both variables or solely Average Dictionary Term Size.

4.2 Effect of varying Dictionary Size

As seen in the experiment conducted and graph in sections 3.6 and 3.6.2, the
relationship between Dictionary Size and average time taken to complete an AQM
query is exponentially corelated. This means that a lot more time is required per
ASM query as Dictionary Size increases.

Up to around 50-100 terms, we can see that the GPU is actually taking more average
time to complete a query than the CPU. This is likely to be the result of GPU
overhead.

Looking at figure 3.7.2, the corelation is somewhat indeterminate. It would be
advisable to gather more data past 50000 terms to verify a corelation. Based on the
data gathered, it appears as though an exponential corelation is most fitting. If this is
correct, then it means that the GPU results in an increasing performance increase
from the CPU as the Dictionary Size increases. While this is a very positive
realization, it is cancelled out by the exponential growth of the time taken per query
which we've already seen in figure 3.6.2 - while an increasing amount of time is
saved from using the CPU, an also increasing amount of time is taken to process a
query.

[ believe a developer wanting to optimize their ASM implementation should



prioritise reducing the size of the dictionary used in ASM. This can be done with
methods such as Indexing and Suffix Trees, methods discussed in section 2.1. Further
reading on those methods can be found in a paper by Dekel Tsur entitled ‘Fast index

for approximate string matching’.[10]

4.3 Comparison
Comparing the two variables used in this paper, Search Term Size (STS) and

Dictionary Size (DS), we see that on the GPU, the DS generally had a very minimal
effect on the time taken to complete a query up until about 20000 terms. Even at
20000 terms, a query took less than a second to complete, and took less time to
complete than a query with an STS of 10000. Due to the theorized exponential
growth of the percentage difference between the time taken on the CPU and GPU
when Dictionary Size is varied, there was actually a quite small difference in
performance between the CPU and GPU for the first couple tens of thousands of
terms. However, after 20000 terms, the time required per query increased
drastically. In contrast to the DS, the STS required a lot more time per query even at
much smaller values.

In conclusion, the GPU consistently provided a performance increase over the CPU.
Itis clear that a Levenshtein’s Distance based ASM algorithm does gain value and is
faster when ran on the GPU. Looking at the algorithm itself, varying the Search Term
Size (and likely the Average Dictionary Term Size as postulated at the end of section
4.1) for the most part had a lesser effect on the time taken to complete an ASM query
than changing the Dictionary Size; Therefore, it's advisable for a developer to focus
on optimizing the Dictionary Size first and foremost to improve the performance of

their ASM application.



5 Extensions

5.1 Multithreading

Something to consider is that the CPU code I used was not made to utilize the
multiple cores a modern CPU has. By utilizing only one core of the CPU, we are
wasting a lot of power. I think an interesting thing to explore in an additional
research paper would be the effect of multithreading on the performance of an ASM

algorithm. This is a fairly important consideration due to the next point:

5.2 Server CPUs

Server CPUs often have many more cores available to them than home or desktop
CPUs. The importance of this comes when we look at the previous point. If the CPU
code takes advantage of the dozens or even hundreds of cores that a Server CPU may
have, could it achieve better performance than a GPU at least with a small enough
Dictionary Size or other variable? This is important as ASM algorithms may be
implemented in the cloud. To save costs on GPUs for the cloud servers, an owner
may prefer to only use the CPU, at which point, having an efficient, multithreaded

CPU ASM algorithm would be highly beneficial.

5.3 Kernel Architecture

My final consideration is that coding on the GPU is a nuanced process. Contrary to
CPU programming, there is a lot of freedom with how things are processed and how
memory is handled. As such, there are more ways of optimizing algorithms to
maximise the use of the thousands of cores present on the GPU. I believe exploring
different manners of processing ASM on the GPU, and/or exploring how to best
arrange the memory passed to the GPU may an interesting avenue for future

research.
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6.2 General Code

Here you will find most java classes used in gathering data for this paper.

Main.java

Compute.ComputeProgram
Compute.GPU

java.io.BufferedReader
Jjava.io.IOException
java.io.InputStream
Jjava.io.InputStreamReader
java.nio.FloatBuffer
java.nio.IntBuffer
java.nio.charset.StandardCharsets
jJava.util.ArrayList
java.util.Scanner

org.lwjgl.opencl.CL10.*
Main {

Scanner
Stringl[]

IntBuffer
IntBuffer
IntBuffer
IntBuffer

String[] LoadWordList (String List) {
FunctionStartTimer = System.nanoTime ()
ArrayList<String> WordList = ArrayList<> ()
InputStream IS =
Main. .getClassLoader () .getResourceAsStream (List)
(BufferedReader BR BufferedReader (
InputStreamReader (IS, StandardCharsets. ))) |
String Line
((Line = BR.readLine()) !=
WordList.add (Line)

(IOException e) {
e.printStackTrace ()

}
String[] WordListArray

String[WordList.size () ]

(String Word : WordList) {
(Word.length() >




= Word.length ()

FunctionTimeTakenl = (System.nanoTime() - FunctionStartTimer)

System. .printf (
FunctionTimeTakenl FunctionTimeTakenl /

= GPU. .callocInt (
+1) * (

* WordList.size ()

= GPU. .callocInt (
WordList.size ())
(String s : WordList) {
(int j = 0; j <
(] < s.length()) {
.put (s.charAt (j))

-put (0)

.position (0)

= GPU. .callocInt (1)
.put ( WordList.size ())

= GPU. .callocInt (1)
.put ( )
FunctionTimeTaken2 = (System.nanoTime() - FunctionStartTimer)

System. .printf (
FunctionTimeTaken?2 FunctionTimeTaken?2 /

WordList.toArray (WordListArray)

QueryCPULev (String SearchTerm) {
FunctionStartTimer = System.nanoTime ()
SearchTree LevenshteinTree = SearchTree (
LevenshteinData ( )

SearchTerm = + SearchTerm.toLowerCase ()

(String Base : ) A
Levenshtein.Calculate (Base, SearchTerm, LevenshteinTree)

FunctionTimeTakenl = System.nanoTime() - FunctionStartTimer
( ) System. .printf (
FunctionTimeTakenl, FunctionTimeTakenl /

( ) A

LevenshteinTree.PrintInorder (LevenshteinTree

QueryGPULev (String SearchTerm) ({




FunctionStartTimer = System.nanoTime ()

SearchTerm SearchTerm.toLowerCase ()

IntBuffer SearchTermBuffer =
.callocInt ( (SearchTerm) .length())
( CurrentChar : SearchTerm.toCharArray()) {
SearchTermBuffer.put (CurrentChar)

}

SearchTermBuffer.position (0)

IntBuffer SearchTermLengthBuffer = GPU. .callocInt (1)
SearchTermLengthBuffer.put ( SearchTerm.length ())

FloatBuffer OutBuffer = GPU. .callocFloat (

ComputeProgram SolverProgram =
.get ( )

Flags = \
SolverProgram.CreateWriteIntBuffer ( SearchTermBuffer, Flags)
SolverProgram.CreateWriteIntBuffer ( SearchTermLengthBuffer

SolverProgram.CreateWriteIntBuffer ( Flags)
SolverProgram.CreateWriteIntBuffer ( Flags)
SolverProgram.CreateWriteIntBuffer ( Flags)

SolverProgram.CreateIntBuffer ( Flags)
SolverProgram.CreateFloatBuffer ( OutBuffer, Flags)

SolverProgram.
SolverProgram.

FunctionTimeTakenl = System.nanoTime() - FunctionStartTimer
( ) System. .printf (
FunctionTimeTakenl FunctionTimeTakenl /

SolverProgram.AutoSetKernelArgs ()
SolverProgram.AutoEnqueuelD ()
SolverProgram.ReadFloatBuffer ( OutBuffer)
FunctionTimeTaken?2 = System.nanoTime() - FunctionStartTimer
( ) System. .printf (
FunctionTimeTaken? - FunctionTimeTakenl (FunctionTimeTaken?2 -
FunctionTimeTakenl) / )

SearchTree LevenshteinTree = SearchTree (
LevenshteinData ( )

TermIndex =
(OutBuffer.hasRemaining () ) {
LevenshteinTree.Insert ( SearchTree (
LevenshteinData ( [TermIndex++]
OutBuffer.get ())
))

FunctionTimeTaken3 = System.nanoTime() - FunctionStartTimer




( ) System. .printf (

FunctionTimeTaken3 - FunctionTimeTaken?2 (FunctionTimeTaken3

FunctionTimeTaken2) / )
( ) System. .printf (
FunctionTimeTaken3, FunctionTimeTaken3 /

( ) A

LevenshteinTree.PrintInorder (LevenshteinTree

main (String[] args) {
GPU.Init()

GPU.AddProgram (

.getClassLoader () .getResourceAsStream (

= LoadWordList (

Scanner (System.

( &&
System. .println (
String SearchTerm = .nextLine ()

( ) |
( ) System. .println (

QueryGPULev (SearchTerm)
) System. .println ()

) System. .println (
QueryCPULev (SearchTerm)
System. .println ()

{
System. .println ( )
Tests.DictionarySizeGPU/()
System. .println ()
System. .println ( )
Tests.DictionarySizeCPU()
}
GPU.Dispose ()

End of Main.java




Tests.java

java.util.Random

Tests {
String GenRandString ( Length) {
Random R = Random ()
StringBuilder Result = StringBuilder ()
( i = i < Length; i++) {
Result.append ( ( ) ( ) ( + R.nextFloat () * ) )

Result.toString()

SearchTermSize () {
Main.QueryCPULev (GenRandString(10))

Repeats =
[] SearchTermSizes =

}
System. .println (
System. .println ()
( SearchTermSize : SearchTermSizes) {
String[] TestSearchTerms String[Repeats]
( i = i < Repeats; i++) {
TestSearchTerms[i] = GenRandString(SearchTermSize)

SuperTotalTime

TotalTime

(String TestSearchTerm : TestSearchTerms) {
IndividualTime = System.nanoTime ()

System.nanoTime ()

Main.QueryCPULev (TestSearchTerm)
TotalTime += System.nanoTime() - IndividualTime

System. .printf (
SearchTermSize)
System. .printf (
System.nanoTime () - SuperTotalTime, (System.nanoTime() - SuperTotalTime) /
)
System. .printf (
(TotalTime / Repeats) (TotalTime / Repeats) /

}

DictionarySizeGPU () {
Repeats =

SuperTotalTime = System.nanoTime ()
TotalTime




(

f

2 .printf (
TotalTime /

Repeats

(
(
TotalTime (System.nanoTime ()

@

- SuperTotalTime) /

(TotalTime

DictionarySizeCPU () {

Repeats =

SuperTotalTime =
TotalTime =
( = R <
String Se

Repeats
archTerm =

R++)
GenRandSt

ITime
Main. Que

.printf (
.printf (
- SuperTotalTime

stem. .printf (
(TotalTime / R

End of Tests.java

- ITime

- SuperTotalTime) /

(TotalTime
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SearchTree.java

SearchTree {

SearchTree
LevenshteinData
SearchTree

SearchTree (LevenshteinData Dataln) {
= Dataln

Insert (SearchTree Node) {
String Direction

(Node.
Direction

{

Direction

(Direction.equals (
( == ) |
= Node

.Insert (Node)

(Direction.equals (

.Insert (Node)

IllegalArgumentException ()

PrintInorder (SearchTree Node
(Node == ) A

(Limit[0] >= Limit[1]) {

}
PrintInorder (Node. Limit)
(Limit[0] < Limit[1]) {
(!'Node. . .equals ( ))
Node. .Out ()

{
Limit[0]--

{




PrintInorder (Node.

End of SearchTree.java

Limit)
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6.3 CPU Specific Code

Here you will find most classes that were exclusively required by the CPU.

Levenshtein.java

java.lang.Math.max
java.lang.Math.min

Levenshtein {

Calculate (String BaseTerm, String SearchTerm
SearchTree Tree) {

String OperatingOriginalString = + BaseTerm

[1[] Matrix =
[ OperatingOriginalString.length() ][ SearchTerm.length() ]

y < Matrix. y++) A
X = X < Matrix[O0]. x++) {

(min(x, y) ==
Matrix[y] [x]

{
Terml = Matrix[y - 1][x] +
Term2 = Matrix[y][x - 1] +
Term3 = Matrix[y - 1][x - 1]
(OperatingOriginalString.charAt(y) !=
SearchTerm.charAt (x)) {
Term3++

Matrix[y] [x] = min(Terml, min(Term2, Term3))

Distance = Matrix[OperatingOriginalString.length() -
] [SearchTerm.length () - 1]

Totallen = (OperatingOriginalString.length() - 1) +
(SearchTerm.length () - )

Ratio = ) (TotallLen - Distance) / ( ) TotalLen
Score )Distance + (Distance == : : Ratio)

Tree.Insert ( SearchTree (
LevenshteinData (BaseTerm, Score)

))
CalculateTreeless (String Original, String Search)
String OperatingOriginalString = + Original

[1[] Matrix =
[ OperatingOriginalString.length() ][ Search.length() ]

y < Matrix. y++) |




< Matrix|[

Terml
Term?2

= Matrix

[y
Matriy[y
Term3 = [y

= Matrix
(OperatingOrigina

Term3++

Matrix[y] [x] = min(Terml, min(Term2, Term3))

tring.length ()

End of Levenshtein.java
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LevenshteinData.java

shteinData {

LevenshteinData (String WordIn
= WordIn
= Scoreln

Out () {

[] WordWithCapitalizedFirstLetter
WordWithCapitalized 3
System. .printf (

String (WordWithCapitalizedFirstLetter

End of LevenshteinData.java
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6.4 GPU-Specific Code

Here you will find Java classes that connect or run GPU code.

ComputeProgram.java

Compute

Java.io.*

java.nio.Buffer
Java.nio.ByteBuffer
java.nio.IntBuffer
java.nio.charset.StandardCharsets
java.nio.file.Files
java.nio.file.Paths

org.lwjgl.PointerBuffer

java.nio.FloatBuffer
Jjava.util.HashMap

Compute.GPU. *
Compute.InfoUtil.checkCLError
org.lwjgl.opencl.CL10.*
org.lwjgl.system.MemoryUtil.*

org.apache.commons.io.*

ComputeProgram ({

String LoadSource (String Path) IOException {
Files.readString(Paths.get (Path))

ComputeProgram ( Context, String SourcePath) {
String Source =

{

Source = LoadSource (SourcePath)
(IOException E) {
System. .println ( + SourcePath +

}
String SourceFilename = FilenameUtils.getBaseName (SourcePath)
Program = clCreateProgramWithSource (Context, Source
BuildProgram (Program)
= clCreateKernel (Program, SourceFilename
checkCLError ( )
clReleaseProgram(Program)

ComputeProgram ( Context, InputStream IS, String ProgramName)

StringBuilder Source = StringBuilder ()




(BufferedReader BR = BufferedReader (
InputStreamReader (IS, StandardCharsets. ))) |
String Line
((Line = BR.readLine()) !=
Source.append (Line)

(IOException e) {
System. .println (
ProgramName + )

}

Program = clCreateProgramWithSource (Context
Source.toString () )

BuildProgram (Program)

= clCreateKernel (Program, ProgramName
checkCLError ( )
clReleaseProgram(Program)

BuildProgram ( Program) {
(clBuildProgram(Program, GPU.
) |

ByteBuffer BuildLog = ByteBuffer.allocateDirect )
PointerBuffer BuildLogSize = PointerBuffer.allocateDirect (1)

( clGetProgramBuildInfo (Program
BuildLog, BuildLogSize) ==
System. .println (BuildLogSize.get (0))
[] BuildLogBA = [( )BuildLogSize.get (
BuildLog.get (BuildLogBA)
{
System. .println( String (BuildLogBA
(UnsupportedEncodingException e) {
e.printStackTrace ()

= Integer.

HashMap<Integer, Long>
HashMap<Integer, Long> ()

CreateFloatBuffer ( ArgumentIndex, FloatBuffer Capacity
Flags) {

MemoryObject = clCreateBuffer( Flags, Capacity

)
checkCLError ( )
.put (ArgumentIndex, MemoryObject)

WriteFloatBuffer ( ArgumentIndex, FloatBuffer Data) {
checkCLError (clEnqueueWriteBuffer (




.get (ArgumentIndex) ))

CreateIntBuffer ( ArgumentIndex, IntBuffer Capacity

MemoryObject = clCreateBuffer ( Flags, Capacity

)
checkCLError ( )
.put (ArgumentIndex, MemoryObject)

WriteIntBuffer ( ArgumentIndex, IntBuffer Data) {
checkCLError (clEnqueueWriteBuffer (
.get (ArgumentIndex) IDERE! ) )

CreateWriteFloatBuffer ( ArgumentIndex, FloatBuffer

InitialData Flags) {
CreateFloatBuffer (ArgumentIndex, InitialData, Flags)
WriteFloatBuffer (ArgumentIndex, InitialData)

CreateWriteIntBuffer ( ArgumentIndex, IntBuffer

InitialData Flags) {
CreateIntBuffer (ArgumentIndex, InitialData, Flags)

WriteIntBuffer (ArgumentIndex, InitialData)

AutoSetKernelArgs () {
.forEach ( (ArgumentIndex, MemObject) -> {

clSetKernelArglp ( ArgumentIndex, MemObject)
)

AutoEnqueuelD () {
PointerBuffer GlobalWorksizeBuffer = GPU. .callocPointer (
GlobalWorksizeBuffer.put ( )

PointerBuffer LocalWorksizeBuffer = GPU. .callocPointer (
LocalWorksizeBuffer.put ( )

PointerBuffer KernelEvent = GPU. .callocPointer (1)

clEnqueueNDRangeKernel (

GlobalWorksizeBuffer
== Integer.
LocalWorksizeBuffer

KernelEvent

clWaitForEvents (KernelEvent)

)

)

ReadIntBuffer ( OutputArgumentIndex, IntBuffer Buffer)




.get (OutputArgumentIndex)

Buffer

ReadFloatBuffer ( OutputArgumentIndex

.get (OutputArgumentIndex)

End of ComputeProgram.java

FloatBuffer
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GPU.java

Compute

org.lwjgl.PointerBuffer
org.lwjgl.opencl.CL
org.lwjgl.opencl.CLCapabilities
org.lwjgl.opencl.CLContextCallback
org.lwjgl.system.MemoryStack

java.io.InputStream

java.nio.IntBuffer

Java.util.HashMap
Compute.InfoUtil.checkCLError
org.lwjgl.opencl.CL10.*
org.lwjgl.opencl.CL11.
org.lwjgl.system.MemoryUtil.*
GPU {

MemoryStack
IntBuffer

CLCapabilities
CLCapabilities

CLContextCallback

HashMap<String, ComputeProgram>
HashMap<String, ComputeProgram> ()

AddProgram (String Name, String Path) {
ComputeProgram Program = ComputeProgram (

Path
.put (Name, Program)
AddProgram(String Name, InputStream IS) {
ComputeProgram Program = ComputeProgram (

Is
Name

.put (Name, Program)

GetPlatformAndDevice (MemoryStack Stack) {
IntBuffer PlatformCount = Stack.mallocInt (1)
PointerBuffer AvailablePlatforms = Stack.mallocPointer (1)

checkCLError (




clGetPlatformIDs (AvailablePlatforms, PlatformCount)

(PlatformCount.get (0) == 0) {
RuntimeException (

= AvailablePlatforms.get (0)
= CL.createPlatformCapabilities (

IntBuffer DeviceCount = Stack.mallocInt (1)
PointerBuffer AvailableDevices = Stack.mallocPointer (1)
checkCLError (
clGetDeviceIDs (
AvailableDevices, DeviceCount)
)
(DeviceCount.get (0) == {
RuntimeException (

= AvailableDevices.get (0)
= CL.createDeviceCapabilities (

)

PointerBuffer GetContextProperties (MemoryStack Stack)
PointerBuffer ContextProperties = Stack.mallocPointer (3)

ContextProperties
.put (

.put (
.put (

ContextProperties

GetContextCallback () {

= CLContextCallback.create((errinfo, private info

cb, user data) —-> {
System. .println( )
System. .println ( + memUTF8 (errinfo))

})
PrintInfo () {
StringBuilder SB = StringBuilder ()

SB.append (

SB.append ( +

SB.append ( + InfoUtil.getDeviceInfoStringUTES8 (
) +

SB.append ( )
Type = InfoUtil.getDeviceInfoLong (
(( ) Type) {

SB.append (

{




SB.append (

SB.append (

SB.append (
InfoUtil.getDeviceInfoStringUTF8 (

SB.append (
InfoUtil.getDeviceInfoStringUTF8 (
)

SB.append (
InfoUtil.getDeviceInfoInt (
)

SB.append (
InfoUtil.getDeviceInfoInt (
+ )

SB.append (
InfoUtil.getDeviceInfoLong (

SB.append (
InfoUtil.getDeviceInfoInt (
)

SB.append (

System. .println (SB)

Init () {
= MemoryStack.create

.callocInt (1)
GetPlatformAndDevice (
GetContextCallback ()

= clCreateContextFromType (GetContextProperties (

)
checkCLError ( )

= clCreateCommandQueue (

)
checkCLError (

PrintInfo()

Dispose () {
.forEach ( (Name, Program) -> {
Program. .forEach ( (Key, MemObject) -> {
clReleaseMemObject (MemObject)
)

Program. .clear ()




aseKernel (Program.

.clear ()

End of GPU.java

(Exception E) {}
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InfoUtil.java

Compute

org.lwjgl.*
org.lwjgl.system.

java.nio.*

org.lwjgl.opencl.CL10.*
org.lwjgl.system.MemoryStack.*
org.lwjgl.system.MemoryUtil.*

InfoUtil {

InfoUtil () {

PrintDeviceInfo ( Device) {
System. .println ()
System. .println(
InfoUtil.getDeviceInfoStringUTF8 (Device ) )

DeviceType = InfoUtil.getDeviceInfoLong (Device
)
String DeviceTypeString =
(DeviceType ==
DeviceTypeString

(DeviceType ==
DeviceTypeString

{
DeviceTypeString

System. .println ( + DeviceTypeString)
System. .println ()
System. .println ( +
InfoUtil.getDeviceInfoInt (Device ) )
System. .println(
InfoUtil.getDeviceInfolnt (Device
System. .println ()
System. .println (
InfoUtil.getDeviceInfoLong (Device
System. .println (
InfoUtil.getDeviceInfoLong (
System. .println (

Device
)

}

String getPlatformInfoStringASCIT ( cl platform id
param name) {
(MemoryStack stack = stackPush()) {
PointerBuffer pp = stack.mallocPointer (1)
checkCLError (clGetPlatformInfo(cl platform id, param name
(ByteBuffer) PpP) )
bytes = ( )pp.get (0)

ByteBuffer buffer = stack.malloc (bytes)
checkCLError (clGetPlatformInfo(cl platform id, param name




memASCII (buffer, bytes - )

String getPlatformInfoStringUTFS8 ( cl platform id

param name) {

(MemoryStack stack stackPush()) {

PointerBuffer pp = stack.mallocPointer (1)

checkCLError (clGetPlatformInfo(cl platform id, param name
(ByteBuffer) rp))

bytes = ( )pp.get (0)

ByteBuffer buffer = stack.malloc (bytes)
checkCLError (clGetPlatformInfo(cl platform id, param name
buffer ))

memUTF8 (buffer, bytes - 1)

getDeviceInfolnt ( cl device id param name) {
(MemoryStack stack stackPush()) {
IntBuffer pl = stack.mallocInt (1)
checkCLError (clGetDeviceInfo(cl device id, param name, pl

pl.get (0)

getDeviceInfolLong ( cl device id param name)
(MemoryStack stack = stackPush()) {
LongBuffer pl = stack.mallocLong(1l)
checkCLError (clGetDeviceInfo(cl device id, param name, pl

pl.get (0)

getDeviceInfoPointer ( cl device id
{
(MemoryStack stack stackPush()) {
PointerBuffer pp = stack.mallocPointer (1)
checkCLError (clGetDeviceInfo(cl device id, param name, pp

pp.get (0)

String getDeviceInfoStringUTFS8 ( cl device id
param name) {
(MemoryStack stack stackPush()) {
PointerBuffer pp = stack.mallocPointer (1)
checkCLError (clGetDeviceInfo(cl device id, param name
(ByteBuffer) PpP) )

bytes = ( )pp.get (0)

ByteBuffer buffer = stack.malloc (bytes)
checkCLError (clGetDeviceInfo(cl device id, param name, buffer




getProgramBuildInfolInt ( cl program id
param name)
(MemoryStack stac ; kPush()) {

)

param name, pl ))
pl.get (

String getProgramBuildInfoStringASCIT ( cl program id
param name) {
tack stack =

cl device id

param name : Sha pp))

)pp.get (

cl device id

param name, buffer ) )

memASCII (buffer
checkCLError (IntBuffer errcode) {

checkCLError (
) |

RuntimeException (Stri

End of InfoUtil.java
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6.5 GPU Kernel
Here you will find the GPU Kernel which solves ASM queries.

LevenshteinSolver.cl

int F3D(int X, int XS,
return X + XS *

int Y,
(Y + 28 *

kernel void LevenshteinSolver (
global const int *Term,
global const int
global const int
global const int
global const int
global
global
)

*Base,

float *Output

int GI
int LTL

get global id(0);

int CurrentBaseTermLen

bool CurrentBaseTermLenFound

for (int i Og d < LMLg 4
DistanceMatrices [F3D (i
}

for (int j 0; j < LTL; j
DistanceMatrices [F3D (0

for (int x = 1;
in the search term*/
int CurrentSearchChar
for (int y = 1; y < LT

assigned to this work item*/
int CurrentBaseCha
if (CurrentBaseCha

break;

CurrentBaseTermlLen
(CurrentBaseChar”0)) ;

if 0)

DistanceMatric

(min (x,y)

}

else

{
int EqTerml

int EqTerm?2

int EqTerm3

EqTerm3 += 1 *

O .

x < SearchTermLen[0]

int Z,
Z);

int ZS) { /*Flatten 3D

Coordinates*/

*SearchTermLen,
*BaseSize,

*LongestBaseTermLen,
int *DistanceMatrices,

LongestBaseTermLen [0]+1;

’

false;

F)

LTL, 0, GI, LTL)]

’

++) |

LWL, 3, ©I, LTL)]

4

+ 1; x++) { /*For each character

{

LL;

Term[x
y++)

1];
/*For each character in the base

r Base[ ((GI * LTL-1) + vy) GI];

r

+= 1 * (! (CurrentBaseTermLenFound”0) &&

{
es [F3D (x,

LTL, y, GI, LTL)] = max(x,Vy);

DistanceMatrices [F3D (x 1, LTL, y, GI,

DistanceMatrices[F3D(x, LTL, y - 1, GI,

DistanceMatrices[F3D(x - 1, LTL, y - 1, GI,

(bool) (CurrentSearchChar”CurrentBaseChar) ;




eMatri

eTermLenFound

End of LevenshteinSolver.cl

/

min (EqTerml,

TermLen;
TotallLength) *
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