
1

Computer Science Extended Essay:

Investigating the effect of using a general-purpose GPU

instead of the CPU on the performance of approximate

string-matching algorithms.

Research Question:

To what extent is the speed of a Levenshtein’s distance-

based approximate string-matching algorithm different

when being processed on a CPU vs. on a GPU.

Word Count: 3925 Words

CS EE World
https://cseeworld.wixsite.com/home
May 2022
29/34
A
Submitter Info:
Email: officalquincy [at] gmail [dot] com

2

Content
1 Introduction .. 3

2 Theory & Concepts ... 4

2.1 Approximate String Matching (ASM) .. 4

2.2 Levenshtein’s Distance .. 6

2.3 Graphical Processing Unit ... 7

3 Methodology & Testing.. 9

3.1 Preface .. 9

3.2 Dependent & Control Variables .. 10

3.3 Search Term Size - Hypothesis .. 11

3.4 Search Term Size – Test .. 12

3.5 Dictionary Size Test – Hypothesis ... 14

3.6 Dictionary Size Test – Test .. 16

3.7 Additional Graphs ... 18

4 Conclusion .. 19

4.1 Effect of varying Search Term Size .. 19

4.2 Effect of varying Dictionary Size ... 20

4.3 Comparison ... 21

5 Extensions ... 22

5.1 Multithreading .. 22

5.2 Server CPUs ... 22

5.3 Kernel Architecture ... 22

6 Appendix .. 23

6.1 References .. 23

6.2 General Code .. 25

6.3 CPU Specific Code ... 33

6.4 GPU-Specific Code ... 36

6.5 GPU Kernel .. 47

3

1 Introduction
This essay will focus on the application of a general-purpose graphics processing unit

(GPGPU) on an approximate string matching (ASM) algorithm. GPGPUs are graphics

processing units that can be used for general-purpose calculations as opposed to solely

graphics-based calculations. Due to GPUs having thousands of processing cores, they are

extremely well versed at running thousands of small tasks simultaneously. This is

referred to as parallel programming and it can lead to dramatic speed increases in

specific scenarios. This essay will investigate to what extent using the GPU to process a

Levenshtein’s Distance-based ASM algorithm can increase the processing speed of the

algorithm, leading to the research question: To what extent is the speed of a

Levenshtein’s distance approximate string-matching algorithm different when being

processed on a CPU vs. on a GPU.

4

2 Theory & Concepts

2.1 Approximate String Matching (ASM)

Approximate String Matching is the process of finding the closest, or n-closest

matches of a given Search Term in a dictionary. To do so, given an array of strings

which serves as our dictionary, named ‘D’, and a Search Term ‘S’, then for each string

in D, where the current element index is ‘X’, we must find the number of

transformations required to morph DX into S. There are a few valid types of

transformations for Levenshtein’s Distance, these are[1]:

Insertion, adding a character into the query string: “Wrld” → “World”

Deletion, removing a character from the query string: “Woarld” → “World”

Substitution, replacing a character from the query string: “Wurld” → “World”

The number of transformations between two strings is known as the Edit Distance,

and there are several algorithms available to determine this distance. A couple

examples include: The Longest Common Subsequence, The Hamming distance, The

Jaro Distance, and the Levenshtein distance. The difference between each algorithm

is which transformations they count as valid. For example, the Hamming distance

only allows substitution, thus it only applies to strings of the same length. This essay

will focus on an ASM algorithm built on the Levenshtein’s distance paradigm, whose

valid transformations are shown above.

The process of finding the n-closest strings of a given search string in a brute-force

manner can be summarized in the following 3-steps:

5

Step 1: For each string in the algorithm’s dictionary:

Step 2: Compute the Levenshtein Distance, store the score and the current

dictionary string within a binary search tree.

Step 3: Once each string has been computed, traverse the tree in order and output

up to n strings.

While ASM is a niche field, it has had a large influence in not only computer science,

but also external fields, such as biology, among others. It plays a crucial role in

several real-world problems. For example, detecting plagiarism, bioinformatics,

digital forensics, spell checkers, spam filters, and search engines[2]. In certain cases,

such as search engines, the dictionary of strings to search from can become massive.

There are existing optimizations to speed up the time it takes to complete an ASM

query, such as indexing, which reduces the total number of strings we must iterate

through using some indexing method, such as the first couple characters of each

string. Existing ASM optimization methods are all software-based, but unless we find

a software-based optimization with an O(1) runtime – meaning it would take the

same amount of time to run regardless of the size of the input, which as far as we

know is impossible – software-based optimizations can only speed up our query up

to a point. This is where the massively parallel nature of the GPU comes in. Being

able to take advantage of a GPU’s immense parallel computing capabilities can

theoretically dramatically increase the speed of ASM on large databases. Combined

with the possibility for a data centre to possess dozens, to hundreds of computers

each with GPUs installed within, having a parallelized version of ASM could allow for

blazing fast ASM queries even for massive dictionaries.

6

2.2 Levenshtein’s Distance
Levenshtein’s Distance (LD) is a method of calculating the Edit Distance between 2

strings that considers the previously discussed Insertion, Deletion, and Substitution

operations. Unlike some other methods, it does not incorporate Transposition

(Swapping the positions of two characters).

This essay focuses on the LD algorithm as opposed to other Edit Distance algorithms

due to its ease of implementation as well as it being able to consider three Edit

Operations. Calculating the Levenshtein Distance of two strings will be done using

the following matrix, shown in Figure 2.2.1 below:

[
0 ⋯ 𝑙𝑒𝑛(𝑆) + 1
⋮ ⋱ ⋮

𝑙𝑒𝑛(𝐷𝑋) + 1 ⋯ 𝐿𝐷
]

Figure 2.2.1: Matrix used to determine Levenshtein’s Distance

Where ‘S’ is the Search Term, ‘Dx’ is the current Dictionary Term, and the function

‘len()’ returns the number of characters in the inputted term. Initially, this matrix is

empty. To fill it, there are a couple of possible methods. This essay will use an

Iterative method with a full matrix, I chose this method as GPUs are known to be

able to accelerate matrix-based calculations. The algorithm used in an iterative full

matrix approach to finding LD involves traversing through the matrix in row-major

order with two for-loops, then setting the element at the current coordinates given

by the for-loops to the result of the following piecewise function shown in Figure

2.2.2 below:

𝑀(𝑥, 𝑦) =

{

 max(x, y) , 𝑖𝑓 min(x, y) = 0,

𝑚𝑖𝑛 {

𝑀(𝑥 − 1, 𝑦)
𝑀(𝑥, 𝑦 − 1)

𝑀(𝑥 − 1, 𝑦 − 1) + 1(𝐷𝑋𝑥≠𝑆𝑦)

 𝑒𝑙𝑠𝑒

Figure 2.2.2: Function used to determine the LD in matrix ‘M’ at indices x, y

7

2.3 Graphical Processing Unit
The Graphical Processing Unit (GPU) is a piece of hardware that is most commonly

connected to a computer via a serial expansion bus, such as PCIe, a peripheral

connection interface which allows for the highspeed transfer of dozens of gigabytes

per second. This amount of speed is required to have reasonable interoperability

speeds between the CPU and GPU; For example, one of the most common uses of a

GPU is real-time computer graphics (Hence the name). To achieve real-time speeds,

potentially several gigabytes of data stating what and where to draw things on the

screen must be transferred between the computer’s Main Memory to the GPU’s

onboard memory via a PCIe expansion bus. The transfer of data from Main Memory

to GPU Memory poses an overhead. There are 3 major sources of overhead when

programming on the GPU[3]:

o CPU Wrapper Overhead: This is the overhead created by the wrappers around

GPU API (i.e., OpenCL / CUDA) functions, which are called from the CPU.

o Memory Overhead: This is the overhead created by moving data back and forth

between Main Memory and the GPU’s memory.

o GPU Launch Overhead: This is the overhead created by the time it takes for the

GPU to retrieve the command given to it and begin executing it.

GPUs are structured differently from CPUs. The main difference is that whereas

modern CPUs have between two and 64 cores or so, with most consumer processors

containing four to 16 cores[4]; modern GPUs have two to three thousand specialized

cores. Additionally, whereas according to Flynn’s Taxonomy, multi-core CPUs

operate using Multiple Instruction, Multiple Data (MIMD) techniques, GPUs operate

with Single Instruction, Multiple Data (SIMD) techniques.

8

Figure 2.3.1 (Left): A Diagram showing MIMD architecture

Figure 2.3.2 (Right): A Diagram showing SIMD architecture

This difference in processing architectures creates notable differences between how

things are processed on each device. For example, the GPU’s or SIMD’s main

advantage is that it can compute mathematical operations on large sets of data-

points extremely quickly relative to other architectures, with minimal memory costs,

as the instruction and data pool is loaded into the SIMD device’s memory once and is

then shared with the totality of the processing units. The main disadvantage of SIMD

architecture is that not every algorithm can be efficiently applied to it. It also takes a

considerable amount of extra human interaction to create SIMD / parallel

programs.[5] In contrast to SIMD, MIMD’s main advantage is that it is trivial to

program, as there is no explicit need for communication between processing units[6],

since every processing unit has its own memory.

9

3 Methodology & Testing

3.1 Preface
Primary experimental data is the main source of data for this paper, for which two

logically identical programs were created. The first implemented in Java, which is to

be ran on the CPU. The second will be a kernel implemented in a variation of the C

programming language specialized for OpenCL. Both programs will be provided in

this paper’s appendix.

An experimental approach – where I conduct an experiment to create primary data –

was chosen to answer this paper’s research question due to a lack of broad

secondary data to answer the question. While some papers provided information on

parallelized string-matching algorithms, most used a specific API or algorithm. For

example, the paper “Using GPUs to Speed-Up Levenshtein Edit Distance

Computation” used exclusively CUDA as its GPU API[7]. CUDA is only available on and

is highly optimized for Nvidia GPUs, possibly resulting in higher speeds than we

would expect for similarly powerful but differently branded GPUs. To avoid this

issue, this paper aims to use cross-platform software to answer the research

question at the most general scope possible, removing the performance

enhancements specific hardware manufacturers may be able to give to their own

hardware. To that end, both the Java Virtual Machine and the OpenCL API are cross-

platform.

10

3.2 Dependent & Control Variables
The variable I will be using to compare the CPU and GPU’s performance is the

average time taken to complete a single ASM query in milliseconds. While there are

other factors that can be considered, such as memory usage or power draw, time

will give us the most quantifiable measure of how performant ASM is on both

devices.

The average time taken was acquired by adding the time taken to complete each

individual query, then dividing it by 30 (Number of repeats). This value was then

converted to milliseconds by dividing it by 1,000,000.

The time taken to complete an individual query was acquired using 2 calls to Java’s

System.nanoTime() function, surrounding the function that completes the ASM Query

on a given device, as shown in the pseudocode below:

Figure 3.2.1: Individual ASM Query Time Measurement Psuedocode

System.nanoTime() was chosen due to its high-resolution source and because time

was returned in nanoseconds. As such, I could be sure that the time values gathered

were accurate and precise.

Control Variables:

• The amount of ASM Queries done to find the average (repeats).

This will be set at 30 for every test. Because I am calculating averages, the

more repeats, the better. However, the more repeats, the longer the execution

time. 30 stroke a good balance between precision and time taken.

• The hardware used for each test. This must be controlled as using different

hardware will evidently cause changes in performance.

long IndividualTime = System.nanoTime();

QueryCPULev(SearchTerm);

TotalTime += System.nanoTime() - IndividualTime;

11

3.3 Search Term Size - Hypothesis
This first experiment conducted investigated the effect of different Search Term

Sizes on the average time taken to complete an ASM Query.

Looking back at figure 2.2.1 above, we can see that the size of the matrix increases as

the size of the search term increases. This matrix must be filled for each term in the

dictionary, meaning that if the search term size increases, more work must be done

per dictionary term.

Both the CPU and GPU will have to complete the same amount of work per matrix;

However, the difference appears when we consider that the CPU only has one

processing unit available to iterate through the dictionary and compute the matrix

for each term. Here, we see the GPU’s massive advantage: it can assign each

dictionary term to one of its thousands of processing units.

The total work done by the CPU can be summarized as: 𝑂(𝑆 ∙ 𝐷 ∙ 𝐷𝑥̅̅̅̅), while

the total work done by each GPU processing unit can be summarized as: 𝑂(𝑆 ∙ 𝐷𝑥̅̅̅̅);

Where ‘S’ is the length of the Search Term, ‘D’ is the length of the Dictionary, and ‘𝐷𝑥̅̅̅̅ ’

is the average length of a Dictionary Term. Looking at both equations, we can expect

linear growth for the processing time taken for both the CPU and the GPU, however

we can expect a much steeper gradient from the CPU due to the extra factor ‘D’.

While each processing unit is doing the same amount of work to fill one matrix,

because the work is divided across so many processors, I hypothesize that the effect

of increasing the search time size will be much greater on the CPU than on the GPU.

Search Term Size

C
u

rr
en

t
D

ic
ti

o
n

ar
y

Te
rm

 S
iz

e

[

0 ⋯ 𝑙𝑒𝑛(𝑆) + 1

⋮ ⋱ ⋮

𝑙𝑒𝑛(𝐷𝑋) + 1 ⋯ 𝐿𝐷]

12

3.4 Search Term Size – Test
The independent variable for this test was the Search Term Size, measured in

character count. For example: “Hello” would have a size of 5.

Testing was conducted with a dictionary of random integers up to but not restricted

to 15 digits long. The dictionary consisted of 10,000 elements. The experiment had

30 repeats. Search terms with the following sizes were tested:

1,5,10,25,50,75,100,250,500,750,1000,2000,3000…,8000,9000,10,000.

Smaller values (From 1 to 1000) were used to investigate if there was a noticeable

difference in performance at very small search term lengths, the thought being that

due to the GPU’s initial overhead, small search term lengths might perform better on

the CPU.

Larger values (From 1000 to 10,000) were used to more clearly highlight the

relationship between the dependent and independent variables. Small values do not

highlight the relationship as well due to the very small differences in processing

time between two search term sizes with a small difference between them.

The test simply consists of:

• Generating a random string of current Search Term Size

• Conducting a ASM Query on that string 30 times

• Measuring the Overall time taken for all 30 queries, and the Average time

taken for 1 query (By dividing Overall time taken by 30).

• Repeat for each Search Term Size tested

13

Figure 3.4.1: Results of the test in tabular form

Figure 3.4.2: Results of the test in graphical form

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 T
im

e
Ta

ke
n

 (
m

s)

Search Term Size

Search Term Size vs. Average Time Taken to process ASM Query GPU CPU

Search Term Size (#

of Chars) GPU Average (ms) CPU Average (ms) GPU Overall (ms) CPU Overall (ms)

Percentage

Difference of

Average Time

Taken

Percentage

Difference of

Overall Time

Taken

1 170 246 5122 7387 144.71% 144.22%

5 168 259 5040 7778 154.17% 154.33%

10 166 287 4994 8615 172.89% 172.51%

25 173 315 5213 9470 182.08% 181.66%

50 170 359 5112 10798 211.18% 211.23%

75 175 675 5269 20280 385.71% 384.89%

100 172 719 5172 21576 418.02% 417.17%

250 179 765 5390 22977 427.37% 426.29%

500 192 818 5764 24564 426.04% 426.16%

750 206 962 6200 28870 466.99% 465.65%

1000 223 1124 6719 33722 504.04% 501.89%

2000 279 1919 8382 57578 687.81% 686.92%

3000 340 2730 10229 81901 802.94% 800.67%

4000 404 3614 12130 108440 894.55% 893.98%

5000 464 4497 13929 134920 969.18% 968.63%

6000 537 5366 16130 160995 999.26% 998.11%

7000 641 6211 19240 186358 968.95% 968.60%

8000 681 6942 20434 208284 1019.38% 1019.30%

9000 741 7908 22231 237243 1067.21% 1067.17%

10000 796 8705 23904 261165 1093.59% 1092.56%

14

3.5 Dictionary Size Test – Hypothesis
Unlike in the test in section 3.4, here we are not measuring the effect of changing the

size of the matrix in which we evaluate Levenshtein’s Distance. Instead, as can be

seen in figure 3.5.1 below, we measure the effect of increasing the number of

matrices – the number of terms for which we calculate a Levenshtein’s Distance for.

Figure 3.5.1: 3D Visualization of the Matrices used to evaluate the LD of every term in a dictionary

The reason for conducting this test is that the GPU operates with ‘work-groups’.

These work-groups represent a portion of data that the GPU must execute the

current kernel1 with. As the GPU does not have an infinite amount of processing

units, the GPU maintains a pool of work-groups, which the processing units of the

GPU then retrieve one-by-one until the pool is emptied[8], at which point the GPU has

no more work to do and the task is complete.

My kernel was designed in such a fashion that each dictionary term represented a

single work-group. (Kernel Architecture is a point which will be discussed later)

1 A kernel is a set of user-defined instructions to be executed specifically on the GPU. It can be thought of as a
function within regular CPU programming.

15

This test will therefore compare the impact of the GPU having to swap out an

increasing amount of work-groups as the number of dictionary terms outnumber

the number of processing units available on the GPU, with the CPU who can simply

process the dictionary sequentially with no need to retrieve data from a pool.

I hypothesized that despite the potential added overhead of having to retrieve data

from a work-group pool, the divide-and-conquer advantage that the GPU has thanks

to its thousands of cores will still allow it to vastly outperform the CPU. This is

exacerbated by the fact that modern GPUs possess exceedingly fast memory – the

GPU used for every test’s memory has a bandwidth of 448GB/s[9] compared to the

RAM’s average read/write speed of ~7GB/s. This means that while the GPU does

have a pool of work-groups to retrieve work from, it can do it extremely quickly.

Even if my hypothesis is correct and the GPU is still faster than the CPU, the results

of this experiment can be compared with the others to conclude which variable has

the greatest impact on the time taken to execute an ASM query. That conclusion can

be applied by developers to identify where to optimize their software to get the

fastest implementation of ASM possible. Additionally, there may be a difference in

which variable causes the greatest impact depending on the device used.

16

3.6 Dictionary Size Test – Test
The independent variable for this test was the Size of the Dictionary, measured in

the number of terms within it.

Testing was conducted with dictionaries of random integers up to but not restricted

to 15 digits long. The dictionaries had the following sizes:

1,10,50,100,500,1000,2500,5000,7500,10000,20000,30000,…,100000

The experiment had 30 repeats.

As with the previous experiment, smaller values from 1 to 10,000 were used to

investigate if there was a noticeable difference in performance with very small

dictionary sizes.

While larger values (From 10,000 to 100,000) were used to more clearly highlight

the relationship between the dependent and independent variables.

Methodology:

• Generate a random string with length 15.

• Conducting a ASM Query on that string 30 times with the current Dictionary

Size

• Measuring the Overall time taken for all 30 queries, and the Average time

taken for 1 query (By dividing Overall time taken by 30).

• Repeat for each Dictionary Size to test

17

 Figure 3.6.1: Results of the test in tabular form

Figure 3.6.2: Results of the test in graphical form

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

10000 15000 20000 25000 30000 35000 40000 45000 50000

A
ve

ra
ge

 T
im

e
Ta

ke
n

 (
m

s)

Dictionary Size (# of Terms)

Dictionary Size vs. Average Time Taken to complete ASM Query

Dictionary Size (Terms) GPU Average (ms) CPU Average (ms) GPU Overall (ms) CPU Overall (ms)

Percentage Difference

of Average Time Taken

Percentage

Difference of Overall

Time Taken

1 <1 <1 27 2 0.00% 7.41%

10 <1 <1 20 8 0.00% 40.00%

50 <1 <1 22 17 0.00% 77.27%

100 <1 <1 27 28 0.00% 103.70%

500 1 4 54 121 400.00% 224.07%

1000 3 6 103 194 200.00% 188.35%

2500 13 18 391 567 138.46% 145.01%

5000 44 72 1332 2175 163.64% 163.29%

7500 94 168 2833 5057 178.72% 178.50%

10000 165 295 4959 8852 178.79% 178.50%

15000 371 692 11148 20775 186.52% 186.36%

20000 658 1225 19755 36763 186.17% 186.09%

25000 1021 2011 30633 60351 196.96% 197.01%

30000 1489 3366 44672 100987 226.06% 226.06%

35000 1989 5105 59698 153177 256.66% 256.59%

40000 2655 8966 79656 268991 337.70% 337.69%

45000 3437 12433 103113 373002 361.74% 361.74%

50000 4210 16571 126320 497146 393.61% 393.56%

18

3.7 Additional Graphs

Figure 3.7.1: Graph highlighting the percentage difference between the average time
taken per query on both devices when search term size is varied.

Figure 3.7.2: Graph highlighting the percentage difference between the average time
taken per query on both devices when dictionary size is varied.

0.00%

200.00%

400.00%

600.00%

800.00%

1000.00%

1200.00%

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
er

ce
n

ta
ge

 D
if

fe
re

n
ce

 o
f

A
ve

ra
ge

 T
im

e
Ta

ke
n

Seach Term Size (# of Chars)

Search Term Size vs. Percentage Difference between Average Time Taken to
complete ASM Query on the GPU and CPU.

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

350.00%

400.00%

450.00%

10000 15000 20000 25000 30000 35000 40000 45000 50000

P
er

ce
n

ta
ge

 D
if

fe
re

n
ce

 o
f

A
ve

ra
ge

 T
im

e
Ta

ke
n

Dictionary Size (Terms)

Dictionary Size vs. Percentage Difference between Average Time Taken to
complete ASM Query on the GPU and CPU.

19

4 Conclusion

4.1 Effect of varying Search Term Size
To begin, it should be stated that due to how both Search Term Size (STS) and

Average Dictionary Term Size shape the Levenshtein’s Distance matrix, as seen in

figure 2.2.1, it can be concluded that both variables have very similar effects on the

performance of an ASM query.

From the experiment conducted in section 3.4, we can conclude that STS is linearly

correlated with the average time taken to complete an ASM query. More

importantly, it is clear that the GPU caused a massive performance increase over the

CPU. We know this as we consistently saw the GPU completing ASM queries over

900% faster than the CPU from 8000 to 10000 search term characters.

However, as can be seen in figure 3.7.1, it appears as though the percentage

difference between the time taken for each device is logarithmically corelated. This

means that while the performance increase achieved by using the GPU increases

rapidly for smaller STSs, it begins to stagnate for larger STSs. In my case, the

stagnation occurred at around 5000 to 8000 search term characters with a

percentage difference of around 950% to 1100%.

However, in real-world applications, STS values realistically never reach the larger

experimental values I used. For example, according to WolframAlpha, the average

length of an English word is 5.1 characters. Hence, for an English Spellchecker that

uses ASM, you would expect the Average STS to be 5.1 as well. We saw in figure 3.4.1

that with an STS of 5, we can expect a percentage difference of 154% or a 76ms

decrease in time taken from CPU to GPU. While a performance increase is achieved,

it is almost negligible due to its magnitude.

20

One final consideration is that because the Search Term and the Dictionary’s Terms

are often interrelated (If the Search Term is an English word, then the Dictionary is

likely to be a Dictionary of English words, for example.), we may also conclude that

both variables (STS and Average Dictionary Term Size) will vary the performance of

an ASM query similarly. Nevertheless, while there was no space to do so in this

paper, it might be worth conducting an experiment to see the performance impact of

increasing both variables or solely Average Dictionary Term Size.

4.2 Effect of varying Dictionary Size
As seen in the experiment conducted and graph in sections 3.6 and 3.6.2, the

relationship between Dictionary Size and average time taken to complete an AQM

query is exponentially corelated. This means that a lot more time is required per

ASM query as Dictionary Size increases.

Up to around 50-100 terms, we can see that the GPU is actually taking more average

time to complete a query than the CPU. This is likely to be the result of GPU

overhead.

Looking at figure 3.7.2, the corelation is somewhat indeterminate. It would be

advisable to gather more data past 50000 terms to verify a corelation. Based on the

data gathered, it appears as though an exponential corelation is most fitting. If this is

correct, then it means that the GPU results in an increasing performance increase

from the CPU as the Dictionary Size increases. While this is a very positive

realization, it is cancelled out by the exponential growth of the time taken per query

which we’ve already seen in figure 3.6.2 – while an increasing amount of time is

saved from using the CPU, an also increasing amount of time is taken to process a

query.

I believe a developer wanting to optimize their ASM implementation should

21

prioritise reducing the size of the dictionary used in ASM. This can be done with

methods such as Indexing and Suffix Trees, methods discussed in section 2.1. Further

reading on those methods can be found in a paper by Dekel Tsur entitled ‘Fast index

for approximate string matching’.[10]

4.3 Comparison
Comparing the two variables used in this paper, Search Term Size (STS) and

Dictionary Size (DS), we see that on the GPU, the DS generally had a very minimal

effect on the time taken to complete a query up until about 20000 terms. Even at

20000 terms, a query took less than a second to complete, and took less time to

complete than a query with an STS of 10000. Due to the theorized exponential

growth of the percentage difference between the time taken on the CPU and GPU

when Dictionary Size is varied, there was actually a quite small difference in

performance between the CPU and GPU for the first couple tens of thousands of

terms. However, after 20000 terms, the time required per query increased

drastically. In contrast to the DS, the STS required a lot more time per query even at

much smaller values.

In conclusion, the GPU consistently provided a performance increase over the CPU.

It is clear that a Levenshtein’s Distance based ASM algorithm does gain value and is

faster when ran on the GPU. Looking at the algorithm itself, varying the Search Term

Size (and likely the Average Dictionary Term Size as postulated at the end of section

4.1) for the most part had a lesser effect on the time taken to complete an ASM query

than changing the Dictionary Size; Therefore, it’s advisable for a developer to focus

on optimizing the Dictionary Size first and foremost to improve the performance of

their ASM application.

22

5 Extensions

5.1 Multithreading
Something to consider is that the CPU code I used was not made to utilize the

multiple cores a modern CPU has. By utilizing only one core of the CPU, we are

wasting a lot of power. I think an interesting thing to explore in an additional

research paper would be the effect of multithreading on the performance of an ASM

algorithm. This is a fairly important consideration due to the next point:

5.2 Server CPUs
Server CPUs often have many more cores available to them than home or desktop

CPUs. The importance of this comes when we look at the previous point. If the CPU

code takes advantage of the dozens or even hundreds of cores that a Server CPU may

have, could it achieve better performance than a GPU at least with a small enough

Dictionary Size or other variable? This is important as ASM algorithms may be

implemented in the cloud. To save costs on GPUs for the cloud servers, an owner

may prefer to only use the CPU, at which point, having an efficient, multithreaded

CPU ASM algorithm would be highly beneficial.

5.3 Kernel Architecture
My final consideration is that coding on the GPU is a nuanced process. Contrary to

CPU programming, there is a lot of freedom with how things are processed and how

memory is handled. As such, there are more ways of optimizing algorithms to

maximise the use of the thousands of cores present on the GPU. I believe exploring

different manners of processing ASM on the GPU, and/or exploring how to best

arrange the memory passed to the GPU may an interesting avenue for future

research.

23

6 Appendix

6.1 References

1. R. Baeza-Yates, and G. Navarro, “A faster algorithm for approximate string

matching,” Combinatorial Pattern Matching (CPM’96), Jun-1996. [Article].

Available:

https://www.researchgate.net/publication/2437209_A_Faster_Algorithm_for_Approxi

mate_String_Matching.

2. K. Kapil, R. Soni, A. Vyas, and Dr. A. Sinhal, “Importance of String Matching in

Real World Problems,” International Journal Of Engineering And Computer Science,

6-Jul-2014. [Article]. Available:

https://www.researchgate.net/publication/304305210_Importance_of_String_Matchin

g_in_Real_World_Problems-.

3. H. Wilper, R. Knight, and J. Cohen, “Understanding the visualization of overhead and

latency in NVIDIA Nsight Systems,” NVIDIA Developer Blog, 22-Apr-2021.

[Online]. Available: https://developer.nvidia.com/blog/understanding-the-

visualization-of-overhead-and-latency-in-nsight-systems/.

4. M. Safford, “How to buy the Right CPU: A guide for 2021,” Tom's Hardware, 01-

Feb-2020. [Online]. Available: https://www.tomshardware.com/reviews/cpu-buying-

guide,5643.html.

5. “SIMD (single Instruction Multiple Data),” Tech-FAQ. [Online]. Available:

https://www.tech-faq.com/simd.html.

6. “Multiple Instruction, Multiple Data (MIMD),” Techopedia.com, 11-Jul-2014.

[Online]. Available: https://www.techopedia.com/definition/3479/multiple-

instruction-multiple-data-mimd.

7. K. Balhaf, M. Shehab, W. Al-Sarayrah, M. Al-Ayyoub, M. Al-Saleh, and Y.

Jararweh, “Using GPUs to Speed-Up Levenshtein Edit Distance Computation,”

International Conference on Information and Communication Systems (ICICS), 2016.

[Article]. Available:

https://www.researchgate.net/publication/300042590_Using_GPUs_to_Speed-

Up_Levenshtein_Edit_Distance_Computation.

8. “Understanding kernels, work-groups and work-items,” TI OpenCL User's Guide,

2018. [Online]. Available:

https://www.researchgate.net/publication/2437209_A_Faster_Algorithm_for_Approximate_String_Matching
https://www.researchgate.net/publication/2437209_A_Faster_Algorithm_for_Approximate_String_Matching
https://www.researchgate.net/publication/304305210_Importance_of_String_Matching_in_Real_World_Problems-
https://www.researchgate.net/publication/304305210_Importance_of_String_Matching_in_Real_World_Problems-
https://developer.nvidia.com/blog/understanding-the-visualization-of-overhead-and-latency-in-nsight-systems/
https://developer.nvidia.com/blog/understanding-the-visualization-of-overhead-and-latency-in-nsight-systems/
https://www.tomshardware.com/reviews/cpu-buying-guide,5643.html
https://www.tomshardware.com/reviews/cpu-buying-guide,5643.html
https://www.tech-faq.com/simd.html
https://www.techopedia.com/definition/3479/multiple-instruction-multiple-data-mimd
https://www.techopedia.com/definition/3479/multiple-instruction-multiple-data-mimd
https://www.researchgate.net/publication/300042590_Using_GPUs_to_Speed-Up_Levenshtein_Edit_Distance_Computation
https://www.researchgate.net/publication/300042590_Using_GPUs_to_Speed-Up_Levenshtein_Edit_Distance_Computation

24

https://downloads.ti.com/mctools/esd/docs/opencl/execution/kernels-workgroups-

workitems.html.

9. “NVIDIA GeForce RTX 3060 Ti,” TechPowerUp. [Online]. Available:

https://www.techpowerup.com/gpu-specs/geforce-rtx-3060-ti.c3681.

10. D. Tsur, “Fast index for approximate string matching,” Journal of Discrete

Algorithms, vol. 8, no. 4, pp. 339–345, 2010.

https://downloads.ti.com/mctools/esd/docs/opencl/execution/kernels-workgroups-workitems.html
https://downloads.ti.com/mctools/esd/docs/opencl/execution/kernels-workgroups-workitems.html
https://www.techpowerup.com/gpu-specs/geforce-rtx-3060-ti.c3681

25

6.2 General Code
Here you will find most java classes used in gathering data for this paper.

Main.java

import Compute.ComputeProgram;

import Compute.GPU;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.nio.FloatBuffer;

import java.nio.IntBuffer;

import java.nio.charset.StandardCharsets;

import java.util.ArrayList;

import java.util.Scanner;

import static org.lwjgl.opencl.CL10.*;

public class Main {

 static Scanner Input;

 static String[] WordList;

 static int LongestWordLength;

 static IntBuffer DistanceMatricesBuffer;

 static IntBuffer BaseBuffer;

 static IntBuffer BaseSizeBuffer;

 static IntBuffer LongestWordLenBuffer;

 static boolean QueryGPU = true;

 static boolean QueryCPU = true;

 static boolean PrintGPU = false;

 static boolean PrintCPU = false;

 static boolean HeadrGPU = false;

 static boolean HeadrCPU = false;

 static boolean TimesGPU = false;

 static boolean TimesCPU = false;

 static boolean Manual = false;

 private static String[] LoadWordList(String List) {

 long FunctionStartTimer = System.nanoTime();

 ArrayList<String> WordList = new ArrayList<>();

 InputStream IS =

Main.class.getClassLoader().getResourceAsStream(List);

 try (BufferedReader BR = new BufferedReader(new

InputStreamReader(IS, StandardCharsets.UTF_8))) {

 String Line;

 while ((Line = BR.readLine()) != null) {

 WordList.add(Line);

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 String[] WordListArray = new String[WordList.size()];

 for (String Word : WordList) {

 if (Word.length() > LongestWordLength) {

26

 LongestWordLength = Word.length();

 }

 }

 long FunctionTimeTaken1 = (System.nanoTime() - FunctionStartTimer);

 System.out.printf("Load Time (Word List + GPU Buffer): %dns

/ %dms %n", FunctionTimeTaken1, FunctionTimeTaken1 / 1000000);

 DistanceMatricesBuffer = GPU.Stack.callocInt(

 (LongestWordLength+1) * (LongestWordLength+1) //Matrix

Dimensions

 * WordList.size() //Multiplied by the number of words

that will need a matrix

);

 BaseBuffer = GPU.Stack.callocInt(LongestWordLength *

WordList.size());

 for (String s : WordList) {

 for (int j = 0; j < LongestWordLength; j++) {

 if (j < s.length()) {

 BaseBuffer.put(s.charAt(j));

 } else {

 BaseBuffer.put(0);

 }

 }

 }

 BaseBuffer.position(0);

 BaseSizeBuffer = GPU.Stack.callocInt(1);

 BaseSizeBuffer.put(0, WordList.size());

 LongestWordLenBuffer = GPU.Stack.callocInt(1);

 LongestWordLenBuffer.put(0, LongestWordLength);

 long FunctionTimeTaken2 = (System.nanoTime() - FunctionStartTimer);

 System.out.printf("Load Time (Word List + GPU Buffer): %dns

/ %dms %n", FunctionTimeTaken2, FunctionTimeTaken2 / 1000000);

 return WordList.toArray(WordListArray);

 }

 public static void QueryCPULev(String SearchTerm) {

 long FunctionStartTimer = System.nanoTime();

 SearchTree LevenshteinTree = new SearchTree(

 new LevenshteinData("#", 7.5f)

);

 SearchTerm = "#" + SearchTerm.toLowerCase();

 for (String Base : WordList) {

 Levenshtein.Calculate(Base, SearchTerm, LevenshteinTree);

 }

 long FunctionTimeTaken1 = System.nanoTime() - FunctionStartTimer;

 if (TimesCPU) System.out.printf("%nCPU Query: %dns / %dms %n%n",

FunctionTimeTaken1, FunctionTimeTaken1 / 1000000);

 if (PrintCPU) {

 LevenshteinTree.PrintInorder(LevenshteinTree, new int[] {0,

5});

 }

 }

 public static void QueryGPULev(String SearchTerm) {

27

 long FunctionStartTimer = System.nanoTime();

 SearchTerm = SearchTerm.toLowerCase();

 //region Search Term

 IntBuffer SearchTermBuffer =

GPU.Stack.callocInt((SearchTerm).length());

 for (char CurrentChar : SearchTerm.toCharArray()) {

 SearchTermBuffer.put(CurrentChar);

 }

 SearchTermBuffer.position(0);

 //endregion

 //region Search Term Length

 IntBuffer SearchTermLengthBuffer = GPU.Stack.callocInt(1);

 SearchTermLengthBuffer.put(0, SearchTerm.length());

 //endregion

 FloatBuffer OutBuffer = GPU.Stack.callocFloat(WordList.length);

 ComputeProgram SolverProgram =

GPU.Programs.get("LevenshteinSolver");

 int Flags = CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR;

 SolverProgram.CreateWriteIntBuffer(0, SearchTermBuffer, Flags);

 SolverProgram.CreateWriteIntBuffer(1, SearchTermLengthBuffer,

Flags);

 SolverProgram.CreateWriteIntBuffer(2, BaseBuffer, Flags);

 SolverProgram.CreateWriteIntBuffer(3, BaseSizeBuffer, Flags);

 SolverProgram.CreateWriteIntBuffer(4, LongestWordLenBuffer, Flags);

 SolverProgram.CreateIntBuffer(5, DistanceMatricesBuffer, Flags);

 SolverProgram.CreateFloatBuffer(6, OutBuffer, Flags);

 SolverProgram.Dimensions = 1;

 SolverProgram.GlobalSize = WordList.length;

 long FunctionTimeTaken1 = System.nanoTime() - FunctionStartTimer;

 if (TimesGPU) System.out.printf("%nGPU Query (Preprocessing): %dns

/ %dms %n", FunctionTimeTaken1, FunctionTimeTaken1 / 1000000);

 SolverProgram.AutoSetKernelArgs();

 SolverProgram.AutoEnqueue1D();

 SolverProgram.ReadFloatBuffer(6, OutBuffer);

 long FunctionTimeTaken2 = System.nanoTime() - FunctionStartTimer;

 if (TimesGPU) System.out.printf("GPU Query (Processing): %dns

/ %dms %n", FunctionTimeTaken2 - FunctionTimeTaken1, (FunctionTimeTaken2 -

FunctionTimeTaken1) / 1000000);

 SearchTree LevenshteinTree = new SearchTree(

 new LevenshteinData("#", 7.5f)

);

 int TermIndex = 0;

 while (OutBuffer.hasRemaining()) {

 LevenshteinTree.Insert(new SearchTree(

 new LevenshteinData(WordList[TermIndex++],

OutBuffer.get())

));

 }

 long FunctionTimeTaken3 = System.nanoTime() - FunctionStartTimer;

28

 if (TimesGPU) System.out.printf("GPU Query (Postprocessing): %dns

/ %dms %n", FunctionTimeTaken3 - FunctionTimeTaken2, (FunctionTimeTaken3 -

FunctionTimeTaken2) / 1000000);

 if (TimesGPU) System.out.printf("GPU Query (Total): %dns

/ %dms %n", FunctionTimeTaken3, FunctionTimeTaken3 / 1000000);

 if (PrintGPU) {

 LevenshteinTree.PrintInorder(LevenshteinTree, new int[] {0,

5});

 }

 }

 public static void main(String[] args) {

 GPU.Init();

 GPU.AddProgram(

 "LevenshteinSolver",

Main.class.getClassLoader().getResourceAsStream("LevenshteinSolver.cl")

);

 WordList = LoadWordList("RL/RandomNumberFileSize=10000.txt");

 if (Manual) {

 Input = new Scanner(System.in);

 while (QueryCPU && QueryGPU) {

 System.out.println("Enter Search Term: ");

 String SearchTerm = Input.nextLine();

 if (QueryGPU) {

 if (HeadrGPU) System.out.println("GPU: ");

 QueryGPULev(SearchTerm);

 if (HeadrCPU) System.out.println();

 }

 if (QueryCPU) {

 if (HeadrCPU) System.out.println("CPU: ");

 QueryCPULev(SearchTerm);

 System.out.println();

 }

 }

 }

 else {

 System.out.println("GPU:");

 Tests.DictionarySizeGPU();

 System.out.println();

 System.out.println("CPU:");

 Tests.DictionarySizeCPU();

 }

 GPU.Dispose();

 }

}

End of Main.java

29

Tests.java

import java.util.Random;

public class Tests {

 public static String GenRandString(int Length) {

 Random R = new Random();

 StringBuilder Result = new StringBuilder();

 for (int i = 0; i < Length; i++) {

 Result.append((char)(int)(97 + R.nextFloat() * 25));

 }

 return Result.toString();

 }

 //Testing the speed of different search term sizes

 //Range: 1, 3, 5, 7, 10, 25, 50, 75, 100, 500, 1000, 2000, 5000, 10000

 //Repeats: 30?

 public static void SearchTermSize() {

 //Warmup

 Main.QueryCPULev(GenRandString(10));

 int Repeats = 30;

 int[] SearchTermSizes = new int[]

{1,5,10,25,50,75,100,250,500,750,1000,2000,3000,4000,5000,6000,7000,8000,90

00,10000};

 System.out.println("Speed of different search term sizes");

 System.out.println();

 for (int SearchTermSize : SearchTermSizes) {

 String[] TestSearchTerms = new String[Repeats];

 for (int i = 0; i < Repeats; i++) {

 TestSearchTerms[i] = GenRandString(SearchTermSize);

 }

 long SuperTotalTime = System.nanoTime();

 long TotalTime = 0;

 for (String TestSearchTerm : TestSearchTerms) {

 long IndividualTime = System.nanoTime();

 //There is only one function for this test for both devices

 //The function below was manually changed from CPU to GPU

or vice versa to test each device

 Main.QueryCPULev(TestSearchTerm);

 TotalTime += System.nanoTime() - IndividualTime;

 }

 System.out.printf("%nResults for search term size of %d%n",

SearchTermSize);

 System.out.printf("Overall Time Taken: %dns / %dms %n",

System.nanoTime() - SuperTotalTime, (System.nanoTime() - SuperTotalTime) /

1000000);

 System.out.printf("Average Time Taken: %dns / %dms %n",

(TotalTime / Repeats), (TotalTime / Repeats) / 1000000);

 }

 }

 //Simply run a query for a dataset 30 times

 public static void DictionarySizeGPU() {

 int Repeats = 30;

 long SuperTotalTime = System.nanoTime();

 long TotalTime = 0;

30

 for (int R = 0; R < Repeats; R++) {

 String SearchTerm = GenRandString(15);

 long ITime = System.nanoTime();

 Main.QueryGPULev(SearchTerm);

 TotalTime += System.nanoTime() - ITime;

 }

 System.out.printf("%nResults for current dataset %n");

 System.out.printf("Overall Time Taken: %dns / %dms %n",

System.nanoTime() - SuperTotalTime, (System.nanoTime() - SuperTotalTime) /

1000000);

 System.out.printf("Average Time Taken: %dns / %dms %n", (TotalTime

/ Repeats), (TotalTime / Repeats) / 1000000);

 }

 public static void DictionarySizeCPU() {

 int Repeats = 30;

 long SuperTotalTime = System.nanoTime();

 long TotalTime = 0;

 for (int R = 0; R < Repeats; R++) {

 String SearchTerm = GenRandString(15);

 long ITime = System.nanoTime();

 Main.QueryCPULev(SearchTerm);

 TotalTime += System.nanoTime() - ITime;

 }

 System.out.printf("%nResults for current dataset %n");

 System.out.printf("Overall Time Taken: %dns / %dms %n",

System.nanoTime() - SuperTotalTime, (System.nanoTime() - SuperTotalTime) /

1000000);

 System.out.printf("Average Time Taken: %dns / %dms %n", (TotalTime

/ Repeats), (TotalTime / Repeats) / 1000000);

 }

}

End of Tests.java

31

SearchTree.java

public class SearchTree {

 public SearchTree Less;

 public LevenshteinData Data;

 public SearchTree More;

 public SearchTree(LevenshteinData DataIn) {

 Data = DataIn;

 }

 public void Insert(SearchTree Node) {

 String Direction;

 if (Node.Data.Score > Data.Score) {

 Direction = "More";

 }

 else {

 Direction = "Less";

 }

 if (Direction.equals("More")) {

 if (More == null) {

 More = Node;

 }

 else {

 More.Insert(Node);

 }

 }

 else if (Direction.equals("Less")) {

 if (Less == null) {

 Less = Node;

 }

 else {

 Less.Insert(Node);

 }

 }

 else {

 throw new IllegalArgumentException();

 }

 }

 public void PrintInorder(SearchTree Node, int[] Limit) {

 if (Node == null) {

 return;

 }

 else {

 if (Limit[0] >= Limit[1]) {

 return;

 }

 PrintInorder(Node.Less, Limit);

 if (Limit[0] < Limit[1]) {

 if (!Node.Data.Word.equals("#")) {

 Node.Data.Out();

 }

 else {

 Limit[0]--;

 }

 }

 Limit[0]++;

32

 PrintInorder(Node.More, Limit);

 }

 }

}

End of SearchTree.java

33

6.3 CPU Specific Code
Here you will find most classes that were exclusively required by the CPU.

Levenshtein.java

import static java.lang.Math.max;

import static java.lang.Math.min;

public class Levenshtein {

 public static void Calculate(String BaseTerm, String SearchTerm,

SearchTree Tree) {

 String OperatingOriginalString = "#" + BaseTerm;

 int[][] Matrix = new

int[OperatingOriginalString.length()][SearchTerm.length()];

 for (int y = 0; y < Matrix.length; y++) {

 for (int x = 0; x < Matrix[0].length; x++) {

 if (min(x, y) == 0) {

 Matrix[y][x] = max(x, y);

 }

 else {

 int Term1 = Matrix[y - 1][x] + 1;

 int Term2 = Matrix[y][x - 1] + 1;

 int Term3 = Matrix[y - 1][x - 1];

 if (OperatingOriginalString.charAt(y) !=

SearchTerm.charAt(x)) {

 Term3++;

 }

 Matrix[y][x] = min(Term1, min(Term2, Term3));

 }

 }

 }

 int Distance = Matrix[OperatingOriginalString.length() -

1][SearchTerm.length() - 1];

 int TotalLen = (OperatingOriginalString.length() - 1) +

(SearchTerm.length() - 1);

 float Ratio = (float)(TotalLen - Distance) / (float)TotalLen;

 float Score = (float)Distance + (Distance == 0 ? 0 : Ratio);

 Tree.Insert(new SearchTree(

 new LevenshteinData(BaseTerm, Score)

));

 }

 public static void CalculateTreeless(String Original, String Search) {

 String OperatingOriginalString = "#" + Original;

 int[][] Matrix = new

int[OperatingOriginalString.length()][Search.length()];

 for (int y = 0; y < Matrix.length; y++) {

34

 for (int x = 0; x < Matrix[0].length; x++) {

 if (min(x, y) == 0) {

 Matrix[y][x] = max(x, y);

 }

 else {

 int Term1 = Matrix[y - 1][x] + 1;

 int Term2 = Matrix[y][x - 1] + 1;

 int Term3 = Matrix[y - 1][x - 1];

 if (OperatingOriginalString.charAt(y) !=

Search.charAt(x)) {

 Term3++;

 }

 Matrix[y][x] = min(Term1, min(Term2, Term3));

 }

 }

 }

 int Distance = Matrix[OperatingOriginalString.length() -

1][Search.length() - 1] - 1;

 System.out.println(Distance);

 }

}

End of Levenshtein.java

35

LevenshteinData.java

public class LevenshteinData {

 public String Word;

 public float Score;

 public LevenshteinData(String WordIn, float ScoreIn) {

 Word = WordIn;

 Score = ScoreIn;

 }

 public void Out() {

 char[] WordWithCapitalizedFirstLetter = Word.toCharArray();

 WordWithCapitalizedFirstLetter[0] = Word.toUpperCase().charAt(0);

 System.out.printf("%s - %.2f%n", new

String(WordWithCapitalizedFirstLetter), Score);

 }

}

End of LevenshteinData.java

36

6.4 GPU-Specific Code
Here you will find Java classes that connect or run GPU code.

ComputeProgram.java

package Compute;

import java.io.*;

import java.nio.Buffer;

import java.nio.ByteBuffer;

import java.nio.IntBuffer;

import java.nio.charset.StandardCharsets;

import java.nio.file.Files;

import java.nio.file.Paths;

import org.lwjgl.PointerBuffer;

import java.nio.FloatBuffer;

import java.util.HashMap;

import static Compute.GPU.*;

import static Compute.InfoUtil.checkCLError;

import static org.lwjgl.opencl.CL10.*;

import static org.lwjgl.system.MemoryUtil.*;

import org.apache.commons.io.*;

public class ComputeProgram {

 //Programs must have the same filename as the kernel's name!!!!

 public long Kernel;

 private static String LoadSource(String Path) throws IOException {

 return Files.readString(Paths.get(Path));

 }

 public ComputeProgram(long Context, String SourcePath) {

 String Source = null;

 try {

 Source = LoadSource(SourcePath);

 } catch (IOException E) {

 System.err.println("Could not read Program at: " + SourcePath +

" !!");

 return;

 }

 String SourceFilename = FilenameUtils.getBaseName(SourcePath);

 long Program = clCreateProgramWithSource(Context, Source, null);

 BuildProgram(Program);

 Kernel = clCreateKernel(Program, SourceFilename, ErrorcodeReturn);

 checkCLError(ErrorcodeReturn);

 clReleaseProgram(Program);

 }

 public ComputeProgram(long Context, InputStream IS, String ProgramName)

{

 StringBuilder Source = new StringBuilder();

37

 try (BufferedReader BR = new BufferedReader(new

InputStreamReader(IS, StandardCharsets.UTF_8))) {

 String Line;

 while ((Line = BR.readLine()) != null) {

 Source.append(Line);

 }

 } catch (IOException e) {

 System.err.println("Could not read Program named: " +

ProgramName + " !!");

 return;

 }

 long Program = clCreateProgramWithSource(Context,

Source.toString(), null);

 BuildProgram(Program);

 Kernel = clCreateKernel(Program, ProgramName, ErrorcodeReturn);

 checkCLError(ErrorcodeReturn);

 clReleaseProgram(Program);

 }

 private void BuildProgram(long Program) {

 if (clBuildProgram(Program, GPU.Device, "", null, NULL) !=

CL_SUCCESS) {

 ByteBuffer BuildLog = ByteBuffer.allocateDirect(500000);

 PointerBuffer BuildLogSize = PointerBuffer.allocateDirect(1);

 if (clGetProgramBuildInfo(Program, Device,

CL_PROGRAM_BUILD_LOG, BuildLog, BuildLogSize) == CL_SUCCESS) {

 System.out.println(BuildLogSize.get(0));

 byte[] BuildLogBA = new byte[(int)BuildLogSize.get(0)];

BuildLog.get(BuildLogBA);

 try {

 System.out.println(new String(BuildLogBA, "UTF-8"));

 } catch (UnsupportedEncodingException e) {

 e.printStackTrace();

 }

 }

 }

 }

 public int GlobalSize = 1;

 public int LocalSize = Integer.MIN_VALUE;

 public int Dimensions = 1;

 public HashMap<Integer,Long> MemoryObjects = new

HashMap<Integer,Long>();

 public void CreateFloatBuffer(int ArgumentIndex, FloatBuffer Capacity,

int Flags) {

 long MemoryObject = clCreateBuffer(Context, Flags, Capacity,

ErrorcodeReturn);

 checkCLError(ErrorcodeReturn);

 MemoryObjects.put(ArgumentIndex, MemoryObject);

 }

 public void WriteFloatBuffer(int ArgumentIndex, FloatBuffer Data) {

 checkCLError(clEnqueueWriteBuffer(CommandQueue,

38

MemoryObjects.get(ArgumentIndex), true, 0, Data, null, null));

 }

 public void CreateIntBuffer(int ArgumentIndex, IntBuffer Capacity, int

Flags) {

 long MemoryObject = clCreateBuffer(Context, Flags, Capacity,

ErrorcodeReturn);

 checkCLError(ErrorcodeReturn);

 MemoryObjects.put(ArgumentIndex, MemoryObject);

 }

 public void WriteIntBuffer(int ArgumentIndex, IntBuffer Data) {

 checkCLError(clEnqueueWriteBuffer(CommandQueue,

MemoryObjects.get(ArgumentIndex), true, 0, Data, null, null));

 }

 public void CreateWriteFloatBuffer(int ArgumentIndex, FloatBuffer

InitialData, int Flags) {

 CreateFloatBuffer(ArgumentIndex, InitialData, Flags);

 WriteFloatBuffer(ArgumentIndex, InitialData);

 }

 public void CreateWriteIntBuffer(int ArgumentIndex, IntBuffer

InitialData, int Flags) {

 CreateIntBuffer(ArgumentIndex, InitialData, Flags);

 WriteIntBuffer(ArgumentIndex, InitialData);

 }

 public void AutoSetKernelArgs() {

 MemoryObjects.forEach((ArgumentIndex, MemObject) -> {

 //System.out.println(Kernel + " " + ArgumentIndex + " " +

MemObject);

 clSetKernelArg1p(Kernel, ArgumentIndex, MemObject);

 });

 }

 public void AutoEnqueue1D() {

 PointerBuffer GlobalWorksizeBuffer = GPU.Stack.callocPointer(1);

 GlobalWorksizeBuffer.put(0, GlobalSize);

 PointerBuffer LocalWorksizeBuffer = GPU.Stack.callocPointer(1);

 LocalWorksizeBuffer.put(0, LocalSize);

 PointerBuffer KernelEvent = GPU.Stack.callocPointer(1);

 clEnqueueNDRangeKernel(

 CommandQueue,

 Kernel,

 Dimensions,

 null,

 GlobalWorksizeBuffer,

 LocalSize == Integer.MIN_VALUE ? null :

LocalWorksizeBuffer,

 null,

 KernelEvent

);

 clWaitForEvents(KernelEvent);

 }

 public void ReadIntBuffer(int OutputArgumentIndex, IntBuffer Buffer) {

39

 clEnqueueReadBuffer(

 CommandQueue,

 MemoryObjects.get(OutputArgumentIndex),

 true,

 0,

 Buffer,

 null,

 null

);

 }

 public void ReadFloatBuffer(int OutputArgumentIndex, FloatBuffer

Buffer) {

 clEnqueueReadBuffer(

 CommandQueue,

 MemoryObjects.get(OutputArgumentIndex),

 true,

 0,

 Buffer,

 null,

 null

);

 }

}

End of ComputeProgram.java

40

GPU.java

package Compute;

import org.lwjgl.PointerBuffer;

import org.lwjgl.opencl.CL;

import org.lwjgl.opencl.CLCapabilities;

import org.lwjgl.opencl.CLContextCallback;

import org.lwjgl.system.MemoryStack;

import java.io.InputStream;

import java.nio.IntBuffer;

import java.util.HashMap;

import static Compute.InfoUtil.checkCLError;

import static org.lwjgl.opencl.CL10.*;

import static org.lwjgl.opencl.CL11.CL_DEVICE_OPENCL_C_VERSION;

import static org.lwjgl.system.MemoryUtil.*;

public class GPU {

 public static MemoryStack Stack;

 public static IntBuffer ErrorcodeReturn;

 public static long Platform;

 public static long Device;

 private static CLCapabilities PlatformCapabilities;

 private static CLCapabilities DeviceCapabilities;

 protected static long Context;

 private static CLContextCallback ContextCallback;

 public static long CommandQueue;

 public static HashMap<String,ComputeProgram> Programs = new

HashMap<String,ComputeProgram>();

 public static void AddProgram(String Name, String Path) {

 ComputeProgram Program = new ComputeProgram(

 Context,

 Path

);

 Programs.put(Name, Program);

 }

 public static void AddProgram(String Name, InputStream IS) {

 ComputeProgram Program = new ComputeProgram(

 Context,

 IS,

 Name

);

 Programs.put(Name, Program);

 }

 private static void GetPlatformAndDevice(MemoryStack Stack) {

 IntBuffer PlatformCount = Stack.mallocInt(1);

 PointerBuffer AvailablePlatforms = Stack.mallocPointer(1);

 checkCLError(

41

 clGetPlatformIDs(AvailablePlatforms, PlatformCount) //2nd

Arg nmly (IntBuffer)null

);

 if (PlatformCount.get(0) == 0) {

 throw new RuntimeException("No OpenCL platforms found.");

 }

 Platform = AvailablePlatforms.get(0);

 PlatformCapabilities = CL.createPlatformCapabilities(Platform);

 IntBuffer DeviceCount = Stack.mallocInt(1);

 PointerBuffer AvailableDevices = Stack.mallocPointer(1);

 checkCLError(

 clGetDeviceIDs(Platform, CL_DEVICE_TYPE_ALL,

AvailableDevices, DeviceCount)

);

 if (DeviceCount.get(0) == 0) {

 throw new RuntimeException("No OpenCL devices found.");

 }

 Device = AvailableDevices.get(0);

 DeviceCapabilities = CL.createDeviceCapabilities(Device,

PlatformCapabilities);

 }

 private static PointerBuffer GetContextProperties(MemoryStack Stack) {

 PointerBuffer ContextProperties = Stack.mallocPointer(3);

 ContextProperties

 .put(0, CL_CONTEXT_PLATFORM)

 .put(1, Platform)

 .put(2, 0)

 ;

 return ContextProperties;

 }

 private static void GetContextCallback() {

 ContextCallback = CLContextCallback.create((errinfo, private_info,

cb, user_data) -> {

 System.err.println("[LWJGL] cl_context_callback");

 System.err.println("\tInfo: " + memUTF8(errinfo));

 });

 }

 public static void PrintInfo() {

 StringBuilder SB = new StringBuilder();

 SB.append("Compute Device successfully initialized!" + '\n' +

'\n');

 SB.append("Compute Device Information:" + '\n');

 SB.append("Name: " + InfoUtil.getDeviceInfoStringUTF8(Device,

CL_DEVICE_NAME) + '\n');

 SB.append("Type: ");

 long Type = InfoUtil.getDeviceInfoLong(Device, CL_DEVICE_TYPE);

 switch ((int)Type) {

 case CL_DEVICE_TYPE_GPU:

 SB.append("GPU" + '\n'); break;

42

 case CL_DEVICE_TYPE_CPU:

 SB.append("CPU" + '\n'); break;

 default:

 SB.append("Unknown" + '\n'); break;

 }

 SB.append("Device Version: " +

InfoUtil.getDeviceInfoStringUTF8(Device, CL_DEVICE_VERSION) + '\n');

 SB.append("Language Version: " +

InfoUtil.getDeviceInfoStringUTF8(Device, CL_DEVICE_OPENCL_C_VERSION) +

'\n');

 SB.append("Maximum Compute Units: " +

InfoUtil.getDeviceInfoInt(Device, CL_DEVICE_MAX_COMPUTE_UNITS) + " Units" +

'\n');

 SB.append("Maximum Workitem Dimension: " +

InfoUtil.getDeviceInfoInt(Device, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS) + 'D'

+ '\n');

 SB.append("Maximum Workgroup Size: " +

InfoUtil.getDeviceInfoLong(Device, CL_DEVICE_MAX_WORK_GROUP_SIZE) + '\n');

 SB.append("Maximum Clock Frequency: " +

InfoUtil.getDeviceInfoInt(Device, CL_DEVICE_MAX_CLOCK_FREQUENCY) + " Hz" +

'\n');

 SB.append("Allocated Stack Size: " + Stack.getSize() + " Bytes" +

'\n');

 System.out.println(SB);

 }

 public static void Init() {

 Stack = MemoryStack.create(500_000_000); //500 MB

 ErrorcodeReturn = Stack.callocInt(1);

 GetPlatformAndDevice(Stack);

 GetContextCallback();

 Context = clCreateContextFromType(GetContextProperties(Stack),

CL_DEVICE_TYPE_GPU, null, 0, ErrorcodeReturn);

 checkCLError(ErrorcodeReturn);

 CommandQueue = clCreateCommandQueue(Context, Device,

CL_QUEUE_PROFILING_ENABLE, ErrorcodeReturn);

 checkCLError(ErrorcodeReturn);

 PrintInfo();

 }

 public static void Dispose() {

 Programs.forEach((Name, Program) -> {

 Program.MemoryObjects.forEach((Key, MemObject) -> {

 clReleaseMemObject(MemObject);

 });

 Program.MemoryObjects.clear();

43

 clReleaseKernel(Program.Kernel);

 });

 Programs.clear();

 clReleaseCommandQueue(CommandQueue);

 clReleaseContext(Context);

 CL.destroy();

 try {

 Stack.close();

 } catch (Exception E) {}

 }

}

End of GPU.java

44

InfoUtil.java

package Compute;

import org.lwjgl.*;

import org.lwjgl.system.*;

import java.nio.*;

import static org.lwjgl.opencl.CL10.*;

import static org.lwjgl.system.MemoryStack.*;

import static org.lwjgl.system.MemoryUtil.*;

/** OpenCL object info utilities. */

public final class InfoUtil {

 private InfoUtil() {

 }

 public static void PrintDeviceInfo(long Device) {

 System.out.println();

 System.out.println("Device Name: " +

InfoUtil.getDeviceInfoStringUTF8(Device, CL_DEVICE_NAME));

 //region Get Device Type String

 long DeviceType = InfoUtil.getDeviceInfoLong(Device,

CL_DEVICE_TYPE);

 String DeviceTypeString = "";

 if (DeviceType == CL_DEVICE_TYPE_GPU) {

 DeviceTypeString = "GPU";

 }

 else if (DeviceType == CL_DEVICE_TYPE_CPU) {

 DeviceTypeString = "CPU";

 }

 else {

 DeviceTypeString = "Unknown";

 }

 //endregion

 System.out.println("Device Type: " + DeviceTypeString);

 System.out.println();

 System.out.println("Compute Units: " +

InfoUtil.getDeviceInfoInt(Device, CL_DEVICE_MAX_COMPUTE_UNITS));

 System.out.println("At Frequency: " +

InfoUtil.getDeviceInfoInt(Device, CL_DEVICE_MAX_CLOCK_FREQUENCY));

 System.out.println();

 System.out.println("Local Memory: " +

InfoUtil.getDeviceInfoLong(Device, CL_DEVICE_LOCAL_MEM_SIZE));

 System.out.println("Global Memory: " +

InfoUtil.getDeviceInfoLong(Device, CL_DEVICE_GLOBAL_MEM_SIZE));

 System.out.println();

 }

 public static String getPlatformInfoStringASCII(long cl_platform_id,

int param_name) {

 try (MemoryStack stack = stackPush()) {

 PointerBuffer pp = stack.mallocPointer(1);

 checkCLError(clGetPlatformInfo(cl_platform_id, param_name,

(ByteBuffer)null, pp));

 int bytes = (int)pp.get(0);

 ByteBuffer buffer = stack.malloc(bytes);

 checkCLError(clGetPlatformInfo(cl_platform_id, param_name,

45

buffer, null));

 return memASCII(buffer, bytes - 1);

 }

 }

 public static String getPlatformInfoStringUTF8(long cl_platform_id, int

param_name) {

 try (MemoryStack stack = stackPush()) {

 PointerBuffer pp = stack.mallocPointer(1);

 checkCLError(clGetPlatformInfo(cl_platform_id, param_name,

(ByteBuffer)null, pp));

 int bytes = (int)pp.get(0);

 ByteBuffer buffer = stack.malloc(bytes);

 checkCLError(clGetPlatformInfo(cl_platform_id, param_name,

buffer, null));

 return memUTF8(buffer, bytes - 1);

 }

 }

 public static int getDeviceInfoInt(long cl_device_id, int param_name) {

 try (MemoryStack stack = stackPush()) {

 IntBuffer pl = stack.mallocInt(1);

 checkCLError(clGetDeviceInfo(cl_device_id, param_name, pl,

null));

 return pl.get(0);

 }

 }

 public static long getDeviceInfoLong(long cl_device_id, int param_name)

{

 try (MemoryStack stack = stackPush()) {

 LongBuffer pl = stack.mallocLong(1);

 checkCLError(clGetDeviceInfo(cl_device_id, param_name, pl,

null));

 return pl.get(0);

 }

 }

 public static long getDeviceInfoPointer(long cl_device_id, int

param_name) {

 try (MemoryStack stack = stackPush()) {

 PointerBuffer pp = stack.mallocPointer(1);

 checkCLError(clGetDeviceInfo(cl_device_id, param_name, pp,

null));

 return pp.get(0);

 }

 }

 public static String getDeviceInfoStringUTF8(long cl_device_id, int

param_name) {

 try (MemoryStack stack = stackPush()) {

 PointerBuffer pp = stack.mallocPointer(1);

 checkCLError(clGetDeviceInfo(cl_device_id, param_name,

(ByteBuffer)null, pp));

 int bytes = (int)pp.get(0);

 ByteBuffer buffer = stack.malloc(bytes);

 checkCLError(clGetDeviceInfo(cl_device_id, param_name, buffer,

46

null));

 return memUTF8(buffer, bytes - 1);

 }

 }

 public static int getProgramBuildInfoInt(long cl_program_id, long

cl_device_id, int param_name) {

 try (MemoryStack stack = stackPush()) {

 IntBuffer pl = stack.mallocInt(1);

 checkCLError(clGetProgramBuildInfo(cl_program_id, cl_device_id,

param_name, pl, null));

 return pl.get(0);

 }

 }

 public static String getProgramBuildInfoStringASCII(long cl_program_id,

long cl_device_id, int param_name) {

 try (MemoryStack stack = stackPush()) {

 PointerBuffer pp = stack.mallocPointer(1);

 checkCLError(clGetProgramBuildInfo(cl_program_id, cl_device_id,

param_name, (ByteBuffer)null, pp));

 int bytes = (int)pp.get(0);

 ByteBuffer buffer = stack.malloc(bytes);

 checkCLError(clGetProgramBuildInfo(cl_program_id, cl_device_id,

param_name, buffer, null));

 return memASCII(buffer, bytes - 1);

 }

 }

 public static void checkCLError(IntBuffer errcode) {

 checkCLError(errcode.get(errcode.position()));

 }

 public static void checkCLError(int errcode) {

 if (errcode != CL_SUCCESS) {

 throw new RuntimeException(String.format("OpenCL error [%d]",

errcode));

 }

 }

}

End of InfoUtil.java

47

6.5 GPU Kernel
Here you will find the GPU Kernel which solves ASM queries.

LevenshteinSolver.cl

int F3D(int X, int XS, int Y, int Z, int ZS) { /*Flatten 3D Coordinates*/

 return X + XS * (Y + ZS * Z);

}

kernel void LevenshteinSolver(

 global const int *Term,

 global const int *SearchTermLen,

 global const int *Base,

 global const int *BaseSize,

 global const int *LongestBaseTermLen,

 global int *DistanceMatrices,

 global float *Output

)

{

 int GI = get_global_id(0);

 int LTL = LongestBaseTermLen[0]+1;

 int CurrentBaseTermLen = 0;

 bool CurrentBaseTermLenFound = false;

 for (int i = 0; i < LTL; i++) {

 DistanceMatrices[F3D(i, LTL, 0, GI, LTL)] = i;

 }

 for (int j = 0; j < LTL; j++) {

 DistanceMatrices[F3D(0, LTL, j, GI, LTL)] = j;

 }

 for (int x = 1; x < SearchTermLen[0] + 1; x++) { /*For each character

in the search term*/

 int CurrentSearchChar = Term[x - 1];

 for (int y = 1; y < LTL; y++) { /*For each character in the base

assigned to this work item*/

 int CurrentBaseChar = Base[((GI * LTL-1) + y) - GI];

 if (CurrentBaseChar == 0) {

 break;

 }

 CurrentBaseTermLen += 1 * (!(CurrentBaseTermLenFound^0) &&

(CurrentBaseChar^0));

 if (min(x,y) == 0) {

 DistanceMatrices[F3D(x, LTL, y, GI, LTL)] = max(x,y);

 }

 else {

 int EqTerm1 = DistanceMatrices[F3D(x - 1, LTL, y, GI, LTL)]

+ 1;

 int EqTerm2 = DistanceMatrices[F3D(x, LTL, y - 1, GI, LTL)]

+ 1;

 int EqTerm3 = DistanceMatrices[F3D(x - 1, LTL, y - 1, GI,

LTL)];

 EqTerm3 += 1 * (bool)(CurrentSearchChar^CurrentBaseChar);

48

 DistanceMatrices[F3D(x, LTL, y, GI, LTL)] = min(EqTerm1,

min(EqTerm2, EqTerm3));

 }

 }

 CurrentBaseTermLenFound = true;

 }

 int Distance =

DistanceMatrices[F3D(SearchTermLen[0],LTL,CurrentBaseTermLen,GI,LTL)];

 int TotalLength = SearchTermLen[0] + CurrentBaseTermLen;

 float Ratio = ((float)(TotalLength - Distance) / TotalLength) *

(bool)(Distance^0);

 Output[GI] = Distance + Ratio;

}

End of LevenshteinSolver.cl

