

Computer Science
Extended Essay

Research Question:
To what extent the variation in search pattern will affect the efficiency of
Rabin Karp algorithm and Boyer Moore algorithm in the terms of time
complexity?

Word count: 3,767

CS EE World
https://cseeworld.wixsite.com/home
November 2019
17/34
C

1

Contents
Introduction : .. 2
Background information : ... 3

String matching algorithms and their applications: .. 3
Rabin karp algorithm : .. 4
Boyer Moore algorithm : ... 8
Time complexity of the algorithms : ...10

Hypothesis : ..11
Investigation : ..12

Variable used in the experiment : ..14
Experiment part 1 : ..17
Test results of the experiment part 1 : ...17
Experiment part 2 : ..21
Test results of experiment part 2 : ...22

Conclusion : ..25
Further scope of the investigation : ...26
Limitations : ...26
Bibliography : ..27
Appendix : ...28
Raw data collected during the experimentation : ...35

experimentation part 1: ..35
experimentation part 2 : ...40

2

Introduction :
Every time you type a search query in a search engine how does Google display you
precise and needed results in milliseconds even though it owns eight data centres 1

around the world? Or when you type down notes, how spell checker finds errors and
suggest suitable spelling suggestions for all the misspelled words even though there are
a total of 171476 English words2. What happens behind the screen? Many daily
processes like these use fundamental algorithms called the string matching algorithms
to find one pattern from; the enormous datasets. The ideology of how major tasks rely
on these simplistic and basic called strings inspired me to do this research on the
efficiency of string matching algorithms. String matching algorithms are fundamental
algorithms used for finding a particular pattern from a dataset.
 As we grow up, the time has become a crucial factor in our hectic lifestyles and as
technology proceeds to develop, the amount of data stored are expanding
simultaneously so it is essential to determine the most suitable string searching
algorithm with a minimal amount to average runtime for processing the data. Purpose of
this investigation is to examine how the entered pattern may influence the time
complexity of the two algorithms. For this investigation, I will be taking two popular string
matching algorithms the Rabin Karp algorithm and BoyerMoore algorithm to find how
the entered pattern will affect the time complexity of both the algorithms.
 1 "Google Data Center FAQ & Locations | Data Center Knowledge." 17 Mar. 2017,
https://www.datacenterknowledge.com/archives/2017/03/16/google-data-center-faq. Accessed 9 May.
2019.
 2 "How many words are there in the English ... - Lexico.com." https://www.lexico.com/en/explore/how-many-words-are-there-in-the-english-language. Accessed 9 May. 2019.

3

Background information :

String matching algorithms and their applications:
Words have performed quite a significant role in our day to day lives. Most of us do not
know the immense importance of these tiny fundamental blocks of language. Humans
have been using words as a communication tool for so long that no one knows when
words were invented. Only imagining a world without words may sound highly
disastrous. We use words everywhere and in technical terms, words can be known as a
form of strings. Strings are known as a combination of characters. Characters are the
alphabet, numbers, punctuation, space or symbols3. String matching algorithm also
called string searching algorithm finds the occurrence of the pattern from the text and
returns the position of the pattern as output.
Ever since humankind started storing the data in string format, the problem of finding
the string among collective data sets became a significant issue and this led to the
discovery of various string matching algorithms. The naive string search algorithm is the
basic string search algorithm. We perform this algorithm in our day to day life without
recognizing the name of it. If we want to find a word we usually take the pattern which
we need to find and infer it through the text by comparing each string of the pattern with
the text, checking if the characters match with each other. If it matches we stop inferring
and if it does do match, we continue inferring through the text to find where the pattern
exists. This algorithm is simple yet inefficient .so this issue further inspired inventors like
J Strother Moore, Robert Stephen Boyer, Michael O. Rabin ,and Richard M. Karp to

 3 "Character Definition - TechTerms." https://techterms.com/definition/character. Accessed 29 May. 2019.

4

discover various string matching algorithms. String searching algorithms are becoming
an essential part of our lives as we use it in day to day applications. String matching
algorithms are used in spell checkers, in search engines, in plagiarism detection
programs, in increasing field of bioinformatics for finding DNA sequences, in Digital
Forensics, in information retrieval systems for text mining, and spam filters. All the
string matching algorithms are divided into four types according to the way they
approach the given data. They are classical algorithms, bit parallelism algorithms, suffix
automata algorithms ,and hashing algorithms. For this investigation, two popular
algorithms with different approaches will be chosen. from classic algorithms, Booyer
Moore algorithm will be chosen as it is said to one of the oldest benchmark string
searching algorithms as many variations have been developed lately using this as a
base and from the hashing algorithm, Rabin Karp algorithm was chosen as it uses the
powerful hash function to process.

Rabin karp algorithm :
Rabin karp was discovered by 4Richard M. Karp and Michael O. Rabin during the year
1987. Since it uses a hashing approach to the process , a hashing function is used for
calculating hash values for all the characters in the string. Each character of the text is
provided with a hash value .the hash values for each character present in the text and
pattern is generated with the help of a hash function. A substring is a segment of the
text which is taken for comparison from the existing text. The entered pattern’s hash
value is compared with the hash value of the substring and if the hash values match,
 4 "Rabin-Karp Pattern Searching Algorithm - OpenGenus IQ." https://iq.opengenus.org/rabin-karp-string-
pattern-searching-algorithm/. Accessed 29 May. 2019.

5

the hash value of each individual character of the pattern and the hash value of each
individual character of the substring is compared. If the hash value of the individual
characters does not match, then the algorithm will slide over the text and choose a new
substring which is nearby to compare. After a new substring is chosen from the text,
again the whole process gets repeated. When the hash value of the individual
characters of the pattern matches with the individual characters of the substring which is
present in the text, then the pattern is considered to be found and the index values are
returned. The use of hashing is believed to speed up the time taken for finding the
match required. The more complex the hash functions, the more accurate matches will
be found.
This is the hash function which will be used in this investigation:

Figure 2: the hash function formula
d: represents the total number of characters present in the ASCII code.
q: represents a prime number
h: represents ݀(ିଵ)
m: represents the pattern length
n: represents the text length

6

This formula also includes rehashing was the hash values of next substring will be
generated with the help of hash value of current substring and the next character in the
text.

For example:

Assume the hash value of pattern is n and in each character comparison, the hash
values of substring and pattern is compared until a match is found. Substring is denoted
with the colour magenta.

During the first comparison, the hash value of substring the does not match with n so it’s
a mismatch. Since the mismatch takes place, next substring is taken for comparison
from the sequence of text. The hash values of next substring = n, so that particular
substring is taken for individual character comparison. Assume hash value of B = 13
and hash value of C = 14 and hash values of letter B in the pattern = m and hash values
of letter C in the pattern=k.

7

First comparison:

Now m = 13 so it is proven during the first comparison, the first character of the
substring is same as first character of the pattern.
Second comparison:

During the second comparison, the k matches with hash value of C (k=14).so the match
is said to be found.

8

Boyer Moore algorithm :
Boyer Moore algorithm was discovered by 5Robert S. Boyer and J Strother Moore in the
year 1977 and it is said to perform fast as the pattern length starts increasing .this
algorithm uses classic approach to find the required pattern. There are two ways to
approach in Boyer Moore algorithm, which are good suffix rule and bad character
heuristics. In this investigation, bad character heuristics will be used.
If a character of the text mismatches with a character of the pattern, that character is
called as bad character. So the algorithm compares the pattern with the text from
rightmost character in the pattern ,and whenever a mismatch (bad character) is spotted,
the algorithm skips alignment until either the pattern matches with the text or until the
entered pattern has passed over the mismatched string in the given text.
For example:
A text of size 14 and a pattern of pattern length 6 were taken. Whenever a mismatch
occurs, the mismatch is marked with font colour of red. All the matches are marked with
green.
Since pattern was compared with the text from the rightmost character.

 5 "DAA Boyer-Moore Algorithm - javatpoint." https://www.javatpoint.com/daa-boyer-moore-algorithm.
Accessed 29 May. 2019.

9

First ,there is a mismatch occurring at position 3 and the bad character will be A. now
the last occurrence of the bad character (A) will be searched in the pattern and it can be
found at position 1.now the pattern will be shifted twice so that the mismatch will
become a match.

Now the pattern gets compared from the rightmost character of the pattern. The first
character of the pattern mismatches with the first character of the text. There is a
mismatch at position 7.the mismatch character “F” does not occur in the pattern before
the position seven so now the pattern shall be shifted past the position seven. After the
position of the pattern is shifted, again comparison takes place from the rightmost

10

character if the pattern. All the characters of the pattern match with the characters of the
text so the pattern is said to be found and the index value of the position found will be
returned as the output.

Time complexity of the algorithms :
In this investigation, time complexity is considered as a measure of efficiency. To find
the most efficient algorithm among Rabin Karp algorithm and Boyer Moore algorithm,
we will be comparing the running time of the algorithms when different variations of
patterns are entered. Time complexity is the amount of time a code or an algorithm
takes to run. The run time also called as execution time will be found for both the
algorithms when different patterns are entered and this will be measured in
nanoseconds. The best case of an algorithm occurs when a minimal amount of
processing is needed due to the input being favourable to the optimal conditions of the
algorithm. The worst case of an algorithm occurs when the entered input is not
favourable to the optimal conditions of the algorithm and when the maximum number of
processing is required.
In the following equations represents the length of the pattern and n represents the
length of the text.
Time complexity of Boyer Moore algorithm6-
Best case: O(m/n) Worst case: O(mn)
Time complexity of Rabin Karp algorithm-
Best case: O(m+n) Worst case: O((n-m)m)

11

The worst case in Rabin karp algorithm occurs when all the individual characters of the
entered pattern and all the individual characters of the text are the same, as the hash
values of the pattern will be the same as the hash value of all the substrings.

 Hypothesis :
As the number of times the pattern occurs in the text increases, the number of times the
algorithm needs to iterate will increase so this might cause the runtime to increase as
the number of occurrence of pattern in the text increases for both the algorithms. As the
position of the pattern where it can be found in the text increases, the runtime might
increase because the algorithm might have to compare more number of times to find
the pattern if the pattern needed is placed in the long distance from the first character
and the runtime might decrease if the pattern needed is placed in short distance from
the first character.

Whenever a mismatch occurs, Boyer Moore has the benefit of skipping many
characters of the input pattern. So as the input pattern length increases, the length of
mismatch detected will also increase. This increase in the length of mismatch pattern
found will cause advantage of an increase in the number of characters that can be
skipped. Which means there is only fewer numbers of strings left to be compared when
compared to the earlier text? In this case, the time taken to process the data will be
reduced.
 Whereas Rabin Karp algorithm does not have the ability to skip strings, instead it scans
every character of the given string with the text. In this case the time taken to pre-

12

process the algorithm may consume comparatively more time. So this would extend the
runtime of Rabin Karp algorithm. For the second component of the experiment, due to
these reasons I hypothesize Boyer Moore algorithm might outrun Rabin Karp algorithm
and as the pattern length increases, the run time might increase for Rabin Karp
algorithm but Boyer Moore will take less time to process the same pattern.

Investigation :
In pursuance of this investigation, the experimentation will be divided into two
components. As the base code for both the algorithms are readily available online
(mentioned in appendix), the base code will be taken for both the algorithm and it will be
modified to calculate the runtime. The dataset used for both the experiments was a
passage which consisted of information taken from a computer science resource
website and it had 8,247 characters including space in it and has 1344 words. The text
used will be put into array so the position of the pattern will be mentioned as index
numbers in the upcoming explanations. To ensure the obtained runtime is highly
precise, three trials will be taken for both the algorithms throughout the experimentation.

The runtime was calculated by the following steps:
The start time is declared once the entered pattern is constructed into an array and
before the search of pattern begins. The end time is declared after the search process
is done and when the occurrences of the patterns are found in the text. Then the total
time is obtained by subtracting the end time with the start time.

Figure 1.1 declaration of start time and

Figure 1.2: declaration of start time and

of start time and end time in Rabin karp

declaration of start time and end time in Boyer Moore algorithm

13

algorithm

14

Variable used in the experiment :
Dependent variable-The runtime will be the dependent variable used throughout the
experiment for both the components. It will be calculated by measuring the difference of
the start time and the end time of the program. It will be measured in the unit of nano
seconds.

Independent variable:
Independent variable is the variable which will be changed in the experimentation. Since
this investigation focuses on the pattern, three factors of the pattern will be changed
throughout the experimentation. They are the number of times the pattern occurs in the
text, the position of the pattern in the text and the length of the pattern.
In the first component of the experimentation, the number of times a pattern occurs and
the position of the pattern will be the independent variables. Since I couldn't find enough
resources about whether the occurrence of a pattern multiple times in a text will affect
the runtime and whether the position of the pattern will affect the runtime of the
algorithms, these variables were chosen as the independent variable for the first
component of the experiment. In the second component of the experiment, pattern
length would be the independent variable.

15

Controlled variables:
Since the running environment affects the run time, all the trials must be conducted on
the same computer and multitasking must be avoided.
Variable Description Specifications

Computer and the
operating system

I used Acer aspire Es 15
laptop and windows 10 OS
was used.

Processor: Intel(R)
Pentium(R) CPU N3710 @
1.60GHz
RAM memory: 2.00 GB
where 1.83 GB was
usable.
System type : 64-bit
operating system

The number of times the
pattern occurred in the text

This was only used as a
controlled variable in the
second component of the
experimentation.

Since the number of times
the pattern occurred in the
text affected the runtime
taken, all the patterns
chosen for the second
component was chosen in
such a way that it occurred
only once throughout the

16

entire text.

Same algorithm Same algorithm
(mentioned in the
appendix) used for both
the components of the
experimentation.

Same dataset Same data set (text)were
used for both the
components of the
experiment

Integrated development
environment used

Throughout the
experimentation, all the
programs will be run on
same IDE.

Java: 1.8.0_171; Java
HotSpot(TM) Client VM
25.171-b11
Runtime: Java(TM) SE
Runtime Environment
1.8.0_171-b11
System: Windows 10
version 10.0 running on
x86; Cp1252; en_IN (nb)

17

Experiment part 1 :
The first component of the experiment will focus on how the multiple occurrence of the
pattern and position of the pattern in the text might affect the runtime. First experiment
will be conducted using only single words. Words were taken with the pattern of length
of 2-14, which were placed in different positions in the text. Few pairs of single words
were taken which had same pattern length but belonged to different positions to check
whether the change in position of string will affect the running time of the algorithms.

 Test results of the experiment part 1 :

Pattern
Pattern
length

Number of
times the
pattern was
repeated in
the text

Average time/nano seconds

Rabin Karp Boyer Moore
the 3 103 7714357.33 45246319.7
as 2 45 5271476.33 4407513
and 3 44 4859098.67 3465778
be 2 33 4160444.67 3092209
web 3 29 4119374.67 2739551
that 4 25 4052700.7 2430848.33
use 3 23 3916265 2525992.67
are 3 18 3702704 2106357.67

18

information 11 11 3596840.67 1533135
from 4 10 3356547.33 1824150
database 8 9 3257663 1456752
allows 6 8 3061290.33 1439322.33
which 5 7 3030063 1589826.33
standards 9 6 3037917.67 511249
application 11 5 3085006.33 1236289.33
might 5 4 2946821.67 1368333.33
smarter 7 3 2857020.67 1243982.67
international 13 2 2743683 765270
authentication 14 1 2654117.67 1011932.67

Table 1: processed data of experimentation part-1, describes the relationship between
times of occurrence of the pattern in the text and the average runtime consumed by
both the algorithms.
From the first part of the experiment, it was evident that the position where the pattern is
placed in the text does not affect the time taken for the algorithm to find the pattern but
the number of times the pattern repeats in the text did affect the time taken. As the
number of times the pattern occurred in the text increased, the run time also increased.
The patterns which were placed in two different positions in the text, which had the
same length, had similar runtimes. In the below table, the same font colour is used to
denote the set of words which had the same times of occurrence and same pattern
length. Only words which had the same times of occurrence and same pattern length

19

are extracted from the table because this way it was easy to find and show the
relationship and compare.
number of
occurrences of
the pattern Pattern

index
number Rabin Karp Boyer Moore

pattern
length

1 looked 1035 2601703.67 1144365.67 5

1 meaningful 1916 2668151 1029807 10

1 technology 2924 2622117 1048120 10

1 full time 3117 2631625 1076363.33 8

1 reliability 3298 2617330 1017280 11

1 manipulation 4222 2610970 1034974.33 12

1 credentials 4395 2611016.33 1043081.67 11

1 respective 4754 2689798 1050123 10

1 function 5038 2637637.33 1071606.33 8

1 navigational 5561 2646362.33 1015560 12

1 normal 7092 2635343 1166822.33 5
Table 2: processed data of experimentation part-1, describes the relationship between
position of the pattern in the text and the average runtime consumed by both the
algorithms.

20

In table For example if we take set of words like manipulation which has index number
4222-navigational which has index number 5561, And credentials which has index
number 4395 and reliability which has index number 3295 . Both the set of words have
the same pattern length but are placed in different positions in the text but both the set
of words took a similar amount of runtime.
 Index length is the position of the pattern in the text and it usually starts from 0.the
words in table 1 was chosen based on their pattern length and the number of times they
occur because these two factors will affect the running time of the algorithms.

Graph 1 - the graph showing the relationship between times of occurrence and average
runtime for Rabin Karp algorithm.

21

Graph 2 - the graph showing the relationship between times of occurrence and average
runtime for BoyerMoore algorithm.
The graph 1 and graph 2 clearly shows that as the times of occurrence of the pattern
increased, the run time also increased for both the algorithms. In graph 2, there is a
drastic increase from 45 to 103 because the interval between 45 and 103 is huge. When
Boyer Moore is used, even small intervals have a more noticeable change in runtime as
times of occurrence increase comparing to Rabin karp algorithm. In graph 1, the change
from 45 to 103 is comparatively less because even though there is change in runtime of
the change in not as vast as the change in Boyer Moore.

Experiment part 2 :
Second experiment will be done with a collection of words. After considering the results
of the previous experiment, few changes were done to the variables. The position of the
pattern was ignored since it did not cause major changes in the runtime. Set of words
were taken for this experiment in the increasing pattern length of 30 to 102.

22

Test results of experiment part 2 :
Pattern
length Rabin Karp Boyer Moore
30 2658804.667 936716.6667
32 2665272.333 940072
34 2660616.333 955339.3333
36 2658961.333 942644.3333
38 2662373.333 931062.6667
40 2654472 936641.3333
42 2664516.333 927201.3333
44 2657593.667 924798.3333
46 2668402.333 923526
48 2654195.667 916860.6667
50 2667556 916292.6667
52 2661121 929743.6667
54 2663283.333 919067.6667
56 2664845 920325.6667
58 2656349.667 901712.6667
60 2669121 902219
62 2652258 902640.3333
64 2663879.333 907973.6667
68 2661470 902340

23

70 2657725 906037.6667
72 2662532 902774
74 2661623.333 904874
78 2651833 902163.6667
80 2667393 902481.3333
82 2653533 900329
84 2659185 898027
86 2660549.667 898555.3333
88 2666174.667 896339
90 2659447.667 898105.6667
92 2664940 896398.6667
94 2677279.333 894998.3333
96 2668155.333 893554.6667
98 2661439 893745.6667
100 2662282.333 892130.3333
102 2676289 892408

Table 3: processed data of experimentation part 2, describes the relationship between
average runtime of both the algorithms and pattern length.

24

Graph 3 - Average runtime by pattern length graph for RabinKarp algorithm

Graph 4 - Average runtime by pattern length graph for Boyer Moore algorithm
From the results obtained from the second part of the experiment, it is understandable
that as the pattern length increased, there was not much change in the runtime for
RabinKarp algorithm. The minor fluctuation can be caused by processors and these
fluctuations always exist even though the running environment was maintained constant
for every trial , so the fluctuations seems like a change in trend in graph 3 but in real life

25

these fluctuations are very minute and they would not cause much change in the trend .
The average running time continued to fluctuate around 2600000.
The change in pattern length did affect the time taken to process when Boyer Moore
algorithm was used. The time taken for execution of the program decreased as the
pattern length increased as shown in the graph 4.

Conclusion :
Returning to the research question ‘‘to what extent the variation in the search pattern
may affect the efficiency of Rabin Karp algorithm and Boyer Moore algorithm in terms of
time complexity’’, it was evident from the overall results that the Boyer Moore algorithm
outperformed Rabin Karp algorithm in all the situations. The run time of Boyer Moore
algorithm was much faster than the Rabin Karp algorithm throughout the
experimentation. Half of my hypothesis was correct as pattern length increased, the
runtime taken decreased for Boyer Moore algorithm. But in Rabin Karp what I
hypothesized was wrong as there was no change in the trend when pattern length
increased. I was clearly wrong about run time increasing as the position of the pattern in
the text increases as the position of the pattern did not affect the run time for both the
algorithms . Since it was well evident from my obtained results, I was right about my
hypothesis of runtime increasing as the number of occurrence of pattern. Still Rabin
karp is used in various plagiarism checking programs because it is said to be more
suitable for the application when it comes to handling multiple patterns and also it is
uses the unique hashing approach which is not used by other major algorithms. Boyer

26

Moore algorithm can be used when it comes to handling long patterns since it takes less
runtime to find the pattern as the pattern length increases.

 Further scope of the investigation :
 As only two string searching algorithms of different approaches(classical approach and
hashing approach) were taken in this investigation , for further investigation I want to
take string searching algorithms from other two approaches (which are Suffix automata
approach and Bit parallelism approach) and compare them to find the most efficient
string searching algorithm with less average runtime. I also want to check whether the
trend might change for different data types like binary alphabets and DNA alphabets
and find the most suitable string algorithm for the different data types. Since this time
only small data set was used for the text, I want to change the data set sizes and see
how it would affect the runtime of the different string matching algorithms.

 Limitations :
The investigation was carefully planned so that minimal amount of error will be
produced so there weren't much limitation as far as I know. As different people might
use different processors and different hard wares, the runtime might be different for
different computers as the processor speed might differ but I believe this would not
affect the trend of relationship found between the variables.

27

Bibliography :
1"Google Data Center FAQ & Locations | Data Center Knowledge." 17 Mar. 2017,
https://www.datacenterknowledge.com/archives/2017/03/16/google-data-center-faq. Accessed 9 May.
2019.
 "How many words are there in the English ... - Lexico.com." https://www.lexico.com/en/explore/how-
many-words-are-there-in-the-english-language. Accessed 9 May. 2019.
"Character Definition - TechTerms." https://techterms.com/definition/character. Accessed 29 May. 2019.
 "Rabin-Karp Pattern Searching Algorithm - OpenGenus IQ." https://iq.opengenus.org/rabin-karp-string-
pattern-searching-algorithm/. Accessed 29 May. 2019.
"DAA Boyer-Moore Algorithm - javatpoint." https://www.javatpoint.com/daa-boyer-moore-algorithm.
Accessed 29 May. 2019.
 "How to calculate the running time of my program? - Stack Overflow." 6 Mar. 2011,
https://stackoverflow.com/questions/5204051/how-to-calculate-the-running-time-of-my-program.
Accessed 9 May. 2019.
 "Rabin-Karp Algorithm for Pattern Searching - GeeksforGeeks." https://www.geeksforgeeks.org/rabin-
karp-algorithm-for-pattern-searching/. Accessed 12 May. 2019.
"Boyer Moore Algorithm for Pattern Searching - GeeksforGeeks." https://www.geeksforgeeks.org/boyer-
moore-algorithm-for-pattern-searching/. Accessed 29 May. 2019.
"Option C - Web Science - cs-ib." https://www.cs-ib.net/topic/C-web-science.html. Accessed 12 May.
2019.

28

Appendix :
The code for both the algorithms were taken from a website called geeksforgeeks, and
the idea and code to calculate the run time7 was taken from a web forum called
stackoverflow.com where many people across the world share their ideas regarding
queries regarding programming.
Coding for Rabin Karp algorithm in java :8

 7 "How to calculate the running time of my program? - Stack Overflow." 6 Mar. 2011,
https://stackoverflow.com/questions/5204051/how-to-calculate-the-running-time-of-my-program.
Accessed 9 May. 2019. 8 "Rabin-Karp Algorithm for Pattern Searching - GeeksforGeeks." https://www.geeksforgeeks.org/rabin-
karp-algorithm-for-pattern-searching/. Accessed 12 May. 2019.

29

30

Coding for Boyer Moore algorithm in java:9

 9 "Boyer Moore Algorithm for Pattern Searching - GeeksforGeeks." https://www.geeksforgeeks.org/boyer-
moore-algorithm-for-pattern-searching/. Accessed 29 May. 2019.

31

Data set used: 10
The data set used was taken from the cited website.
The world wide web started around 1990/91 as a system of servers connected over the
internet that deliver static documents, which are formatted as hypertext mark-up
language (HTML) files, which support links to other documents, but also multimedia as
graphics, video or audio. In the beginnings of the web, these documents consisted
mainly of static information and text, where multimedia was added later. Some experts
describe this as a read-only web, because users mostly searched and read information,
while there was little user interaction or content contribution. However, the web started
to evolve into the delivery of more dynamic documents, enabling user interaction or
even allowing content contribution. The appearance of blogging platforms as Blogger in
1999 gives a time mark for the birth of the Web 2.0. Continuing the model from before,
this would be the evolution to a read-write web. This opened new possibilities and lead
to new concept as blogs, social networks or video-streaming platforms. Web 2.0 might
also be looked at from the perspective of the websites themselves evolving in more
dynamic and feature-rich. For instance, improved design, JavaScript and dynamic
content loading could be considered Web 2.0 features. The internet and thus the World
Wide Web is constantly developing and evolving into new directions and while the
changes described for the Web 2.0 are clear to us today, the definition for the Web 3.0
is not definitive yet. Continuing the read to read-write description form earlier, it might be
argued that the Web 3.0 would be the read-write-execute web. One interpretation of this
 10 "Option C - Web Science - cs-ib." https://www.cs-ib.net/topic/C-web-science.html. Accessed 12 May.
2019.

32

is that the web enables software agents to work with documents by using semantic
mark-up. This allows for smarter searches and the presentation of relevant data fitting
into context. This is why Web 3.0 is sometimes called the semantic executive web. It is
about user input becoming more meaningful, more semantic, by users giving tags or
other kinds of data to their document, that allow software agents to work with the input,
e.g. to make it more searchable. The idea is to be able to better connect information
that is semantically connected. However, it might also be argued that the Web 3.0 is
what some people call the Internet of Things, which is basically connecting every day
devices to the internet to make them smarter. In some way, this also fits the read-write-
execute model, as it allows the user to control a real life action on a device over the
internet. Either way, the web keeps evolving and the following image provides a good
overview and an idea where the web is heading to. However, it might also be argued
that the Web 3.0 is what some people call the Internet of Things, which is basically
connecting every day devices to the internet to make them smarter. It has been founded
in 1946 and since then has published over 21000 international standards regarding
aspects of technology and manufacturing. The members are from 163 countries
including 3 368 technical bodies that help standards to be developed. In addition, the
organization has over 135 people working fulltime at the central in Geneva. Experts of
the same field work together to develop standards and these are settled on through a
consensus process. These standards ensure safety, reliability and quality for products
and services, while also providing a common denominator for different processes to
communicate, e.g. for technologies. Sites that include server-side programming as well,
usually to retrieve content dynamically from a database. This allows for data processing

33

on the server and allows for much more complex applications. In some way, this also
fits the read-write-execute model, as it allows the user to control a real life action on a
device over the internet. Either way, the web keeps evolving and the following image
provides a good overview and an idea where the web is heading to. ISO is the
International Organization of Standardization, an independent, non-governmental
organization that develops and publishes international standards. Website logic that
runs on the server. Common tasks include the processing of search queries, data
retrieval from a database and various data manipulation tasks. Good examples are
online-shops, where items are displayed based on a search query. Once the user
decides to buy an item, server-side scripts check user credentials and make sure that
the shop receives the order. Cookies are small files stored on a user computer. They
hold data specific to a website or client and can be accessed by either the web server or
the client computer. Cookies contain data values such as first-name and last-name.
Once the server or client computers have read the cookie through their respective
codes, the data in the cookie can be retrieved and used for a website page. Cookies are
created usually when a new web page is loaded. Disabling cookies on your computer
will abort the writing operation that creates cookies. However, some sites require
cookies in order to function. Cookies are used to transport information from one session
on a website to another. They eliminate the use of server machines with huge amounts
of data storage, since cookies are more efficient and smaller. A database is an
organized collection of data, which allows retrieving specific data easily based on
queries. Data are usually organized in a way that allows the application to find data
easily. There are different logic models of how to organize data in a database, e.g.

34

relational models, object models, navigational models and more. A database is access
(in order to retrieve data, update them, administration) through a database management
system (DBMS), such as for example MySQL, PostgreSQL, MongoDB, etc. . . . These
systems usually differ in the database model that they use. XML is a flexible way to
structure data and can therefore be used to store data in files or to transport data. It
allows data to be easily manipulates, exported, or imported. This way, websites can
also be designed independent from the data content. Example uses of XML are RSS
feeds, where it is used to store data about a feed. This is a standard protocol for web
servers to execute console programs (applications that run from the command line) in
order to generate dynamic websites. It implements an interface for the web server (as in
the software) to pass on user information, e.g. a query, to the application, which can
then process it. This passing of information between the web server and the console
application is called the CGI. Thanks to CGI, a variety of programming languages such
as Perl, Java, C or C++ can be used, which allow for fast server-side scripting. The
surface web is the part of the web that can be reached by a search engine. For this,
pages need to be static and fixed, so that they can be reached through links from other
sites on the surface web. They also need to be accessible without special configuration.
Examples include Google, Face book, YouTube, etc. The deep web is the part of the
web that is not searchable by normal search engines. Reasons for this include
proprietary content that requires authentication or VPN access, e.g. private social
media, emails; commercial content that is protected by pay walls, e.g. online news
papers, academic research databases; personal information that is protected, e.g. bank
information, health records; dynamic content. Dynamic content is usually a result of

35

some query, where data are fetched from a database Interoperability can be defined as
the ability of two or more systems or components to exchange information and to use
the information that has been exchanged. In order for systems to be able to
communicate they need to agree on how to proceed and for this reason standards are
necessary. Lossy compression or irreversible compression is the class of data encoding
methods that uses inexact approximations and partial data discarding to represent the
content. These techniques are used to reduce data size for storage, handling, and
transmitting content. Lossless data compression algorithms usually exploit statistical
redundancy to represent data without losing any information, so that the process is
reversible.

Raw data collected during the experimentation :

In the following tables , first row of each pattern will be the runtime taken by Rabin Karp
algorithm and second row of each pattern will be the runtime taken by Boyer Moore.

experimentation part 1:

pattern
pattern
length

number of
times the
pattern was
repeated in
the text Trial 1 Trial 2 Trial 3

Average
time/nano
seconds

36

the 3 103 7821889 7723315 7597868 7714357.333
111197841 11285445 13255673 45246319.67

as 2 45 5341719 5319317 5153393 5271476.333
4709006 4760364 3753169 4407513

and 3 44 4843789 4889872 4843635 4859098.667
3421454 3498898 3476982 3465778

be 2 33 4162151 4174952 4144231 4160444.667
3118894 3113134 3044599 3092209

web 3 29 4163434 4156703 4037987 4119374.667
2721254 2762703 2734696 2739551

that 4 25 3937810 4285682 3934610 4052700.667
2400288 2486848 2405409 2430848.333

use 3 23 4295920 4052509 3400366 3916265
2573407 2503003 2501568 2525992.667

are 3 18 3733793 3742754 3631565 3702704
2026993 2014832 2277248 2106357.667

user 4 11 3599693 3541782 3540657 3560710.667
1839412 1809332 1830325 1826356.333

even 4 1 2699827 2597906 2634371 2644034.667
1331097 1344539 1380380 1352005.333

static 5 3 2769436 3040635 3241915 3017328.667

37

1290294 1269014 1266054 1275120.667
mostly 6 1 2689585 2609427 2579345 2626119

1135728 1159071 1155873 1150224
from 4 10 3358092 3375373 3336177 3356547.333

1838041 1834011 1800398 1824150
blogs 5 1 2675505 2573585 2639508 2629532.667

1235578 1250298 1215395 1233757
might 5 4 2941915 2936154 2962396 2946821.667

1399427 1378946 1326627 1368333.333
looked 6 1 2503667 2601445 2699999 2601703.667

1168034 1122931 1142132 1144365.667
design 6 2 2687540 2801791 2709900 2733077

1235573 1240058 1269413 1248348
argued 6 3 2872791 2884950 2899030 2885590.333

1284706 1262305 1209182 1252064.333
smarter 7 3 2854085 2819855 2897122 2857020.667

1244836 1244196 1242916 1243982.667
meaningful 10 1 2675504 2640644 2688305 2668151

1025801 1035899 1027721 1029807
connect 7 5 2896328 2873287 2800808 2856807.667

1326758 1254331 1398088 1326392.333

38

internet 8 6 3052652 3060332 3099207 3070730.333
1328777 1331738 1334937 1331817.333

following 9 2 2757428 2743347 2751668 2750814.333
1002345 1102344 1002316 1035668.333

connecting 10 2 2768866 2735606 2769507.999 2757993.333
1109005 1140367 1109645 1119672.333

technology 10 1 2686384 2594223 2585744 2622117
1019400 1068120 1056840 1048120

fulltime 8 1 2672884 2634387 2587604 2631625
1083404 1071243 1074443 1076363.333

reliability 11 1 2580934 2580624 2690432 2617330
1015600 1019400 1016840 1017280

application 11 5 3091196 3088635 3075188 3085006.333
1239573 1238292 1231003 1236289.333

applications 12 2 2636947 2645345 2630392 2637561.333
1075724 1071243 1072763 1073243.333

international 13 2 2716951 2761754 2752344 2743683
764203 764843 766764 765270

manipulation 12 1 2681264 2577423 2574223 2610970
1036681 1034121 1034121 1034974.333

credentials 11 1 2610706 2611109 2611234 2611016.333

39

1041802 1044361 1043082 1043081.667
respective 10 1 2571664 2601105 2896625 2689798

1052043 1051403 1046923 1050123
function 8 1 2581264 2575504 2576144 2577637.333

1094526 1060247 1060046 1071606.333
session 7 1 2571663 2672944 2585104 2609903.667

1032046 1028850 1030126 1030340.667
allows 6 8 3036969 3052330 3094572 3061290.333

1443590 1455750 1418627 1439322.333
logic 5 2 2735666 2751027 2743987 2743560

1264533 126373 1261334 884080
flexible 8 1 2576143 2571663 2774223 2640676.333

1066123 1068683 1067683 1067496.333
manipulate 10 1 2592144 2790225 2573583 2651984

1043081 10462817 1043052 4182983.333
console 7 2 2820637 2729907 2635027 2761857

1074928 1073009 1073008 1073648.333
which 5 7 3026883 3028163 3035143 3030063

1594946 1584066 1590467 1589826.333
normal 6 1 2570383 2568463 2767183 2635343

1064689 1067249 1068529 1066822.333

40

authentication 14 1 2789585 2589585 2583183 2654117.667
1014280 1010439 1011079 1011932.667

navigational 12 1 2674637 2676146 2588304 2646362.333
1019400 1011080 1016200 1015560

database 8 9 3283051 3255530 3234408 3257663
1466145 1423245 1480866 1456752

system 6 5 3069280 2973275 2974555 3005703.333
1366299 1367580 1377180 1370353

standards 9 6 3024477 3060319 3028957 3037917.667
120135 122695 1290917 511249

communicate 10 2 2785589 2634387 2732466 2717480.667
1095031 1098806 1096991 1096942.667

information 11 11 3554500 3664491 3571531 3596840.667
1521828 1525668 1551909 1533135

reversible 10 2 2695508 2732588 2730546 2719547.333
1080843 71089163 1084043 24418016.33

Experimentation part 2 :

Pattern taken
Pattern
length Trial 1 Trial 2 Trial 3

Average
runtime

non-governmental 30 2653481 2683032 2639901 2658804.667

41

organization
934590 936670 938890 936716.6667

he data in the cookie can be
retrieved 32 2616393 2683032 2696392 2665272.333

938897 940211 941108 940072
every day devices to the
interne 34 2638891 2644632 2698326 2660616.333

934697 949212 982109 955339.3333
where items are displayed
based on 36 2659807 2657990 2659087 2658961.333

942338 940235 945360 942644.3333
through a database
management system 38 2659801 2660443 2666876 2662373.333

931869 930211 931108 931062.6667
variety of programming
languages such as 40 2662552 2687672 2613192 2654472

939974 930615 939335 936641.3333
are usually organized in a way
that allows 42 2651333 2674325 2667891 2664516.333

928695 926774 926135 927201.3333
since cookies are more 44 2684477 2626392 2661912 2657593.667

42

efficient and smaller
928055 923174 923166 924798.3333

be used to store data in files
or to transport 46 2635661 2673333 2696213 2668402.333

922689 923433 924456 923526
where items are displayed
based on a search query 48 2592522 2688153 2681912 2654195.667

916534 916234 917814 916860.6667
information and to use the
information that has be 50 2682131 2674544 2645993 2667556

916534 916344 916000 916292.6667
and thus the world wide web is
constantly developing 52 2608889 2681118 2693356 2661121

916375 936745 936111 929743.6667
perspective of the websites
themselves evolving in 54 2682341 2647270 2660239 2663283.333

902427 924188 930588 919067.6667
ndards regarding aspects of
technology and manufacturing 56 2699909 2618318 2676308 2664845

930042 930588 900347 920325.6667
software agents to work with 58 2694639 2668887 2605523 2656349.667

43

documents by using semantic
m

901043 902203 901892 901712.6667
by users giving tags or other
kinds of data to their documen 60 2691279 2622418 2693666 2669121

901099 902677 902881 902219
hile there was little user
interaction or content
contribution 62 2620456 2689919 2646399 2652258

902427 901787 903707 902640.3333
between the webserver and
the console application is
called the 64 2653439 2663439 2674760 2663879.333

903707 917787 902427 907973.6667
of servers connected over the
internet that deliver static
documents 68 2681124 2621123 2682163 2661470

902543 901256 903221 902340
eliminate the use of server
machines with huge amounts
of data storage 70 2683445 2655489 2634241 2657725

915534 902345 900234 906037.6667

44

at from the perspective of the
websites themselves evolving
in more dynamic and feature-
rich 72 2590798 2688345 2708453 2662532

904967 903221 900134 902774
are used to transport
information from one session
on website to another 74 2684389 2633040 2667441 2661623.333

900657 910023 903942 904874
cookies on your computer will
abort the writing operation that
creates cookies 78 2607513 2687032 2660954 2651833

902533 902613 901345 902163.6667
while also providing a common
denominator for different
processes to communicate 80 2633680 2679932 2688567 2667393

902113 903220 902111 902481.3333
xed, so that they can be
reached through links from
other sites on the surface web 82 2696399 2623880 2640320 2653533

900231 900432 900324 900329
structure data and can 84 2633040 2699398 2645117 2659185

45

therefore be used to store data
in files or to transport data

898587 890067 905427 898027
allows for smarter searches
and the presentation of
relevant data fitting into
context 86 2638721 2678289 2664639 2660549.667

899088 898234 898344 898555.3333
ess data compression
algorithms usually exploit
statistical redundancy to
represent data 88 2677654 2644326 2676544 2666174.667

897958 896592 894467 896339
his allows for data processing
on the server and allows for
much more complex
applications 90 2633680 2788901 2555762 2659447.667

897889 898773 897655 898105.6667
communicate they need to
agree on how to proceed and
for this reason standards are
necessary 92 2694352 2601038 2699430 2664940

46

896778 896890 895528 896398.6667
irreversible compression is
the class of data encoding
methods that uses inexact
approximation 94 2632114 2603821 2795903 2677279.333

895661 894333 895001 894998.3333
include server-side
programming as well, usually
to retrieve content dynamically
from a database 96 2698238 2615575 2690653 2668155.333

893999 892330 894335 893554.6667
these documents consisted
mainly of static information
and text, where multimedia
were added later 98 2643729 2689594 2650994 2661439

893465 893440 894332 893745.6667
of the same field work together
to develop standards and
these are settled on through a
consensus pro 100 2690032 2600075 2696740 2662282.333

892243 890224 893924 892130.3333
the same field work together to 102 2730075 2693361 2605431 2676289

47

develop standards and these
are settled on through a
consensus process

893541 892111 891572 892408

