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I. Introduction 

The principle of forecasting comes from the idea that data can be predicted prior to the real event 

occurring by identifying underlying patterns in a dataset. Forecasting has become possible by 

analyzing statistics evident within datasets that have one or more variables. 

As research into forecasting has progressed over time, models such as neural networks and 

piecewise linear models have been published to the world wide web. These models have allowed 

for individuals to test and automate forecasting datasets. 

For this specific research document, the SARIMA and PROPHET model will be investigated and 

compared in both performance and accuracy. Both models have been a popular choice for both 

individuals and businesses to forecast stocks and climate change. The SARIMA model works as 

a conjunction between multiple linear models that works as weight for each forecast completed. 

The PROPHET model also works by connecting simpler models together to process an accurate 

forecast. 

The dataset in interest for this investigation is going to be the total number of new COVID-19 

cases that has occurred from January 3rd, 2020, till May 3rd, 2023, in South Korea. Prior to 

finalizing the decision to using the COVID-19 dataset, there was a dilemma on whether climate 

change should be used instead due to its longevity compared to COVID-19. With the goal of 

acknowledging the growing pandemic and its direct impact on humanity, climate change was 

disregarded as it had less urgency and attention compared to COVID-19. 

To summarize, the research will be answering, “What is the relative forecasting accuracy of 

SARIMA and PROPHET models for daily COVID-19 cases in South Korea?” Throughout this 

research, an analysis and understanding of what both models will be completed. While doing so, 



a method of utilizing these two models would be needed to understand how to forecast and test 

the relative accuracies that it has produced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



II. Literature Review 

2.1.1 Non-seasonal ARIMA Model 

The ARIMA model is made up of three components: auto-regressive (AR), integrated (I), 

moving-average (MA). These components are individual models that are assigned the variable 𝑝, 

𝑑, and 𝑞. The parameters can be changed accordingly to fit the model and tested for its accuracy 

using the Akaike’s Information Criterion (AIC), a branch of Akaike’s Information Criterion 

(AICc), and Bayesian Information Criterion (BIC) (Smith 6).  

AR is assigned to 𝑝, I is assigned to 𝑑, and MA is assigned to 𝑞. The 𝑝 value indicates the 

number of lag observations. The lag observations shows us how many past values of the variable 

are used to predict the current value of the variable (Hyndman and Athanasopoulos 8.2, 8.3).  

𝑦! = 𝑐 + 𝜙"𝑦!#" + 𝜙$𝑦!#$ +⋯+ 𝜙%𝑦!#% + 𝜀! 

Equation 1: Mathematical expression for autoregressive models (Hyndman and Athanasopoulos 8.3) 

The 𝑑 value identifies the degree of differencing. Depending on the degree of differencing, it 

will tell us the number of times the current value is subtracted from the previous value 

(Hyndman and Athanasopoulos 8.1).  

𝑦!& = 𝑦! − 𝑦!#"	

𝑦!&& = 𝑦!& − 𝑦!#"& = (𝑦! − 𝑦!#") − (𝑦!#" − 𝑦!#$) = 𝑦! − 2𝑦!#"+𝑦!#$ 

Equation 2: Mathematical expression for differencing (Hyndman and Athanasopoulos 8.1) 

The 𝑞 value identifies the order of the moving average which is used to add weights to 

compensate for the errors made which would alter the forecast accordingly (Hyndman and 

Athanasopoulos 8.4). 



𝑦! = 𝑐 + 𝜀! + 𝜃"𝜀!#" + 𝜃$𝜀!#$ +⋯+ 𝜃'𝜀!#' 

Equation 3: Mathematical expression for the moving average model (Hyndman and Athanasopoulos 8.4) 

Hence, the formula for the non-seasonal ARIMA model can be derived by combining these three 

components into one equation. 

𝑦!& = 𝑐 + 𝜙"𝑦!#" +⋯+ 𝜙%𝑦!#% + 𝜃"𝜀!#" +⋯+ 𝜃'𝜀!#' + 𝜀! 

Equation 4: Mathematical expression for the ARIMA model (Hyndman and Athanasopoulos 8.5) 

As previously mentioned, AIC acts as an estimator for predicting the prediction error. Therefore, 

this can be used to test the accuracy and validity of the model for model selection (BURNHAM 

and ANDERSON). However, the AIC is under the risk of overfitting and underfitting which 

would lead to false data results. Therefore, to minimize the issue of overfitting and underfitting 

in small sample spaces, AICc can be utilized. However, due to the increase in complexity of the 

AIC formula, it is more difficult to compute (BURNHAM and ANDERSON). The BIC’s 

purpose is like an AIC, it works as an estimator and the lower the value, the more accurate it is 

(BURNHAM and ANDERSON).   

2.1.2 Seasonal ARIMA Model 

The SARIMA (Seasonal ARIMA) is an extension of the ARIMA model. The SARIMA model 

would detect seasonality and trends that can be found throughout the dataset. Additional 

parameters of the SARIMA are 𝑃, 𝐷, 𝑄, and m (Hyndman and Athanasopoulos 8.9).  

The P value shows the order of the seasonal autoregressive component. This means how many 

previous values within a season are used to predict the current value.  



The 𝐷 value is the degree of seasonal differencing, which shows how many times the data is 

differenced at a seasonal lag to make it stationary.  

𝑦!& = 𝑦! − 𝑦!#( 

𝑦!&& = 𝑦!& − 𝑦!#(& = (𝑦! − 𝑦!#() − (𝑦!#( − 𝑦!#$() = 𝑦! − 2𝑦!#(+𝑦!#$( 

Equation 5: Mathematical expression for seasonal differencing (Hyndman and Athanasopoulos 8.1) 

The Q value is the order of seasonal moving average, which shows how many previous errors are 

used as weights in a season to predict the current value (Hyndman and Athanasopoulos 8.9).  

To determine what seasonal parameters are the most optimal for the SARIMA, it is ideal to see 

the seasonal lags of both partial autocorrelation function (PACF) and autocorrelation function 

(ACF). ACF measures how much the time series correlates with itself at different lags. For 

example, if the ACF at lag 12 has a high frequency, then the value of the time series at a given 

time point is like the value 12 lags ago. PACF measures how much the time series correlates 

with itself at different lags after removing the effect of previous lags. For example, when the 

ACF reads at lag 12 as high, the value of the time series at a given time point is similar to the 

value 12 lags ago after accounting for the values in between. When the ACF shows a gradual 

decay and the PACF shows a sharp cut off after a certain, it suggests that an AR component at 

that lag. If the ACF shows a sharp cut off and the PACF shows a gradual decay, it suggests an 

MA component at that lag. If either plot shows a significant spike at the seasonal lag, it suggests 

a seasonal component at that lag (Hyndman and Athanasopoulos 8.9). 



2.2 PROPHET Model 

The PROPHET model is made up of three components: trend (𝑔(𝑡)), seasonality (𝑠(𝑡)), holidays 

(ℎ(𝑡)), and the error term. These components are then combined to generate a formula for 

forecasting.  

The trend component works to model the nonperiodic changes in the value of the time series 

(Taylor and Letham 39). The component can be either linear or logistic depending on the growth 

parameter. A linear trend is a slope from one point to another. When the linear slope has a 

change in direction it is often referred to as the changepoint. A logistic trend is a curved line that 

eventually approaches a limit, in other words it is called the carrying capacity, a maximum point 

which the forecast can reach. The mathematical formula for this component can be simplified 

into: 

𝑔(𝑡) = 8
𝑘𝑡 + 𝑚
𝐶

1 + 𝑒#)(!#()

𝑖𝑓	𝑔𝑟𝑜𝑤𝑡ℎ = ′𝑙𝑖𝑛𝑒𝑎𝑟′
𝑖𝑓	𝑔𝑟𝑜𝑤𝑡ℎ = ′𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐′ 

Equation 6: Mathematical expression for trend component (Taylor and Letham 40) 

𝐶 is the carrying capacity, 𝑘 is the initial growth rate, and 𝑚 is an offset parameter (Taylor and 

Letham 40). 

The seasonality component models the periodic changes which can be weekly and yearly (Taylor 

and Letham 41). The component consists of the Fourier series to provide a dynamic model of 

periodic effects, for annual data 𝑃 = 365.25, for weekly data 𝑃 = 7. The mathematical formula 

for this component can be simplified into: 



𝑠(𝑡) = L(𝑎,𝑐𝑜𝑠 M
2𝜋𝑛𝑡
𝑃 O + 𝑏, sin M

2𝜋𝑛𝑡
𝑃 O)

-

,."

 

Equation 7: Mathematical expression for seasonality component (Taylor and Letham 41) 

𝑃 is the period expected for the time series to have, 𝑁 is the order of the Fourier series, and 𝑎, 

and 𝑏, are weights to be estimated (Taylor and Letham 41).  

The holidays component works to eliminate the effects of holidays as they could sometimes 

generate irregularities (Taylor and Letham 41). The component sets a range of dummy variables 

for each holiday which the user adjusts with dates. The mathematical formula for this component 

can be simplified into: 

ℎ(𝑡) =L𝛾/10(!).0!

1

/."

 

Equation 8: Mathematical expression for holidays component (Taylor and Letham 41) 

𝐻 is the number of holidays, 𝛾/ is the magnitude of the holiday effect, 𝑑(𝑡) is the date of time, 

and 𝑑/ is the date of holiday (Taylor and Letham 41). 

The error terms identify points in data changes that are unique and doesn’t follow a trend (Taylor 

and Letham 44). The component acts as a weight for the forecast to adjust the forecast generated 

based on the previous value that it has forecasted. 

𝜉(ℎ) = 𝐸[𝜙(𝑇, ℎ)] 

Equation 9: Mathematical expression for error term (Taylor and Letham 44) 

The ℎ value is used to represent the error made at a horizontal forecast, and the 𝑇 shows the last 

point of historical data used to fit the model (Taylor and Letham 44). 



2.3 Comparison 

When fitting the SARIMA model, there needs to be a total of six parameters filled out and 

evaluated based on the performance of the forecast. This can be computationally expensive and 

time consuming to be complete. Creating a list of parameters for the SARIMA to run through 

and test is a solution to the time consumption of manually modifying the parameters, but it does 

not help improve the computational expense of testing every parameter. On the other hand, the 

PROPHET model does not require the modification of parameters but only needs adjustments to 

its holidays and seasonality. The PROPHET model already automatically determines the best fit 

of the model based on its training data. Therefore, the PROPHET is more intuitive than 

SARIMA. 

Another comparison between the two models is that while the SARIMA assumes that the 

seasonality of its data is continuous, the PROPHET can generate forecasts based on multiple 

seasonalities. Based on this, an assumption can be made that the PROPHET will perform better 

for long-term forecasts than the SARIMA, but the SARIMA will perform better for short-term 

forecasts. 

2.4 Relevant Studies 

The first study has tested for the forecasting of seasonal influenza in Mainland China from 2005 

to 2018 by utilizing the SARIMA model. Results for this experiment showed that the model 

fitted the seasonal fluctuation well with the predicted relative errors from 0.0010 to 0.0137 

(Cong et al.). For example, when the relative error for July 2018 is 0.001, the predicted value of 

1.65 is very close to the actual value, 1.64. 

The second study investigated a minimalistic approach for evapotranspiration (ET) by using the 

PROPHET model. For comparison, the stochastic volatility (SVT) model was used against the 



PROPHET model. Results showed that the PROPHET model generally performed better in high 

rainfall scenarios while the SVR model was more suitable for low rainfall scenarios (Hosono et 

al.). This may have been due to the PROPHET model being more robust to outliers in the data 

which may have been more common in high rainfall scenarios. There may also have been 

missing values and data gaps which the PROPHET model is able to fill out. 

The third study investigated the forecasting of the air pollution in the city of Bhubaneswar 

located in India by comparing the SARIMA and PROPHET model. The approach to comparing 

the performance of these two models was by measuring their performance through root mean 

squared error (RMSE) and mean squared error (MSE). Results revealed that both models have 

provided a good quality of accuracy. However, the PROPHET model with a logarithmic data 

transformation did perform the best with the lowest RMSE and MSE value (Rani Samal et al.). 

III. Methodology 

3.1 Data Collection 

The data required for this research was gathered from WHO. They provide data for the number 

of daily/total cases and vaccination per country in relation to COVID-19. For this experiment, as 

the investigations involves the accuracy in forecasting the number of daily COVID-19 cases, the 

dataset with the title of ‘Daily cases and deaths by date reported to WHO’ will be used. The 

dataset is made up of 8 columns: Date_reported, Country_code, Country, WHO_region, 

New_cases, Cumulative_cases, New_deaths, Cumulative_deaths. 

Based on the trial that was run, the data was split. Different trials had different numbers of 

training and testing data. The testing data would be required to test the accuracy of the forecasts 

being made. 



3.2 Notes 

To build the SARIMA model and the PROPHET model, a fit and forecast method has been used. 

For the SARIMA, the pmdarima, developed by Taylor G Smith and Aaron Smith with other 

external contributor, has helped automate the process of building the forecast. For the PROPHET 

model, it already has a built-in automatic fit and forecast method provided by TensorFlow.  

3.3.1 ARIMA Data Processing 

To use ARIMA, the data needs to be steady, which means the data should not fluctuate too much 

over time. But many real data are not steady, because they have patterns or cycles. It is possible 

to make these kinds of data steady through different methods of transformation.  

This program uses two ways of changing the data: Box-Cox and log. Box-Cox makes non-

normal distributions into normal distributions. Log is a type of Box-Cox that makes the data less 

tilted and less wide by using Euler’s number, 𝑒. 

It is important for many math problems and models that the data are like a bell shape. It means 

the data have one peak and two sides that are the same. Normaltest from pmdarima checked if 

the data were like a bell shape after changing them. It measures how much the data are like a bell 

shape and gives a number. A small number (usually less than 0.05) means the data are not like a 

bell shape. 

To find the best value of 𝑑, three ways of testing the data were used: Kwiatkowski-Phillips-

Schmidt-Shin (KPSS), Augmented Dickey-Fuller (ADF), and Phillips-Perron (PP). They check 

if the data have something that makes them not steady. The KPSS test says the data are steady if 

they have a line but no curve (Shin and Schmidt). The ADF and PP tests say the data are steady 

if they do not have something that makes them change over time (Cheung and Lai) (Breitung and 



Franses). If the KPSS test says no and the ADF or PP test says yes, it means the data have a 

curve and need to be taken away. If the KPSS test says yes and the ADF or PP test says no, it 

means the data do not have a curve and do not need to be taken away. The best value of d is the 

smallest number of times to take away the data that make all three tests agree on being steady. 

 

Figure 1: Logarithmic transformation to data for normalizing (75:25) (Author own) 

Figure one shows the spread of the frequency after having the logarithmic transformation applied 

to its data. Overall, the data has been able to achieve a singular large peak with fluctuations. 

 

Figure 2: BoxCox transformation to data for normalizing (75:25) (Author own) 



Figure two also shows the spread of the frequency after having the BoxCox transformation 

applied to its data. Overall, while the data has been able to achieve an unbalanced normal shape 

which may lead to a decrease in forecasting accuracy. 

By comparing both results of transformation, the Logarithmic transformation should 

theoretically have a better forecast than the data with the BoxCox transformation. 

3.3.2 SARIMA Model 

Pmdarima already has two methods for endogenous and exogenous variables. The BoxCox and 

logarithm transformation are for endogenous transformations, and the DataFeaturizer and 

FourierFeaturizer are for exogenous transformations. For this experiment, the endogenous 

transformation was used as the dataset used does not consider any other variables that may have 

affected the data, it is a univariate data. It is purely just looking at the increase and decrease in 

the number of COVID-19 cases. If the experiment was to use exogenous transformation, the 

model would have considered outside variables that are not existent on the dataset and their 

effects. 

To accomplish the most optimal results, both methods for the endogenous transformation were 

utilized into the SARIMA model and compared to find the superior result. The automatic 

parameter detector package from the pmdarima was utilized as it eliminates the need to manually 

change the parameter values. The package determined the most optimal parameters by 

calculating the AIC value each time. Once it found the lowest AIC value on a set of parameters, 

it calculated the MAE, MdAPE, and RMSE values. 



3.4.1 PROPHET Data Processing 

One of the main steps in preparing the data for the prophet model was to filter out the dates that 

had irregular effects on the time series. If the data has irregularities, the model might not be able 

to capture the true patterns and make accurate predictions. Therefore, the data was cleaned by 

removing the dates that were known to have irregular effects. The irregular effects were 

determined by the sudden increase or decrease in the data as they would act as weights for the 

PROPHET model (Taylor and Letham). These dates were then given as a list of holidays or 

outliers parameters in the prophet model, which made the model skip them when fitting the data. 

3.4.2 PROPHET Model 

The PROPHET model does not require mathematical transformations for it to fit and forecast 

data. Instead, it can automatically determine the seasonality and parameters necessary in the 

process of feeding the data into the model (Meta). All that was required was to simply define the 

model and have it fit with the data that has been processed beforehand. After the forecasted 

results, the MAE, MdAPE, and RMSE were calculated to evaluate the accuracy of the forecast. 

IV. Results 

4.1 SARIMA Results 

 SARIMA (BoxCox) SARIMA (Log) 

80% (Training) 20% (Forecast) ARIMA(2,1,2)(2,0,2)[7] ARIMA(2,1,3)(2,0,2)[7] 

MAE 60279.269 54900.033 

MdAPE 4.897 4.451 

SMAPE 123.37 122.353 

RMSE 69505.634 63122.743 



75% (Training) 25% (Forecast) ARIMA(2,1,2)(2,0,2)[7] ARIMA(2,1,3)(2,0,2)[7] 

MAE 41903.115 36198.114 

MdAPE 2.589 2.101 

SMAPE 106.078 102.013 

RMSE 50737.435 45327.182 

70% (Training) 30% (Forecast) ARIMA(2,1,2)(2,0,1)[7] ARIMA(2,1,3)(2,0,2)[7] 

MAE 887210.371 31716.685 

MdAPE 27.245 0.966 

SMAPE 155.183 97.811 

RMSE 1221044.958 47788.971 

Table 1: 80:20, 75:25, 70:30, Results of SARIMA Model (Author own) 

Based on the metric evaluations it can be observed that 75% training data and 25% testing data 

performed most optimally compared to the other ranges of data. When comparing the two data 

transformation SARIMA models, it is evident that the logarithm data transformation has 

performed better in all metrics.  



 

Figure 3: SARIMA(Log) Result (75:25) (Author own)                     Figure 4: SARIMA(BoxCox) Result (75:25) (Author own) 

Figure three and four shows the forecasts being displayed. The blue line indicates the real data, 

and the green line shows the forecast. Based on the graph, it is ideal to be more careful when 

handling forecasts that goes on for a long time. 

4.2 PROPHET Results 

 MAE MdAPE SMAPE RMSE 

80% (Training) 

20% (Forecast) 

58686.53 4.568 124.548 66476.6 

75% (Training) 

25% (Forecast) 

127105.3 7.913 143.054 135686.54 

70% (Training) 

30% (Forecast) 

32370.36 1.002 102.414 50397.04 

Table 2: 80:20, 75:25, 70:30, Results of PROPHET Model (Author own) 



Results show that the PROPHET model performed most optimally when given 70% training data 

and 30% testing data. 

 

Figure 5: PROPHET Result (75:25) (Author own) 

Figure five shows the forecast of the model with the inclusion of upper and lower error margins. 

Based on the forecast, the forecast is increasing exponentially in order to account for the large 

spike in data occurring at around 2022 March. 

4.3 Comparing Results. 

 SARIMA (Log) PROPHET 

80% (Training) 20% (Forecast) ARIMA(2,1,3)(2,0,2)[7]  

MAE 54900.033 58686.53 



MdAPE 4.451 4.568 

SMAPE 122.353 124.548 

RMSE 63122.743 66476.6 

75% (Training) 25% (Forecast) ARIMA(2,1,3)(2,0,2)[7]  

MAE 36198.114 127105.3 

MdAPE 2.101 7.913 

SMAPE 102.013 143.054 

RMSE 45327.182 135686.54 

70% (Training) 30% (Forecast) ARIMA(2,1,3)(2,0,2)[7]  

MAE 31716.685 32370.36 

MdAPE 0.966 1.002 

SMAPE 97.811 102.414 

RMSE 47788.971 50397.04 

Table 3: Compared result between SARIMA and PROPHET (Author own) 

Results show that the SARIMA(Log) has outperformed the PROPHET model in all data ranges. 

V. Discussion 

There were several limitations to this study. First, the data did not show a consistent seasonality 

throughout the years in South Korea. While there were ‘waves’ of COVID-19 cases occurring, 

they seemingly happened to occur during unprecedented times. For further testing in seasonality, 

the comparison between the number of cases occurring daily in America and South Korea was 

conducted. The data did not show any sort of correlation in trend, both countries were 

experiencing unique waves of the COVID-19. Secondly, it may be difficult to generalize the 

results from South Korea to the world as it seemed that all countries around the world 



experienced different effects of the COVID-19. However, as both models performed well, they 

could be used to help predict the number of cases within South Korea.  

Prior to building the SARIMA model, the ARIMA model was used and tested but returned 

inaccurate forecasts which made the experiment not fair for comparison. Therefore, further 

research was conducted to use the SARIMA model and help improve the forecast.  

VI. Conclusion 

A further extension of the SARIMA model from the ARIMA model is the SARIMAX model. To 

summarize, the SARIMAX model has an additional component ‘X’ which accounts for 

exogenous variables. This component allows for the model to account for external variables that 

may have possible implications to the data. This in turn helps the model make more accurate 

forecasts than it could with just a single variable. While the ARIMA and SARIMA model are 

both univariate models the SARIMAX model is a multivariate model (Arunraj et al.).  

Therefore, a continuation of this research could be completed with the usage of the SARIMAX 

model and another forecasting model such as the long-short term memory (LSTM) model or the 

light gradient boosting machine (LightGBM) model. These models are more complex than the 

models used in the research which would hypothetically return forecasts that are more accurate. 

Overall, the usage of the SARIMA and PROPHET model for this experiment had been a success 

despite the limitations to the point where it was possible for real-life application. However, as 

both forecasting models were only forecasted on a 3-year record of data, it would require for a 

routine update on the dataset and modifications of parameters to be used for practical. 

Further thoughts on the application of the two models has brought the idea to test these models 

for other applications such as stocks or climate changes. Stocks and climate changes have a 



larger dataset as they have recorded for over a decade. The enlargement in data would most 

definitely help improve the performance of the models and perhaps give different results as of 

this experience. 
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VIII. Appendix 

SARIMA (BoxCox): box-sarima.py 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

 

import pmdarima as pm 

from pmdarima.model_selection import train_test_split 

print(f"Using pmdarima {pm.__version__}") 

 

df = pd.read_csv('south-korea-gathered-data.csv')  

print(df.head()) 

 

dataSize = len(df) 

train_size = int(0.75 * dataSize) 

 

y_train = df['New_cases'][:train_size] 

y_test = df['New_cases'][train_size:] 

 



from pmdarima.utils import tsdisplay 

from pmdarima.preprocessing import BoxCoxEndogTransformer 

 

y_train_bc, _ = BoxCoxEndogTransformer(lmbda2=1e-6).fit_transform(y_train) 

tsdisplay(y_train_bc, lag_max=100) 

 

from scipy.stats import normaltest 

print(normaltest(y_train_bc)[1]) 

 

from pmdarima.pipeline import Pipeline 

 

fit2 = Pipeline([ 

    ('boxcox', BoxCoxEndogTransformer(lmbda2=1e-6)), 

    ('arima', pm.AutoARIMA(trace=True, 

                         suppress_warnings=True, 

                         m=7, 

                         seasonal=True, 

                         seasonal_test='ocsb', 

                         )) 

]) 

 

fit2.fit(y_train) 

print(fit2.summary()) 



 

from sklearn.metrics import mean_squared_error as mse 

 

def plot_forecasts(forecasts, title, figsize=(8, 12)): 

    x = np.arange(y_train.shape[0] + forecasts.shape[0]) 

 

    fig, axes = plt.subplots(2, 1, sharex=False, figsize=figsize) 

 

    axes[0].plot(x[:y_train.shape[0]], y_train, c='b') 

    axes[0].plot(x[y_train.shape[0]:], forecasts, c='g') 

    axes[0].set_xlabel(f'New Cases (RMSE={np.sqrt(mse(y_test, forecasts)):.3f})') 

    axes[0].set_title(title) 

 

    resid = y_test - forecasts 

    _, p = normaltest(resid) 

    axes[1].hist(resid, bins=15) 

    axes[1].axvline(0, linestyle='--', c='r') 

    axes[1].set_title(f'Residuals (p={p:.3f})') 

 

    plt.tight_layout() 

    plt.show() 

 

forecasts = fit2.predict(y_test.shape[0]) 



 

plot_forecasts(forecasts, title='Box-Cox transformed ARIMA') # Added this line 

 

from sklearn.metrics import mean_absolute_error as mae 

from sklearn.metrics import mean_absolute_percentage_error as mape 

from sklearn.metrics import median_absolute_error as mdae 

from pmdarima.metrics import smape 

 

mae_value = mae(y_test, forecasts) 

mdape_value = mdae(y_test, forecasts) / np.median(y_test) 

smape_value = smape(y_test, forecasts) 

mape_value = mape(y_test, forecasts) 

rmse_value = np.sqrt(mse(y_test, forecasts)) 

 

print(f'MAE: {mae_value:.3f}') 

print(f'MdAPE: {mdape_value:.3f}') 

print(f'SMAPE: {smape_value:.3f}') 

print(f'MAPE: {mape_value:.3f}') 

print(f'RMSE: {rmse_value:.3f}') 

 

SARIMA (Log): log-sarima.py 

import numpy as np 

import pandas as pd 



import matplotlib.pyplot as plt 

 

import pmdarima as pm 

from pmdarima.model_selection import train_test_split 

print(f"Using pmdarima {pm.__version__}") 

 

df = pd.read_csv('south-korea-gathered-data.csv')  

print(df.head()) 

 

dataSize = len(df) 

train_size = int(0.7 * dataSize) 

 

y_train = df['New_cases'][:train_size] 

y_test = df['New_cases'][train_size:] 

 

from pmdarima.utils import tsdisplay 

from pmdarima.preprocessing import LogEndogTransformer 

 

y_train_log, _ = LogEndogTransformer(lmbda=1e-6).fit_transform(y_train) 

tsdisplay(y_train_log, lag_max=100) 

 

from scipy.stats import normaltest 

print(normaltest(y_train_log)[1]) 



 

from pmdarima.pipeline import Pipeline 

 

fit3 = Pipeline([ 

    ('log', LogEndogTransformer(lmbda=1e-6)), 

    ('arima', pm.AutoARIMA(trace=True, 

                         suppress_warnings=True, 

                         m=7,  

                         seasonal=True, 

                         seasonal_test='ocsb', 

                         )) 

]) 

 

fit3.fit(y_train) 

print(fit3.summary()) 

 

from sklearn.metrics import mean_squared_error as mse 

 

def plot_forecasts(forecasts, title, figsize=(8, 12)): 

    x = np.arange(y_train.shape[0] + forecasts.shape[0]) 

 

    fig, axes = plt.subplots(2, 1, sharex=False, figsize=figsize) 

 



    axes[0].plot(x[:y_train.shape[0]], y_train, c='b') 

    axes[0].plot(x[y_train.shape[0]:], forecasts, c='g') 

    axes[0].set_xlabel(f'New Cases (RMSE={np.sqrt(mse(y_test, forecasts)):.3f})') 

    axes[0].set_title(title) 

 

    resid = y_test - forecasts 

    _, p = normaltest(resid) 

    axes[1].hist(resid, bins=15) 

    axes[1].axvline(0, linestyle='--', c='r') 

    axes[1].set_title(f'Residuals (p={p:.3f})') 

 

    plt.tight_layout() 

    plt.show() 

 

forecasts_log = fit3.predict(y_test.shape[0]) 

 

plot_forecasts(forecasts_log, title='Log transformed ARIMA') 

 

from sklearn.metrics import mean_absolute_error as mae 

from sklearn.metrics import mean_absolute_percentage_error as mape 

from sklearn.metrics import median_absolute_error as mdae 

from pmdarima.metrics import smape 

 



mae_value_log = mae(y_test, forecasts_log) 

mdape_value_log = mdae(y_test, forecasts_log) / np.median(y_test) 

smape_value_log = smape(y_test, forecasts_log) 

mape_value_log = mape(y_test, forecasts_log) 

rmse_value_log = np.sqrt(mse(y_test, forecasts_log)) 

 

print(f'MAE: {mae_value_log:.3f}') 

print(f'MdAPE: {mdape_value_log:.3f}') 

print(f'SMAPE: {smape_value_log:.3f}') 

print(f'MAPE: {mape_value_log:.3f}') 

print(f'RMSE: {rmse_value_log:.3f}') 

 

PROHPHET: prophetandseason.ipynb 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error 

from sklearn.metrics import median_absolute_error as mdae 

from prophet import Prophet 

from prophet.plot import plot_plotly, plot_components_plotly 

 

spikes = pd.DataFrame([ 

    {'holiday': 'spike_1', 'ds': '2022-01-09', 'lower_window': 0, 'ds_upper': '2022-06-26'}, 



    {'holiday': 'spike_2', 'ds': '2022-07-03', 'lower_window': 0, 'ds_upper': '2022-09-02'}, 

]) 

for t_col in ['ds', 'ds_upper']: 

    spikes[t_col] = pd.to_datetime(spikes[t_col]) 

spikes['upper_window'] = (spikes['ds_upper'] - spikes['ds']).dt.days 

spikes 

 

df = pd.read_csv('south-korea-gathered-data-prophet.csv') 

df.head() 

 

total_rows = df.shape[0] 

train_rows = int(total_rows * 0.7)  

test_rows = int(total_rows * 0.3)  

train = df.iloc[:train_rows] 

test = df.iloc[-test_rows:] 

y_test = test['y'].values  

 

m2 = Prophet(holidays=spikes) 

m2.fit(train) 

future2 = m2.make_future_dataframe(periods=365) 

forecast2 = m2.predict(future2) 

 

m2.plot(forecast2) 



plt.axhline(y=0, color='red') 

plt.title('Spikes as one-off holidays') 

plt.show() 

 

m2.plot_components(forecast2) 

 

y_pred = forecast2['yhat'].values[-test_rows:] 

 

rmse = np.sqrt(np.mean((y_test - y_pred)**2)) 

print(f'The RMSE value is {rmse:.2f}') 

 

mae = mean_absolute_error(y_test, y_pred)  

print(f'The MAE value is {mae:.2f}') 

 

mape = mean_absolute_percentage_error(y_test, y_pred)  

print(f'The MAPE value is {mape:.2f}') 

 

mdape_value = mdae(y_test, y_pred) / np.median(y_test) 

print(f'The MdAPE value is {mdape_value:.3f}') 

 

from pmdarima.metrics import smape 

smape_value = smape(y_test, y_pred) 

print(f'The SMAPE value is {smape_value:.3f}') 



 

 

Data 1: south-korea-gathered-data.csv 

date Country_

code 

Coun

try 

WHO_re

gion 

New_ca

ses 

Cumulative_

cases 

New_de

aths 

Cumulative_d

eaths 

1/3/20

20 

KR Repub

lic of 

Korea 

WPRO 0 0 0 0 

1/4/20

20 

KR Repub

lic of 

Korea 

WPRO 0 0 0 0 

1/5/20

20 

KR Repub

lic of 

Korea 

WPRO 0 0 0 0 

1/6/20

20 

KR Repub

lic of 

Korea 

WPRO 0 0 0 0 

1/7/20

20 

KR Repub

lic of 

Korea 

WPRO 0 0 0 0 



 

Data 2: south-korea-gathered-data-prophet.csv 

ds Country_c

ode 

Count

ry 

WHO_reg

ion 

y Cumulative_c

ases 

New_dea

ths 

Cumulative_de

aths 

1/3/20

20 

KR Republ

ic of 

Korea 

WPRO 0 0 0 0 

1/4/20

20 

KR Republ

ic of 

Korea 

WPRO 0 0 0 0 

1/5/20

20 

KR Republ

ic of 

Korea 

WPRO 0 0 0 0 

1/6/20

20 

KR Republ

ic of 

Korea 

WPRO 0 0 0 0 

1/7/20

20 

KR Republ

ic of 

Korea 

WPRO 0 0 0 0 

 

Data 3: usa-gathered-data.csv 

Date_rep Country_ Coun WHO_re New_c Cumulative New_de Cumulative_



orted code try gion ases _cases aths deaths 

1/3/2020 US Unite

d 

States 

of 

Amer

ica 

AMRO 0 0 0 0 

1/4/2020 US Unite

d 

States 

of 

Amer

ica 

AMRO 0 0 0 0 

1/5/2020 US Unite

d 

States 

of 

Amer

ica 

AMRO 0 0 0 0 

1/6/2020 US Unite

d 

States 

of 

AMRO 0 0 0 0 



Amer

ica 

1/7/2020 US Unite

d 

States 

of 

Amer

ica 

AMRO 0 0 0 0 

 


