
Investigating the Configurable Parameters of

K-means Unsupervised Learning

Research question: To what extent is the performance of the k-means clustering algo-

rithm in unsupervised learning influenced by the initial placement algorithm, the number

of features, and the number of clusters?

Word count: 3998

1

CS EE World
https://cseeworld.wixsite.com/home
May 2023
29/34
A
Anonymous Submitter



Contents

1 Introduction 4

2 Background Information 5

2.1 Supervised and Unsupervised Learning . . . . . . . . . . . . . . . . . . . 5

2.2 K-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 First configurable parameter: initial placement . . . . . . . . . . 7

2.2.3 Second configurable parameter: number of clusters . . . . . . . . 8

2.2.4 Third configurable parameter: number of features . . . . . . . . . 8

2.2.5 Feature Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.6 Dimensionality Reduction Through principal Comoponent Analy-

sis (PCA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Methodology 11

3.1 Data Sets Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Synthetic data set . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 Wine data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Silhouette score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Experimental results 14

4.1 Table of Synthetic data set Results . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Table of Wine data set Results . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Example of Programmed Outcome . . . . . . . . . . . . . . . . . . . . . 15

4.4 Graphical Presentation of Achieved Results . . . . . . . . . . . . . . . . . 17

4.4.1 Graphical presentation of synthetic data set results . . . . . . . . 18

4.4.2 Graphical presentation of wine data set results . . . . . . . . . . . 19

5 Data Analysis 20

2



5.1 Analyzing Number of Clusters Using Silhouette Score . . . . . . . . . . . 20

5.2 Analyzing Initialization Methods . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Analyzing the Number of Features . . . . . . . . . . . . . . . . . . . . . . 22

5.3.1 Importance of Feature Scaling . . . . . . . . . . . . . . . . . . . . 22

5.3.2 No Direct Relationship Between Features and Clusters . . . . . . 22

5.3.3 Analysis of Dimensionality Reduction Using PCA . . . . . . . . . . 23

6 Limitations 23

7 Conclusion 24

3



1 Introduction

As our world continues to technologically advance, machine learning has taken on a role

of propelling the future. One fascinating machine learning technique is clustering (also

known as cluster analysis). Clustering is a process of discovering patterns in unlabeled

data (data that has not been tagged with identification [1]), and aims to group individ-

ual objects based on their degree of similarity from one another [2]. Clustering can be

applied to many aspects of the real world: from grouping customers based on their be-

havioral psychology to grouping different types of wine (a data set that will be explored

in this investigation) - clustering results are influential in all disciplines.

Within clustering algorithms, there are many configurable parameters that affect the

overall performance. It is vital to understand the differences in performance of each al-

gorithm when certain parameters are customized in order to maximize the effectiveness

of clustering for a given unlabeled data set.

This paper seeks to evaluate the effectiveness in performance, measured through sil-

houette score and the number of iterations of three configurable properties of k-means

clustering (i.e., initial placement, number of clusters, number of features). K-means

clustering serves to extract value from large unlabeled data sets. This gives the results of

this research the potential to improve the efficiency of clustering applications. By under-

standing how certain parameters of k-means clustering can be configured to maximize

the effectiveness, industries such as business would benefit greatly from better client,

product, and data clustering for their operations.

The following research question will be explored: To what extent is the performance

of the k-means clustering algorithm in unsupervised learning influenced by the ini-

tial placement algorithm, the number of features, and the number of clusters? For

this investigation, k-means clustering algorithms were programmed to group data from

a synthetic data set and a public wine data set. For each data set, the initial placement,

4



number of clusters, and number of iterations were altered at each rerun. Patterns were

analyzed and performance was evaluated through calculated silhouette scores and the

number of iterations needed to complete the process. This investigation will also de-

termine whether the metric used, silhouette score, is a reliable determinant of accuracy

of an unsupervised learning algorithm. Logical and mathematical explanations for the

results obtained are discussed.

2 Background Information

2.1 Supervised and Unsupervised Learning

Machine learning algorithms have two main approaches - supervised and unsupervised

learning. Supervised learning algorithms refers to working with labeled data sets to train

and “supervise” algorithms in processing data. Since input and output data are labeled,

the supervised learning model can easily measure accuracy. Classification and regres-

sion algorithms are the most common types trained by supervised learning, due to their

nature of reliance on a labeled data set [3].

Unsupervised learning discovers hidden patterns without the need of human interac-

tion or labeled data sets. The main tasks associated with unsupervised learning are

clustering, association, and dimensionality reduction.

2.2 K-Means Clustering

This paper will specifically explore the k-means clustering algorithm, a method of vector

quantization that originally stems from signal processing.

Given a set of observations (x1, x2, ..., xn), where each observation is a d-dimensional

real vector, k-means clustering aims to partition the n observations into k (≤ n) sets

S = S1, S2, ..., Sk so as to minimize the within-cluster sum of squares (i.e., variance).

5



argmin
S

k∑
i=1

∑
x∈Si

∥x− µi∥
2 = argmin

S

k∑
i=1

|Si|VarSi

Since k-means clustering is computationally difficult [4], a heuristic iterative refinement

technique was introduced, in which k is pre-defined prior to the clustering process. In

this investigation, the number of clusters k will be one of the three configurable param-

eters.

The approach k-means follows to solve the problem is called Expectation-Maximization.

The E-step (expectation) is assigning the data points to the closest cluster. The M-step

(maximization) is computing the centroid of each cluster. Here is a rundown of how

k-means operates:

1. Specify number of clusters k.

2. Initialize centroids by first shuffling the data set and then randomly selecting k

data points for the centroids without replacement.

3. Keep iterating until all stopping criteria are met. As k-means is an iterative pro-

cess, it is crucial to understand when to stop the algorithm. Essentially, the three

stopping criteria are when centroids of newly formed clusters do not change, when

points remain in the same cluster, and when the maximum number of iterations is

reached [5].

Figure 1: Example of unlabelled data going through the k-means Expectation-
Maximization process [6]

6



2.2.1 Parameters

In this paper, the effects of three different parameters on the performance of k-means

processes will be investigated across two data sets - a synthetic data set and a real data

set containing the chemical properties of certain wine types.

2.2.2 First configurable parameter: initial placement

The first altered parameter will be the initial placement, which will be set to either

random or k-means++. This refers to the initial placement of the clusters in the k-

means clustering process. A random initial placement means that the center-points of

clusters are randomly chosen. K-means++ is a biased random sampling that chooses

centers farther apart from one another, avoiding close points; it aims to achieve the

optimal clustering results in a fewer number of iterations. The first chosen centroid of

k-means++ is random, and the next centroids are chosen as the datapoints with the

largest squared distance from the first chosen centroid.

(a) Distance from each centroid (b) Blue datapoint is chosen as
third centroid

Figure 2: Determining third centroid [5]

The above figure demonstrates the use of k-means++ to determine the third centroid of

a set of datapoints. The square of the distances of each datapoint from its closest centroid

(green or red) is calculated, and the blue datapoint is selected as the third centroid since

it has the largest squared distance from its nearest centroid in Figure 2a.

7



2.2.3 Second configurable parameter: number of clusters

The second configurable parameter in this investigation is the number of clusters. There

is no limit to how many clusters can be formed in k-means clustering. We will be deter-

mining the optimum combination of three configured parameters with the synthetic and

wine data sets in this investigation.

2.2.4 Third configurable parameter: number of features

The final parameter to be configured in this investigation is the number of features. The

number of features can vary greatly for real world data sets. In the context of students

at a school, features include nationality, gender, grades, household income, etc. This

is an interesting area of exploration, since on the surface level it may seem that more

features makes it easier to find similarities and establish clusters. However, it could also

be harder because the conditions of similarity become much more nuanced.

2.2.5 Feature Scaling

Feature scaling is an important step to take prior to processing data for many ma-

chine learning algorithms. It is implemented through standardization, which re-scales

the features to reflect the properties of a standard normal distribution. This is vital in

many algorithms as they may behave badly if individual features do not represent nor-

mally distributed data. For example, if an investigation aims to describe the physical at-

tributes people and the data provided includes their heights in centimeters and weights

in pounds, a five pound difference cannot directly be compared to a five centimeter dif-

ference in height.

Features are standardized by removing the mean and scaling to unit variance. As an

example, the standard score of a sample x is calculated as: z = (x− u)/s, where u is the

mean of the training samples and the variable s is the standard deviation of the training

samples.

8



2.2.6 Dimensionality Reduction Through principal Comoponent Analysis (PCA)

One instance feature scaling is used is during Principal Component Analysis, or PCA. PCA

is a dimensionality reduction method typically used to reduce the feature dimensionality

of large data sets. This is done by transforming a data set with many variables into a

smaller one with less variables but is still able to capture most of the information of the

original large data set. Simply put, the goal of dimensionality reduction methods such

as PCA is to decrease the number of variables of a data set while preserving as much

information as possible [7].

To better understand PCA, refer to the graph below, Figure 3. There are 10 principal

components seen, meaning the original data set is 10-dimensional, having 10 features/-

variables. principal components are essentially crafted as combinations of all ten of the

variables. They are mixed in such a way that most information of variables is compressed

into the first few principal components (as represented by the highest percentage of ex-

plained variances being in principal component 1).

Figure 3: Principal component analysis [7]

9



One obvious issue of lowering the number of variables in the data set is that accuracy

will be negatively affected. However, the intent of dimensionality reduction methods

are to sacrifice a little accuracy for simplicity. This is because smaller data sets without

extraneous variables are easier to investigate, making the visualization and analyzing

processes of machine learning algorithms much easier, faster, and more streamlined.

Figure 4: Visualization of feature scaling through principal component analysis [8]

As mentioned in the previous subsection, feature scaling standardizes the features of

a data set. In order to effectively execute PCA, feature scaling is required in order to

better compare variables and determine which to reduce. In Figure 4 above, there are

supposedly three classes, and the machine learning algorithm is aiming to cluster these

three classes accordingly. If successful, there should be a clear distinction between the

three classes (represented by three different colors and shapes). An example of PCA

without feature scaling is shown on the left, with two principal components (data set

variables) selected on the x and y axes. Each entity that belongs to different classes are

10



mixed together, demonstrating a failed attempt at clustering. However, after undergoing

feature scaling, as shown on the right, the PCA proves to be much more effective. There

is a clear distinction that can be seen between entities of each of the three classes. The

feature-scaled version on the right greatly outperforms the non-scaled version on the left,

emphasizing the importance of feature scaling in dimensionality reduction through PCA.

3 Methodology

Primary experimental data is the main source of data in this paper. Two data sets (a

synthetic and a wine data set) were used to complete a k-means clustering process (code

in appendix, adapted from an example from Scikit-learn [9]). The number of itera-

tions taken to run each configured program was recorded and accuracy was displayed

by silhouette score. This investigation took an experimental approach because there was

limited secondary data to answer the research question. The chosen approach allows

independent variables to be easily manipulated. Since an experimental approach was

taken, the results of the experiment are technically limited to the scope of the procedure.

The hardware configuration used was an Apple MacBook Air (M1, 2020) with 16GB

Memory. The software package used in the code was Python 3.9.0 and scikit-learn

1.1.1.

3.1 Data Sets Used

3.1.1 Synthetic data set

The synthetic data set used in this investigation generates the sample data from the

make_blobs Python function. This particular setting has one distinct cluster and 3 clus-

ters placed close together. Below is the source code used that generates the synthetic

data set.

11



1 X, y = make_blobs(

2 n_samples =1000,

3 n_features= 20,

4 centers=4,

5 cluster_std =1,

6 center_box =(-10.0, 10.0),

7 shuffle=True ,

8 random_state =1,

9 )

3.1.2 Wine data set

The wine data set includes 3 classes, with each class containing 59, 71, and 48 samples,

respectively. For each row, there are 13 real and positive features. The 13 features are

Alcohol, Malic acid, Alkalinity of ash, Magnesium, Total phenols, Flavanoids, Nonfla-

vanoid phenols, Proanthocyanins, Color intensity, Hue, OD280/OD315 of diluted wines,

and Proline [10].

Figure 5: First five rows of wine data set

3.2 Evaluation metrics

3.2.1 Silhouette score

The metric of accuracy used in this paper is silhouette score, mainly used to evaluate the

quality of clusters created. Silhouette score is calculated at each data point, and requires

the mean distance between the observation point and all other data points in the same

cluster. This is known asmean intra-cluster distance. In the following equation, themean

12



intra-cluster distance is denoted by a, the mean nearest-cluster distance is denoted by b

and the Silhouette score denoted by S.

S = (b−a)
max(a,b)

The range of silhouette scores is between -1 and 1. A score of 1 means that the cluster is

itself dense and well-separated from other clusters. A value of 0 represents overlapping

clusters, with their samples extremely close to the boundary of neighboring clusters.

A negative score indicates inaccuracy, suggesting that the datapoints may have been

assigned to the wrong cluster [11].

Figure 6: Example of silhouette analysis for 2,3,4,5 clusters [11]

Above is a visualization of Silhouette analysis done on 2, 3, 4, and 5 clusters. The av-

erage silhouette score is indicated by the vertical dotted line. The Silhouette scores of

clusters 4 and 5 are sub-optimal for the given data set due to the presence of clusters

with silhouette scores that are below-average and wide fluctuations in the size of the

silhouette plots.

The silhouette score values for clusters 2 and 3 look relatively optimal. The score for

each cluster is above the average silhouette score and there is minimal fluctuation in

13



size.

Silhouette plots with clusters having uniform thicknesses is an indication of the optimal

number of clusters. The top right plot with 3 clusters have the most uniform thicknesses

out of all four plots. Thus, the optimal number of clusters in the above figure is 3.

4 Experimental results

4.1 Table of Synthetic data set Results

The following table displays the experimental results of k-means clustering using the

synthetic data set. Silhouette scores are displayed to four significant figures in order to

maintain high accuracy, as differences between some values were rather minimal.

Figure 7: Synthetic data set experiment results

14



4.2 Table of Wine data set Results

The following table displays the experimental results of k-means clustering using the

wine data set.

Figure 8: Wine data set experiment results

4.3 Example of Programmed Outcome

In order to visualize some results of the code, the following two figures are the produced

charts of the program. Figure 9 depicts the synthetic data set results with k-means++

initial placement, 5 features, and 4 clusters. The results depicted are optimal, since all

four clusters in the left chart are almost of equal size and all cross the average silhouette

score threshold indicated by the dotted red line. The right chart is a display of of the ac-

tual data-points being formed into clusters represented in the four colors that correspond

with the left chart. It is vital to note that the right chart has x and y axes that represent

two out of the five total features, as it is not easy to create a five-featured visual repre-

sentation of the clusters. However, by comparing two features, the user can still clearly

note the distinction between clusters. Figure 10 is not optimal, with no consistently sized

clusters and only two clusters crossing the average silhouette score threshold.

15



Figure 9: Synthetic data set results of k-means++ initialization, 5 features, and 4 clus-
ters (figure generated by author)

Figure 10: Synthetic data set results of k-means++ initialization, 5 features, and 6
clusters (figure generated by author)

16



4.4 Graphical Presentation of Achieved Results

For ease of visualization, the data has been displayed in the bar charts below. In all bar

charts, the left bar (blue) has random initial placement, and the right bar (orange or

grey) has k-means++ initial placement.

The first row of the blue-orange charts displays the silhouette score of the data sets with

5 features (a) and 15 features (b). Each bar represents the results of a particular number

of clusters (x-axis) on the accuracy (indicated by silhouette score on the y-axis) of the k-

means clustering process. The second row is the same, except the y-axis is now replaced

by the number of iterations. The final row (of blue-grey charts) display the silhouette

scores (a) and number of iterations (b) of a data set with a set amount of clusters when

altering the number of features (x-axis). The aforementioned row descriptions apply to

the 14 charts in Sections 4.4.1 and 4.4.2. All figures are generated by the author.

17



4.4.1 Graphical presentation of synthetic data set results

(a) Synthetic data set with 5 features (b) Synthetic data set with 15 features

Figure 11: Silhouette score of synthetic data set

(a) Synthetic data set with 5 features (b) Synthetic data set with 15 features

Figure 12: Number of iterations of synthetic data set

(a) Silhouette score of synthetic data set
with 4 clusters

(b) Number of iterations of synthetic data
set with 4 clusters

Figure 13: Altering the number of features of synthetic data set with 4 clusters

18



4.4.2 Graphical presentation of wine data set results

(a) Wine data set with 5 features (b) Wine data set with 15 features

Figure 14: Silhouette score of wine data set

(a) Wine data set with 5 features (b) Wine data set with 15 features

Figure 15: Number of iterations of wine data set

(a) Silhouette score of wine data set
with 3 clusters

(b) Number of iterations of wine data
set with 3 clusters

Figure 16: Altering the number of features of wine data set with 3 clusters

19



(a) Silhouette score of wine data set with 3
clusters after undergoing PCA

(b) Number of iterations of wine data set with
3 clusters after undergoing PCA

Figure 17: Wine data set results for 3 clusters after applying PCA

5 Data Analysis

5.1 Analyzing Number of Clusters Using Silhouette Score

First, this investigation has demonstrated that the silhouette score is a reliable indicator

of choosing the optimal number of clusters for both synthetic data and real data. In

supervised learning, there is a Ground Truth that the algorithms are aware of, meaning

that accuracy can bemeasured. However, k-means clustering is an unsupervised learning

algorithm that is learning as it runs with no Ground Truth to compare to, thus accuracy

is much harder to measure. For the sake of testing, it was already known that the optimal

number of clusters for the synthetic data set was 4. The results shown in Figure 11 por-

tray this, with a peak in silhouette score at 4 clusters for both random and k-means++

initial placements, whether it was data collected for 5 features or 15 features of the syn-

thetic data set. This means that the silhouette score consistently classified 4 clusters as

the optimal amount. Although the algorithm is not aware that this is the correct answer,

it was already known externally, so this serves as evidence supporting the strength of

using silhouette score as an indicator of accuracy.

For the real data collected with the wine data set, it was externally known that the

optimal number of clusters should be 3. To see whether the silhouette score was able to

capture this optimal cluster value, refer to Figure 14. Although Figure 14a of the wine

20



data set with 5 features shows a clear peak in silhouette score for 3 clusters, Figure 14b

with 15 features shows that the best silhouette score is achieved with 2 clusters. This is

a solid example of how real data does not operate like synthetic data, where the optimal

number of clusters is the same across all number of features used; instead, it is measured

relatively.

5.2 Analyzing Initialization Methods

As seen across all results, the initial placement (random or k-means++) has a negligi-

ble difference in results of silhouette score, but causes varying results for the number

of iterations. This is especially true for a larger number of clusters when referring to

Figure 12, as the number of iterations stays relatively similar regardless of initial place-

ment on both graphs of synthetic data sets with 1-3 clusters, but clusters 4 and 5 see a

drastic difference with the left bar representing random initial placement and the right

bar representing k-means++ initial placement. However, this pattern is not reflected

when looking at data comparing the number of iterations of a synthetic data set with

4 clusters and varying features, as shown in Figure 13b. Instead, a difference is seen

between initial placements for the middle two number of features of the data set (10

and 15), with 5 and 20 features achieving the same number of iterations for both initial

placements represented by the blue and grey bar graphs. For the wine data set results, as

seen in Figures 15 and 16, the initial placements have distinctly different results across

all variables tested.

Regardless of what pattern is seen in the differing results between initialization methods,

all data collected across both the synthetic and wine data sets reflected that silhouette

score was not different between experiments using different initial placements, but the

number of iterations always varied at some point.

Since the initialization method does cause varying results for the number of iterations,

21



its impact is to reduce the number of iterations. Across nearly all data, k-means++ gen-

erally outperforms random initialization with a lesser number of iterations used. This

is especially when the number of clusters is closer to the Ground Truth known by the

external experimenter. This saves computing power and a significant amount of time,

especially in large scale data sets such as the wine data set.

5.3 Analyzing the Number of Features

5.3.1 Importance of Feature Scaling

First, it notable that feature scaling in clustering, as different features are being com-

pared. Otherwise, the result has the potential to be severely skewed. In this study, fea-

tures were already scaled for the synthetic data, but had to be scaled for the wine data.

The features within the wine data set included features like the percentage of alcohol

and alkalinity of ash, which are two features that cannot directly be compared. Once

scaled, the experiment proceeded with the k-means clustering process.

5.3.2 No Direct Relationship Between Features and Clusters

A very significant result is that the number of features has the no direct relationship with

finding the optimal number of clusters. It is quite a common assumption that adding

more features (including more information) will aid with clustering processes. However,

this is not necessarily the case. In Figure 11a and 11b, a varying number of clusters

for the synthetic data set with 5 features and 15 features was compared. As seen in

the nearly identical results, the number of features varying between 5 and 15 did not

create a significant impact in determining the optimal number of clusters. There are

slightly more visible varied results between Figure 12a and 12b, comparing a synthetic

data set with 5 features and 15 features, but the general pattern is still generally similar.

When referring to Figure 13 depicting the silhouette scores and number of iterations of

the synthetic data set with a varying number of features, there is no specific pattern seen.

22



When looking at the wine data set, the effect of the number of features sometimes varies

from that of the synthetic data set. As seen in Figure 14a and 14b, the wine data set

with 5 features deemed 3 clusters the optimal, but the data set with 15 features deemed

2 clusters the optimal. As previously mentioned, it was already known that the true op-

timal number of clusters was 3 for the wine data set, which means that the Figure 14a

with 5 features was more effective at determining the true number of clusters than Fig-

ure 14b with 15 features. When comparing Figure 15a to 15b and Figure 16a to 16b,

there was no specific pattern seen when altering just the number of features with a set

number of clusters.

Therefore, simply adding more features does not necessarily improve the accuracy of

clusters generated by k-means clustering.

5.3.3 Analysis of Dimensionality Reduction Using PCA

Dimensionality reduction using PCA was implemented to reduce the feature dimension-

ality of the wine data set. The results are shown in Figure 17, the highest silhouette

score belongs to 2 clusters, which also has lowest number of iterations when compared

with 3 and 4 clusters. This experimental value of the optimal number of clusters matches

the Ground Truth. Thus, dimensionality reduction is very helpful in k-means clustering,

as this result was not consistently shown in the wine data set prior to dimensionality

reduction.

6 Limitations

The first limitation of this study is that only a certain number of clusters and features are

considered. Hence, these results can only be considered a local optimal, but not gener-

alized to be the global optimal. Future research needs to be done in order to confirm or

deny whether the local results reflect globally.

23



This investigation only had a Ground Truth to compare experimental results to due to

setting up the data set externally for experimental purposes. However, since k-means

clustering is unsupervised, no one knows what the number of clusters is - this means

multiple must be tested (this experiment tested 5 clusters). Future research can be done

to find a Machine Learning approach to figuring out how many clusters should be tested

using these methods in order to find the optimal number of clusters to use.

7 Conclusion

In this paper, the effects of changing the number of clusters, number of features, and

initialization methods of k-means clustering were analyzed. Logical and mathematical

explanations for the patterns observed were also provided.

The results prove that silhouette score is a reliable indicator of accuracy, as there was

a Ground Truth to compare experimental results to. However, when k-means clustering

is usually run, the Ground Truth is unknown as it is an unsupervised learning algorithm.

Since there is a limitation that it is unknown how many clusters should be tested, re-

searchers currently need to test multiple clusters experimentally (such as in this paper)

to find the optimal. The amount of clusters and which clusters should be tested can

be estimated based on the application of the algorithm. If the ultimate goal is to clus-

ter students into different socioeconomic groups in a high school, it is likely to deduce

from logical reasoning that the optimal number of clusters lies between 3 and 5, so a

researcher should test the clusters within and around this range (i.e., test 2-6 clusters).

It was found that altering the initialization method had little effect on the silhouette

scores, but using k-means++ generally improved computational running speed with a

lower number of iterations needed to determine the optimal number of clusters.

The effect of altering the number of features is less predictable, as it followed no clear

24



relationship for both data sets. However, when the features underwent dimensionality

reduction using principal Component Analysis, it was advantageous to improving accu-

racy and speed with a higher silhouette score and lower number of iterations.

Hopefully this paper will prove useful to Machine Learning resources in guiding their

choices as they utilize k-means clustering, leading to more innovative training of unsu-

pervised learning algorithms to be used through all facets of study.

25



References

[1] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine Learn-

ing Tools and Techniques. Morgan Kaufmann Series in Data Management Systems.

Morgan Kaufmann, 3 edition, 2011.

[2] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical

learning: data mining, inference and prediction. Springer, 2 edition, 2009.

[3] Supervised vs. unsupervised learning: What’s the difference? https://www.ibm.

com/cloud/blog/supervised-vs-unsupervised-learning, 12 March 2021. [ac-

cessed 23 June 2022].

[4] Sanjoy Dasgupta and Yoav Freund. Random projection trees for vector quantiza-

tion. IEEE Transactions on Information Theory, 55(7):3229–3242, 2009.

[5] Pulkit Sharma. The most comprehensive guide to k-means clustering

you’ll ever need. https://www.analyticsvidhya.com/blog/2019/08/

comprehensive-guide-k-means-clustering/, 19 August 2019. [accessed

21 June 2022].

[6] Jake VanderPlas. Python Data Science Handbook. O’Reilly Media, Inc., 2016.

[7] A step-by-step explanation of principal component anal-

ysis (pca). https://builtin.com/data-science/

step-step-explanation-principal-component-analysis, 1 April 2021.

[accessed 30 June 2022].

[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

26



[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Selecting the number of clusters with

silhouette analysis on kmeans clustering.

[10] Michele Forina, Riccardo Leardi, Armanino C, and Sergio Lanteri. PARVUS: An

Extendable Package of Programs for Data Exploration. 01 1998.

[11] Kmeans silhouette score explained with python example. https://dzone.

com/articles/kmeans-silhouette-score-explained-with-python-exam, 17

September 2020. [accessed 14 July 2022].

27



Appendix

The following program was used for this investigation. Different test trials of k-means

clustering algorithms were collected with silhouette score and number of iterations as

results. Some insight needed to write this code was drawn from Scikit-learn [9].

1 from sklearn.datasets import make_blobs

2 from sklearn.cluster import KMeans

3 from sklearn.metrics import silhouette_samples , silhouette_score

4

5 import matplotlib.pyplot as plt

6 import matplotlib.cm as cm

7 import numpy as np

8 import time

9

10 # Generating the sample data from make_blobs

11 X, y = make_blobs(

12 n_samples =1000,

13 n_features= 20,

14 centers=4,

15 cluster_std =1,

16 center_box =(-10.0, 10.0),

17 shuffle=True ,

18 random_state =1,

19 )

20 # For reproducibility

21

22 # for wine

23

24 from sklearn.preprocessing import StandardScaler

25 from sklearn.decomposition import PCA

26 from sklearn.naive_bayes import GaussianNB

27 from sklearn.metrics import accuracy_score

28 from sklearn.datasets import load_wine

29 from sklearn.pipeline import make_pipeline

28



30

31

32 features , target = load_wine(return_X_y=True ,as_frame=True)

33 # newfeatures = features.iloc [: ,0:13]

34 # scaler = StandardScaler ()

35 # # transform data

36 # X = scaler.fit_transform(newfeatures)

37

38 # for dimenstion reduction discussion

39 pca = make_pipeline(StandardScaler (), PCA(n_components =4))

40 X = pca.fit_transform(features)

41

42 # print(X)

43

44 range_n_clusters = [2, 3, 4, 5, 6]

45

46 for n_clusters in range_n_clusters:

47 # Create a subplot with 1 row and 2 columns

48 fig , (ax1 , ax2) = plt.subplots(1, 2)

49 fig.set_size_inches (18, 7)

50

51 # The 1st subplot is the silhouette plot

52 # The silhouette coefficient can range from -1, 1 but in this

example all

53 # lie within [-0.1, 1]

54 ax1.set_xlim ([-0.1, 1])

55 # The (n_clusters +1)*10 is for inserting blank space between

silhouette

56 # plots of individual clusters , to demarcate them clearly.

57 ax1.set_ylim ([0, len(X) + (n_clusters + 1) * 10])

58

59 # Initialize the clusterer with n_clusters value and a random

generator

60 # seed of 10 for reproducibility.

29



61 clusterer = KMeans(n_clusters=n_clusters , init = "k-means++",

random_state =10)

62 # random_state means that I set a random seed

63 t0 = time.time()

64 cluster_labels = clusterer.fit_predict(X)

65

66 t_batch = time.time() - t0

67 # The silhouette_score gives the average value for all the samples.

68 # This gives a perspective into the density and separation of the

formed

69 # clusters

70 silhouette_avg = silhouette_score(X, cluster_labels)

71 print(

72 "For n_clusters =",

73 n_clusters ,

74 "The average silhouette_score is :",

75 silhouette_avg ,

76 # "Time used =",

77 # t_batch ,

78 "Kmeans actual iterations =",

79 clusterer.n_iter_ ,

80 )

81

82 # Compute the silhouette scores for each sample

83 sample_silhouette_values = silhouette_samples(X, cluster_labels)

84

85 y_lower = 10

86 for i in range(n_clusters):

87 # Aggregate the silhouette scores for samples belonging to

88 # cluster i, and sort them

89 ith_cluster_silhouette_values = sample_silhouette_values[

cluster_labels == i]

90

91 ith_cluster_silhouette_values.sort()

30



92

93 size_cluster_i = ith_cluster_silhouette_values.shape [0]

94 y_upper = y_lower + size_cluster_i

95

96 color = cm.nipy_spectral(float(i) / n_clusters)

97 ax1.fill_betweenx(

98 np.arange(y_lower , y_upper),

99 0,

100 ith_cluster_silhouette_values ,

101 facecolor=color ,

102 edgecolor=color ,

103 alpha =0.7,

104 )

105

106 # Label the silhouette plots with their cluster numbers at the

middle

107 ax1.text(-0.05, y_lower + 0.5 * size_cluster_i , str(i))

108

109 # Compute the new y_lower for next plot

110 y_lower = y_upper + 10 # 10 for the 0 samples

111

112 ax1.set_title("The silhouette plot for the various clusters.")

113 ax1.set_xlabel("The silhouette coefficient values")

114 ax1.set_ylabel("Cluster label")

115

116 # The vertical line for average silhouette score of all the values

117 ax1.axvline(x=silhouette_avg , color="red", linestyle="--")

118

119 ax1.set_yticks ([]) # Clear the yaxis labels / ticks

120 ax1.set_xticks ([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])

121

122 # 2nd Plot showing the actual clusters formed

123 colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)

124 ax2.scatter(

31



125 X[:, 0], X[:, 1], marker=".", s=30, lw=0, alpha =0.7, c=colors ,

edgecolor="k"

126 )

127

128 # Labeling the clusters

129 centers = clusterer.cluster_centers_

130 # Draw white circles at cluster centers

131 ax2.scatter(

132 centers[:, 0],

133 centers[:, 1],

134 marker="o",

135 c="white",

136 alpha=1,

137 s=200,

138 edgecolor="k",

139 )

140

141 for i, c in enumerate(centers):

142 ax2.scatter(c[0], c[1], marker="$%d$" % i, alpha=1, s=50,

edgecolor ="k")

143

144 ax2.set_title("The visualization of the clustered data.")

145 ax2.set_xlabel("Feature space for the 1st feature")

146 ax2.set_ylabel("Feature space for the 2nd feature")

147

148 plt.suptitle(

149 "Silhouette analysis for KMeans clustering on sample data with

n_clusters = %d"

150 % n_clusters ,

151 fontsize =14,

152 fontweight="bold",

153 )

154 fig.savefig(’figures/pca4’ + str(n_clusters) + ’.png’)

155

32



156 plt.show()

33




