
Investigating the Impact of Spectre Vulnerability Patches
on AMD CPU System Performance

How does the Spectre vulnerability patch affect the performance of
systems operated by AMD CPUs?

Computer Science Extended Essay
Word Count: 3948

klk611

Anderson Addo
CS EE World
https://cseeworld.wixsite.com/home
May 2024
27/34
A
Submitter Info:
“Hey! My name is Ivan and I'm going to Queen's University for Computer Science :) If you have any questions regarding IB, feel free to contact me on IG (professor_fang21). Good Luck on your EEs!”

Table of Contents

Introduction..2

Background Information...4

Experimentation...10

Results..12

Conclusion... 16

Works Cited..20

1

Introduction

In early 2018, a significant CPU vulnerability named 'Spectre' was brought to light by a

collaborative effort of researchers from institutions including Google Project Zero, Cerberus

Technology, and Graz University [2]. Spectre represents a deep security challenge as it exposes

the potential for attackers to access and read CPU processes. This vulnerability threatens millions

of users as well as businesses, notably the healthcare sector, by allowing the theft of sensitive

data such as passwords and financial information [14]. This security flaw has sent shockwaves

across the cybersecurity world, placing analysts and engineers in a state of constant alarm and

response.

The impact of the Spectre patch on system performance has been the topic of numerous reports,

with varying viewpoints on the extent of its influence. The varied nature of these reports reflects

the difficulty of analyzing the patch's effects, as they depend on factors such as unique hardware

configurations, the type of workloads, and the methodology used in the assessments. This

disparity in observations highlights the need for a more complex and contextualized

understanding of how the Spectre patch interacts with various system contexts, driving a deeper

investigation into the complexities of its impact on performance across a range of computing

scenarios, which poses the research question: How does the Spectre vulnerability patch affect the

performance of systems operated by AMD CPUs?

Thus, the objective of this essay is to systematically evaluate various scenarios and workloads,

with an emphasis on AMD systems. The goal is to carefully examine the effects of the Spectre

patch through different benchmarking tests, such as daily user workloads, mathematical

2

calculations and graphics rendering, to determine whether the Spectre patch affects personal

computers' performance.

The discovery of Spectre is significant as the flaw affects devices that contain Intel CPU chips,

ARM, and AMD CPUs produced after 1995 [2]. This indicates that a wide collection of devices

are affected by this vulnerability, from huge multinational institutes like Google and Microsoft to

the average user. The term 'Spectre' derives its name from its exploitation of 'Speculative

Execution,' which deceives CPUs into executing commands that typically fall outside their

range. This approach grants attackers access to confidential data residing in the memory of other

concurrently running programs [2].

Spectre's origins can be traced back to flaws in the architecture of central processing units

(CPUs). Recognizing the fundamental nature of the issue, the only true and long-term remedy is

a total redesign of the hardware itself. Undertaking such a massive makeover, on the other hand,

is a challenging process, and major chip manufacturers like Intel and others have the challenge of

executing significant changes inside their existing hardware frameworks. The complexities

involved in creating and introducing revised CPU designs necessitate a significant investment of

time and resources.

In the meantime, as a practical response to the situation's urgency, developers and cybersecurity

professionals quickly gathered to develop and split patches aimed at avoiding and limiting

possible attackers' exploitation of the Spectre flaw. While these patches are critical for

reinforcing systems against immediate threats, they are merely stopgap measures until more

3

complete and hardware-oriented solutions can be adopted. The inherent contrast between the

need for immediate response and the difficulty of altering basic hardware components highlights

the complicated issues that the tech industry has in navigating the terrain of hardware

vulnerabilities.

Had the researchers not identified this vulnerability, malicious attackers could have carried out a

'day-zero attack.' In such a scenario, the attack takes place when hackers exploit the flaw before

developers have a chance to address it, potentially releasing chaos worldwide, reminiscent of the

impact seen during the WannaCry ransomware outbreak [4].

4

Background Information

Within this section, I will include background information on the microarchitectural elements

included in modern high-speed CPUs. The purpose is to shed light on how these elements

support improved performance; and second, to examine the possible channels by which they can

unintentionally expose data from programs that are now in operation. This investigation explores

the inner workings of contemporary processors and their consequences for system security,

offering knowledge of the fine balance between performance optimization and the unintentional

disclosure of sensitive information.

Speculative Execution:

Frequently, the CPU needs to know what instructions or code it needs to execute next in a

program. The CPU waits for the next instruction to be fetched or decoded too long, limiting CPU

performance and speed. This occurs when out-of-order execution reaches a conditional branch

instruction that depends on the oncoming instructions whose execution is not completed yet [2].

With Speculative Execution, the CPUs can preserve their current register state, and use various

prediction mechanisms to determine which instructions are most likely to be executed next. This

prediction is based on past execution patterns, branch history, and other factors [2]. If the CPU

prediction is correct, then the result of speculative execution will be utilized, rendering a

performance advantage over idling during the wait. If the prediction is incorrect, the CPU will

abandon the speculative execution by reverting its register state continuing the right path. On

5

modern CPUs, speculative execution can plan out hundreds of instructions. The size of the

CPU's reorder buffer often determines the limit [13].

An analogy suitable for speculative execution is imagining a hiker lost in the woods. There is a

fork in the road outlining two paths, with one path leading the hiker back home, and the other

will not. Rather than the hiker wait until another hiker shows up and indicates directions, the

hiker picks the path that will most likely bring them home. At some point, the hiker encounters a

sign, and if that sign informs the hiker that it is the correct path, then they continue to go down it.

However, if the trial sign indicates that it is the wrong way, then the hiker will simply go back to

the fork and go the other path [5].

Branch Prediction:

Branch prediction is the process of predicting the outcome of conditional branches (e.g. if-else

statements or loops) in a system before the outcome is determined. The main purpose is to keep

the CPU pipeline full by minimizing stalls caused by branch instructions [2]. A digital circuit

used to perform this operation is known as a “branch predictor”. It is a significant component of

modern CPU architectures, such as the x86.

There are several CPU components used to predict the outcome of branches, including the

Branch Target Buffer (BTB) [2]. BTB is used to keep a mapping from addresses of recently

executed branch instructions to destination addresses, which the CPUs can use BTB to predict

future addresses even before decoding the branch instruction. The destination is often encoded in

6

the instruction and the condition is determined at runtime, so conditional branches do not require

target address recording. Processors keep track of recent branch results to improve predictions.

The Return Stack Buffer (RSB) retains a copy of the most recently used portion of the call stack.

A call stack is a data structure used in computer programming and software execution. The call

stack manages the flow of program execution, especially when functions or subroutines are

called [2].

Out-of-order execution:

The out-of-order execution improves processor performance in modern processors by allowing

instructions later in the program's sequence to be performed in parallel with, and often even

before, earlier instructions.

Processors use micro-ops, which are micro-level instructions that imitate the instruction set of

the architecture. These micro-ops are generated by decoding high-level instructions. When all of

the micro-ops for a certain instruction and all preceding instructions have been accomplished,

such instructions can be retired [2].

This implies that they commit their changes to registers and other architectural states, freeing up

space in the reorder buffer. As a result, instructions are retired in the order in which they appear

in the execution sequence of the program [2].

7

Microarchitectural Side-Channel Attacks:

Microarchitectural components such as speculative execution, improve performance by

predicting future instructions based on past behavior. When multiple programs execute on the

same hardware, changes in the microarchitectural state can inadvertently affect other programs,

resulting in unintended information leaks.

Microarchitectural attacks originally focused on timing variations and data leaks. Over time they

extended to various other microarchitectural components, including instruction caches,

lower-level caches, branch target buffers (BTB), and branch history. These assaults make use of

the microarchitecture of a processor's subtle and unintentional interactions and side effects.

Microarchitectural assaults are under the category of side-channel attacks, which acquire data

from a system's physical implementation, such as its hardware components, rather than directly

focusing on cryptographic algorithms or software flaws [2].

An example of a side channel attack is using the Flush+Reload technique and its variant

Evict+Reload. It is used to leak sensitive information by evicting a cache line from a shared

cache. To ascertain whether the victim accessed the line between the eviction and probing

phases, the attacker timed the execution of a memory read at the evicted cache line. The Spectre

attack utilizes this particular method.

Return-Oriented Programming:

By using a method called return-oriented programming (ROP), an attacker can influence

arbitrary behaviour in a program whose control flow is diverted without injecting any code [2].

Control flow is the order in which the computer executes statements in a script [11]. This is

8

achieved by linking together small code segments, known as gadgets, which are present in the

victim's code. The gadget carries out a specific computation before returning control. This allows

the attacker to perform intricate actions within the victim's program.

Spectre Attack:

Spectre emerges in two basic variants: one takes use of conditional branch mispredictions, while

the other poisons indirect branches. In the former situation, attackers use microarchitectural

side-channel assaults to get access to CPU memory, whereas the latter uses the previously

mentioned Return-Oriented Programming (ROP) approaches. The attack below is a general idea

of how Spectre exploits speculative execution.

Setup Phase:

The attacker manipulates the processor's behaviour to cause an inaccurate speculative prediction.

Preparing a covert channel for extracting the victim's data, using techniques like Flush+Reload

or Evict+Reload.

Information Transfer Phase:

The processor speculatively executes instructions that move confidential data from the victim's

context to a microarchitectural covert channel. The attacker then triggers this transfer by having

the victim perform specific actions or leveraging the speculative execution of their code.

Data Recovery Phase:

The attacker recovers the sensitive data using Flush+Reload or Evict+Reload, allowing the

attacker to deduce the victim's information.

9

Current Mitigation:

The current technique for addressing the Spectre vulnerability varies across different technology

companies. These methods are primarily designed to combat the two main Spectre versions,

conditional branch misprediction and poisoning of indirect branches. The goal is to improve

system security and prevent potential attacks from exploiting these vulnerabilities.

Intel and ARM, for example, have advised a mitigation technique that involves inserting a

serializing instruction within the code, particularly near array limits and array access operations

[6]. These serializing instructions are crucial in imposing a precise execution order within the

CPU. They require that all flag and register changes made by previous instructions be completed

before the subsequent instruction can be performed. Potential vulnerabilities connected with

conditional branch mispredictions can be efficiently avoided by introducing this sequence.

In a similar spirit, AMD has proposed its solution to the Spectre vulnerability. AMD has

proposed that mitigation for Spectre Variant 1 (conditional branch mispredictions) can be

accomplished through operating system updates. This highlights the importance of

software-based solutions in enhancing security against this specific version [6].

AMD has taken a stance that acknowledges the difficulty in exploiting Variant 2, which relies on

the poisoning of indirect branches. Nonetheless, Microsoft still recommends installing an

operating system update as a preventive measure [6]. This strategy is consistent with the general

industry view that proactive software upgrades are critical in reducing potential risks.

10

Experimentation

To determine the effect of the Spectre vulnerability in AMD systems, variables were chosen into

consideration to keep the results accurate. The decision to keep constant over two important

variables—the CPU and the operating system—was the most important of these. This instance

involved the establishment of a reliable and consistent setup with the AMD Ryzen 7 3700x CPU

and Windows 11 Home Edition.

Method of Testing:

The effectiveness of the system will be evaluated using four various benchmarking programs.

Because the Spectre patch affects how raw CPU instructions are executed, two performance

scenarios—one with and one without the patch—will be compared using the Passmark

PerformanceTest. Through various activities, including mathematical operations, compression,

encryption, and Streaming SIMD Extensions (SSE), this thorough benchmark evaluates the

system's performance [7].

The benchmarking programs PC Mark 10 and Geekbench 6 will be used to emulate real-world

user workloads accurately. PC Mark 10 includes numerous workload stress tests, including

online surfing, document processing, video and photo editing, and video conferencing [7]. On

the other hand, Geekbench 6 assesses single-core and multi-core performance for a variety of

tasks, including email management, photography, and concurrent music listening [8].

11

Cinebench R24 performs an outstanding job of accurately assessing the rendering performance

of the CPU. Cinebench R24 tests the CPU capabilities of a computer by utilizing the power of

Redshift, Cinema 4D's default rendering engine [9]. Using every processor core available, this

test renders a 3D scene to evaluate the performance of the CPU. It assesses things like multi-core

processing power, rendering speed, and overall CPU performance.

The tool InSpectre was used as a critical component of the methodology for the experiment.

InSpectre is critical to the testing process since it allows for the selective disabling of the Spectre

vulnerability patch. This intended deactivation enables a controlled and comparative

investigation of system performance with and without the patch. The use of InSpectre as part of

the experimental framework adds a level of accuracy and flexibility to the investigation, allowing

researchers to investigate the complex dynamics of system behaviour under varied security

setups. This intentional manipulation of the Spectre vulnerability patch status provides the

scenario for a thorough study, providing significant insights into the complex interplay between

security measures and overall system performance. [10].

Hypothesis:

Since the Spectre patch affects how instructions are executed by serialization, the CPU

throughput should be affected significantly in a negative notion. CPU throughput is the amount

of work completed in a unit of time. Daily workload performance should also be slightly

negatively impacted by the patch.

12

Results

Figure 1 shows the raw data taken from the benchmarking programs with and without the patch:

Figure 1:

Non-Patched Ryzen 7 3700X Patched Ryzen 7 3700X

Cinemark (Single-Core) 72 72

Cinemark (Multi-Core) 705 704

Geekbench 6 (Single-Core) 1631 1634

Geekbench 6 (Multi-Core) 8219 8274

PCmark 10 6655 6483

Passmark 5267 5123

Figure 2 shows the data as a relative comparison:

Figure 2:

13

Analysis:

The raw CPU throughput analysis showed a slight but detectable drop of 2.73%. Even though

this drop might not be considered very noteworthy, it still indicates a decrease in processing

speed overall.

Notable performance reductions were also shown when a typical daily user workload was

emulated, which is frequently a more accurate representation of real-world usage. Specifically,

when PCMARK 10 benchmarking was applied, the system's overall performance decreased by

2.58%. This decline suggests a slight negative effect on various activities such as web browsing,

video conferencing, application launches and document editing.

The Geekbench 6 benchmark tests provided information on the system's response in terms of

single-core and multi-core performance. The findings showed that single-core performance had

increased by a marginal but noticeable 0.18%, while multi-core performance had increased by a

somewhat more noticeable 0.66%. These results completely contradicted my hypothesis, that the

patch slightly increased performance in a portion of the daily user workload. Random variables

of the system can be a culprit to the small performance boost.

The performance evaluation's reassuring finding is that the fix did not affect rendering activities.

There were no appreciable variations in rendering performance between single-core and

multi-core usages in systems with and without the patch, according to the Cinebench R24

benchmark test results.

14

Interpretation:

Carefully examining the trial findings reveals that there was no difference in system performance

between using and not using the Spectre vulnerability patch. Even if a few observations did show

slight performance losses, it's crucial to remember that these variations were insignificant enough

to cause a noticeable decline in either daily user workloads or raw CPU throughput.

These results are significant since they imply that the Spectre vulnerability fix had little to no

impact on AMD CPU performance. The conclusion is comforting for both system administrators

and regular users. Users should not expect a noticeable decrease in performance as their systems

will continue to operate smoothly and effectively. The impact on typical workloads and system

responsiveness is minimal.

Factors influencing performance:

The effect of the instruction serialization that the patch implemented is one logical explanation

for this subtle drop in speed. In essence, serialization is the act of processing instructions in a

sequential manner as opposed to a parallel manner. In this case, the patch may cause instructions

to momentarily stall in the pipeline. To put things in perspective, pipelining is a basic mechanism

in contemporary CPUs that allows instructions to be queued and prioritized for effective

execution [12]. The little variations in performance that were noticed might have been caused by

the patch's modification of this pipeline behaviour.

Another possible factor that contributes to influencing performance is the background processes

in the system. The number and kind of background processes running at the same time might

15

have a considerable impact on CPU processing performance. The CPU's processing power is

noticeably diminished when the system is overburdened with background tasks. This could

manifest as increased CPU usage, longer reaction times, and, most importantly, increased system

memory consumption.

As these background operations eat memory resources, the available memory for active tasks

becomes constrained. This can lead to an increased dependency on virtual memory, which can

slow down the system's performance. When confronted with an overwhelming number of

background processes competing for system resources, the system may experience delays and

decreased responsiveness.

Security vs Performance Trade-off:

Using the results from the experiment, it can be stated that turning off the Spectre patch will only

give a marginal performance boost, compared to the usage of the Spectre patch.

It appears that the performance benefits of disabling the Spectre patch are negligible, especially

in light of the benefits associated with using it. It is crucial to stress that the Spectre vulnerability

is not impervious to exploitation, even though it may be difficult for hostile actors to take

advantage of on its own. This contrast emphasizes how crucial the Spectre fix is to protect the

system from future security lapses.

The trade-off between a minor performance boost and the possible danger of data leakage owing

to a security flaw in the CPU is a difficult balancing act. The patch's principal goal is to protect

16

sensitive data and maintain system integrity, ensuring a secure computing environment for both

individuals and companies. The marginal performance improvement obtained by disabling the

patch may be desirable in some cases, but it should be used with caution.

Limitations:

A limitation in this experiment is a lack of CPU diversity, causing the results to be limited to

only one CPU. The Ryzen 7 3700X was used to experiment with the Spectre patches. This CPU

was released in 2019, making it a modern CPU. Older CPUs can be used to determine the effect

of the Spectre patch in older AMD systems. Server CPUs, such as the AMD EPYC series, can

also be used to determine the effect of the Spectre patch on server-based performance. To

diversify even more, Intel CPUs could also be introduced and experimented with for any

performance degradation.

17

Conclusion

To answer the research question “How does the Spectre vulnerability patch affect the

performance of systems operated by AMD CPUs?” it was concluded that the patch overall

negatively impacted the performance of the system marginally, with the anomaly of the slight

increase in performance shown in Geekbench 6. The hypothesis was correct as to the negative

impact on performance but was not correct in the strength of the impact, which was remarkably

small.

In the context of this essay, performance evaluation included three critical aspects: CPU

throughput, execution of daily user workloads involving a variety of tasks, and rendering

performance. The primary goal of this research was to determine whether the Spectre

vulnerability fix had any visible impact on AMD computers.

Benchmarking tools were used to thoroughly examine the performance. PCMark 10 and

Geekbench 6 were used to evaluate daily user workload performance, while PassMark was used

to measure CPU throughput across a variety of workloads. Cinebench was used as the test

rendering performance in both single-core and multi-core utilization scenarios.

The findings revealed a complex picture. PCMark 10 showed a decline in daily user workload

performance, however, Geekbench 6 showed a modest increase in user workload performance,

regardless of single-core or multi-core usage. PassMark found a little loss in CPU throughput,

18

however, Cinebench revealed no discernible difference in performance comparing computers

with and without the patch.

This comprehensive evaluation emphasizes that, while the patch did make some performance

changes, the difference between systems with and without the patch was relatively minor. The

measured performance drop was mostly unnoticeable and of little concern to the ordinary

everyday user and system managers.

Two main explanations can explain the minor drop in system speed. The patch's implementation

of instruction serialization, in which instructions are performed sequentially rather than in

parallel, may have created occasional delays in the instruction pipeline. This change to the

pipelining mechanism, which is a core feature of current CPUs, may explain the modest

performance variances noticed.

Background processes running concurrently within the system have a significant impact on

system performance. The quantity and kind of background jobs can have a substantial impact on

CPU processing capability. Excessive background process activity can result in greater CPU

usage, slower response times, and higher system memory consumption. This, in turn, could lead

to a larger reliance on virtual memory, slowing system performance. When a large number of

background tasks compete for system resources, system delays and responsiveness may occur.

This observation leads to a clear conclusion: keeping the Spectre vulnerability patch is

recommended. The trade-off between security and a negligible performance improvement does

19

not justify compromising system security. As a result, the patch's application is consistent with

the larger goal of hardening the system's defences against future threats while ensuring that the

user experience remains mostly uninterrupted and efficient. The evidence implies that the

Spectre fix, in its current form, properly balances security and performance, protecting critical

data while providing no significant obstacle to routine computing.

Future Research:

Further extensions to this experiment can be exploring the other processor vulnerability, known

as Meltdown. This vulnerability was discovered around the same time Spectre was, but it affects

systems in a much different way, by accessing private memory through the kernel system [5].

Exploring and experimenting with this issue can grant more information on how processor flaws

can be exploited to steal private data, as well as how to attack works.

Furthermore, as security fixes to address vulnerabilities like Spectre and Meltdown are created

and deployed, the critical question of their influence on system performance arises. Another

intriguing area for future research is determining the extent to which Meltdown may cause

performance reduction. Such research can provide crucial insights into the trade-offs that

companies and users must weigh as they negotiate the complicated landscape of system security

and performance optimization.

In-depth microarchitectural assessments can also provide a detailed understanding of how these

patches interact with the processor's microarchitecture. Such investigations might reveal the

20

complexities of how security measures are implemented at the hardware level and how they

affect various system components.

21

Works Cited

[1] Arm Ltd., “What is a Central Processing Unit? – Arm®,” Arm | the Architecture for the
Digital World. https://www.arm.com/glossary/cpu

[2] P. Kocher, D. Genkin, D. Gruss, and Y. Yarom, “Spectre Attacks: exploiting speculative
execution,” ResearchGate, Jan. 2018, [Online]. Available:
https://www.researchgate.net/publication/322253254_Spectre_Attacks_Exploiting_Speculative_
Execution

[3] A. Staff, “Here’s how, and why, the Spectre and Meltdown patches will hurt performance,”
Ars Technica, Nov. 09, 2020.
https://arstechnica.com/gadgets/2018/01/heres-how-and-why-the-spectre-and-meltdown-patches-
will-hurt-performance/

[4] N. Latto, “What is WannaCry?,” What Is WannaCry?, Jul. 21, 2022.
https://www.avast.com/c-wannacry

[5] “What is Meltdown/Spectre? | Cloudflare,” Cloudflare.
https://www.cloudflare.com/learning/security/threats/meltdown-spectre/

[6] A. Staff, “Meltdown and Spectre: Here’s what Intel, Apple, Microsoft, others are doing about
it,” Ars Technica, Nov. 09, 2020.
https://arstechnica.com/gadgets/2018/01/meltdown-and-spectre-heres-what-intel-apple-microsoft
-others-are-doing-about-it/

[7] “How to read and understand CPU benchmarks - Intel,” Intel.
https://www.intel.com/content/www/us/en/gaming/resources/read-cpu-benchmarks.html#:~:text=
PassMark%20runs%20heavy%20mathematical%20calculations,-to-day%20productivity%20task
s.

[8] “Geekbench 6 - Cross-Platform Benchmark.” https://www.geekbench.com/

[9] “Evaluate your computer’s hardware capabilities | Cinebench from Maxon,” Maxon.
https://www.maxon.net/en/cinebench

[10] “GRC | InSpectre.” https://www.grc.com/inspectre.htm

[11] “Control flow - MDN Web Docs Glossary: Definitions of Web-related terms | MDN,” Jun.
08, 2023. https://developer.mozilla.org/en-US/docs/Glossary/Control_flow

[12] “Pipelining.”
https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html
J. Hruska,

22

[13] “What is speculative execution?,” ExtremeTech, Jun. 10, 2022.
https://www.extremetech.com/computing/261792-what-is-speculative-execution

[14] “Meltdown’ and ‘Spectre’ guidance.”
https://www.ncsc.gov.uk/guidance/meltdown-and-spectre-guidance#:~:text=%27Meltdown%27
%20and%20%27Spectre%27%20are%20two%20related%2C%20side,be%20vulnerable%20to%
20some%20extent.

23

