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1 Introduction

1.1 Background

Computer programs consist of instructions belonging to instruction sets. These in turn,

alongside other features like registers and data types, are defined in instruction set

architectures (ISA’s). [1] Examples of such architectures include ARM or x86-64. [2] [3]

Instruction sets include various types of instructions, which are responsible for managing

memory, performing arithmetic operations, controlling the flow of execution as well as

any other operations exposed by the hardware to the software. [1]

Most, if not all computer programmers are aware of the existence of these instruc-

tions. Nonetheless, only a small fraction of them actually works on such a low level

of abstraction, mostly thanks to the existence of programming languages. The tools

that connect programming languages with the underlying machine code are compilers

and interpreters. They efficiently translate the human-legible source code to machine-

compatible instructions. [4]

Although programming languages enable considerable amounts of flexibility and pro-

vide clever optimisations, what ultimately decides about performance is not the software

or the ISA, but the hardware. [5] [6] More precisely, the way that the hardware is de-

signed. Computers for a long time have worked in pretty much the same way: they

execute one instruction after another. [7] The speed of execution can of course be

increased by making use of faster clock speeds, but only so much until it becomes in-

efficient. That’s why modern CPU’s are designed to parallelise sequential instructions.

That may sound counter-intuitive, but fundamentally, it’s what the Out-of-Order (OoO)

execution paradigm tries to achieve. Instead of waiting until an instruction finishes, mod-

ern processors will often already be processing several instructions ahead: fetching them

from memory to the internal cache, decoding them to the internal micro-operations that

have to be performed, and executing them before the previous instruction even finishes.

This allows to use clock cycles that would otherwise be wasted waiting, by speculatively

doing work that may, or may not be used. [8]
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1.2 Branch prediction

Branches are instructions that are meant to control what the processor executes. They

instruct the processor to jump to an address in memory, and execute the instruction that

it finds there. There are two types of branches, unconditional and conditional. As their

names suggest, unconditional branch instructions, also known as jump instructions or

return instructions are always taken, that is that the execution unit will always jump to

the memory address that the instructions point to. Conditional branches on the other

hand, will only be taken if a given condition is met. If it isn’t, the branch is not taken,

meaning that the instruction immediately after the conditional branch instruction will be

executed. [9] [7]

Due to the fact that branch instructions may be as much as 20% of all instructions

executed by the central processing unit (CPU), it would be very efficient if they could

also be executed speculatively. [10] First of all, execution units can speculate on the

direction of the branch, i.e. whether it is taken or not. Another thing that they can

speculate on is also the address to which they should jump to, as sometimes these

addresses are not known directly, but are instead calculated or looked up. [9]

Doing these things is the job of the branch predictor.
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1.3 Branch predictors

Branch predictors are the physical circuits on the dye of the processor that are responsible

for performing branch prediction. These circuits are usually used in early stages of the

processor pipeline, like the fetch stage. This means that all the later stages heavily

depend on the accuracy of its predictions, and they operate under the assumption that

its predictions are correct.

Although different branch predictors have been designed over the last years, they

generally fall in one of two categories: static or dynamic predictors. Static predictors

employ a simple strategy: they always do the same thing. They don’t have any way of

storing data or performing look-ups. [9] Examples of static predictor strategies include:

• always not taken - predicting that conditional jumps are never taken, instead

always fetching the instruction directly after the jump instruction and passing it

on further to the pipeline;

• always taken - predicting that conditional jumps are always taken, which is a

more difficult strategy than the previous one, as the predictor now also has to

decide where exactly the jump will lead, potentially having to request instructions

that have not yet been cached or having to predict the address of the jump;

• backwards taken, forwards not taken - predicting that jumps backwards, mean-

ing to addresses before the address of the jump instruction, are always taken, and

jumps forwards, meaning to addresses after the address of the jump instruction

are never taken. This strategy assumes that backwards branches are loops, and

thus should be taken.

Although these branch predictors may provide satisfactory results that are better

than just simply stalling the pipeline, most modern architectures provide more complex,

dynamic predictors. One of the simplest additions to a static predictor that will improve

its effectiveness is a way of storing data with historical information. Such an addition is

known as a branch history table (BHT), and enables the following strategies:
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• one bit prediction (last time prediction) - storing a single bit in the BHT, indexed

by the lower bits of the address of the instruction, corresponding to whether the

branch was previously taken, or not taken. If the outcome of the branch is the

same as the prediction, then the value remains the same, otherwise it is changed.

• two bit prediction - storing two bits in the BHT, similar to the one-bit predictor.

If the outcome of the branch is the same as the prediction, it stores a 1 representing

a weakly taken branch. If a weakly taken branch is repeatedly taken, the value is

updated to a strongly taken (11). If it’s repeatedly not taken, the value is updated

to strongly not taken (00). This approach is similar to the one bit predictor, but

allows for more detailed tracking of patterns.

More complex predictors like the tournament predictor from the Alpha 21264

microprocessor, can combine local branch history tables with global branch history tables,

and multiple predictors, from which a predictor chooses a predictor. [7] There are of

course much more complex predictors, some of which are probably trade secrets which

are not only far outside the scopes of this investigation, but also outside of reach for

most researchers.
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1.4 Sorting algorithms

Since the dawn of computing, sorting algorithms have had a notorious reputation in

computer science due to their complexity, and various trade-offs that they offered. Some

of them have been designed to have small memory footprints, while others were meant

to be just as fast as possible. Various tools have been created to quantify the theoretical

performance of algorithms, like the venerable big O notation, but they are not capable

of showing how an algorithm will perform on actual hardware, on an actual ISA, with its

caches and speculative execution.

As branch prediction is such a significant part of a processor pipeline, I would like to

investigate what effect on programs it actually has, and there are no better candidates

to be tested on than the lab rats of computer science - sorting algorithms. Thus I will

be investigating my research question:

To what extent do branch mispredictions affect the performance of

well-known comparison sorts?
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2 Methodology

In order to isolate the effect that the branch predictor has on the selected sorting algo-

rithms I will be using a simulator, more precisely the gem5 simulator. Using a simulator

over real hardware provides a few advantages, the first ones being repeatability and

reproducibility - the simulations can be repeated as many times as needed, and they

can also be reproduced on other hardware yielding the same results, provided the same

configuration is used. Another major advantage is transparency - as the simulator is

open source I can easily understand how it works. The open nature of the software also

provides extensibility which enables modifying or extending its behaviour. The biggest

downside of using gem5 is that it currently only supports simulating an OoO pipeline

similar to the one found in the Alpha 21264 microprocesor, which was launched in 1998.

[11]

Using the simulator enables me to test the performance of the algorithms on two

different systems, with only one difference between them - the branch predictor. This al-

lows me to compare how different predictors will affect the performance of the programs,

without changing anything else.

To maximise the difference in the effectiveness of predictors, I wanted to use a static

predictor that would provide poor effectiveness, as well as a considerably more accurate

dynamic predictor that would outperform the static predictor. The simulator features a

variety of predictors, however all of them are dynamic. This meant that I had to extend

the functionality of the simulator by implementing a static predictor.

The primary reason behind implementing the static always-taken predictor in gem5

was to have a branch predictor with a considerably lower effectiveness, meaning one that’s

worse at predicting if branches are taken or not taken. According to various sources,

a tournament branch predictor is accurate in 90% [7] of its predictions, while a static

(always taken) predictor is around 60-70% accurate. [7] [9] By intentionally causing

branch mispredictions, I aimed to show how an OoO pipeline that heavily depends on

its branch predictor will be affected by using a worse predictor.
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2.1 gem5 configuration

The simulator was built on Ubuntu 22.04 LTS for the x86 ISA with standard optimisations

using the command scons build build/X86/gem5.opt -j 8.

In order to show the extent of the effects that branch misprediction has on programs,

I also wanted to make use of a branch prediction that would perform quite poorly. As

gem5 does not include such a predictor I had to implement it myself. I decided that a

static-always taken predictor would be a good predictor to compare with the already-

present tournament predictor.

gem5 makes use of the SCons software construction tool, which enabled me to easily

incorporate my own StubBP class that extended the base BPredUnit class. The method

of the class responsible for returning a prediction to a given branch is lookup(), and

for a static predictor it does not require any computation and can simply return true.

2.2 Sorting algorithms

As the simulations require x86 implementations of sorting algorithms, I implemented the

following five algorithms in C, based on the pseudocode provided in Thomas H. Cormen’s

”Introduction to Algorithms” [12]:

• Quicksort;

• Merge sort;

• Insertion sort;

• Heapsort;

• Bubblesort.

Additionally, I implemented Shellsort, based on based on the description in Donald

E. Knuth’s book ”The Art of Computer Programming”. [13] . The reference implemen-

tations of the sorting algorithms are available in the Appendices. All algorithms were

compiled using gcc version 11.4.0 with -Wall -Wextra -O2 flags.
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2.3 Simulations

I ran simulations on array sizes from 0 to 1000 in 100 array key increments. The integers

in the arrays were generated using python’s builtin random.randint(), and the same

arrays were provided to different algorithms for a given element count. Then, each

available sorting algorithm was ran twice, using the se.py configuration included with

gem5, which configured the type of processor and caches as well as one of the two

branch predictors’ that were tested, either TournamentBP or StubBP. Below is the code

from the script responsible for running batches of these simulations:

1 subprocess .call ([

2 GEM5_PATH . joinpath (’build/X86/gem5.opt ’),

3 ’--outdir ’, tmpdir_path ,

4 GEM5_PATH . joinpath (’configs / example /se.py’),

5 ’--cpu -type= X86O3CPU ’,

6 ’--caches ’,

7 ’--cmd ’, algorithm ,

8 ’--options ’, f’{len(array)} {" ". join(str(i) for i in array)}’,

9 ’--bp -type ’, predictor

10 ])

The statistics generated during the runs were aggregated into a single file, which

was later split into smaller spreadsheets used to generate charts using gnuplot. All

charts in this document also include lines, which connect the statistics generated by the

simulations and are meant to be interpreted as visual aids only.
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3 Results and discussion

3.1 Mean results

I will start by analysing the average results from all algorithms, as this gives a good

overview of what can be expected to happen to individual sorting algorithms.

3.1.1 Branch mispredictions
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Figure 1: caption

Figure 1 illustrates the rise in the number of branch mispredictions caused by the

static predictor. For larger array sizes, the always-taken predictor causes more than 7x

more mispredictions than the tournament predictor. This difference in the number of

mispredictions should show how the effectiveness of each of the predictors’ affected the

overall performance of the rest of the CPU.

The results in this figure are averages from different sorting algorithms, and provide

an overview of the increase in branch mispredictions. Some algorithms were affected

more than others, which I will discuss in a later section.
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3.1.2 Execution time
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Figure 2: Mean simulation time for both branch predictors.

Figure 2 shows the number or simulated seconds. This statistic is calculated by

gem5 by dividing the number of internal simulation ticks by the simulation frequency.

The simulation frequency is a constant equal to 1 × 1012 for all runs, which points to

the number of simulation ticks being increased. This is true for all the runs making use

of the static branch predictor.

Considering that all of the sorting algorithms were supplied with exactly the same

randomly-generated array (for a given array size), the degradation in performance can-

not be attributed to the sorting algorithms themselves. This is also confirmed by other

collected statistics, like the number of instructions simulated and the number of instruc-

tions committed being the same for algorithms ran on simulations using different branch

predictors.

In summary, the 1.8 time increase in execution time for larger array sizes shown

in Figure 2 has not been affected by any external factors, and is directly caused by the

increase in branch mispredictions. This is a massive performance degradation, that every

algorithm suffered from.
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3.1.3 Number of cycles
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Figure 3: Number of cycles performed by the CPU.

Figure 3 illustrates how the simulations using the static branch predictor took more

CPU cycles to complete. The difference between the number of cycles reaches a stag-

gering 1,550,000 cycles for a 1000 element array.

Taking into account the fact that the number of instructions simulated was the same

for both predictors, it would seem that the CPU needed more cycles to execute the same

instruction. The cycles per instruction (CPI) chart on Figure 3 shows exactly how many

more cycles on average the processor needed to execute an instruction.

The branch predictor is not directly responsible for wasting CPU cycles, as it only

needs a single cycle of the fetch stage to return a prediction for a branch. This means

that although the branch predictor itself did not contribute to an increase in the cycles

its predictions did.

Although what using a less efficient predictor results in is well established by this

statistic, it does not alone point to why the number of cycles is increased. The later

statistics include some possible explanations.
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3.1.4 Squash cycles
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Figure 4: Cycles spent on squashing instructions.

Figure 4 shows the number of cycles that the fetch stage of the CPU spent squashing

instructions from the pipeline. After a branch misprediction the CPU needs an entire

additional cycle to perform this operation. Although the increase in cycles is significant,

it is not the main cause of the performance decrease, as in the case of the 1000 key

array it only accounts for 230,000 cycles out of the additional 1,550,000 cycles that

the CPU performed.
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3.1.5 Additional pipeline cycles
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Figure 5: Running cycles performed by three example stages of the pipeline.

Figures 5 show the increase in cycles that the select stages performed. The increase

in the number of cycles can be attributed to the pipeline being empty after instructions

are squashed after a branch misprediction, as well as to the stages performing unnecessary

operations on instructions that were later squashed, therefore discarding their work.

In the case of the fetch stage of the pipeline, a considerable 990,000 cycle increase

can be observed, for an array size of 1000 elements. This makes up 60% of the cycle

difference between the simulations making use of the two different predictors.
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3.1.6 Instruction cache stall cycles
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Figure 6: Cycles stalled by instruction cache misses.

Figure 6 illustrates the increase in the number of cycles spent by fetch on waiting

for instructions to be fetched from primary memory and into the instruction cache. This

increase can be attributed to the instructions that were actually required by the processor

being replaced in the cache by instructions that the predictor incorrectly predicted to be

required.

The increase is equal to 430,000 cycles for an array with 1000 elements, and is a

significant contributor to the difference of cycles performed by the simulations using the

two different predictors.

15



3.1.7 Total additional cycles

Previous sections have showed which operations performed by the pipeline contributed

the most to the difference between the simulations making use of the static and tour-

nament branch predictors.

For a 1000 key array, the fetch stage of the pipeline spent an additional 230,000

cycles on squashing instructions, a 990,000 cycle increase spent on actually fetching

instructions, and a further 430,000 cycles spent on waiting for the instruction cache.

These cycles add up to 1,650,000 cycles, which is more than the additional cycles that

the CPU performed. This seems to be a minor discrepancy caused by the statistics

module in the simulator itself, as the number of cycles executed by a single stage cannot

be larger than the number of cycles performed by the CPU itself.

Although this discrepancy does affect the statistics based around the cycle count

itself, it does not effect in any way the performance of the system, the branch mispredic-

tions, or any other functional part of the processor. It simply means that the generated

statistics are best compared to themselves for different predictors, as opposed to other

statistics.
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3.2 Detailed results

3.2.1 Bubble sort
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Figure 7: The simulation time and branch mispredictions for bubble sort.

Bubble sort is known for being a particularly slow comparison sort due to its O(n2)

worst-case and average complexity, as opposed to the other more commonly used algo-

rithms included in this investigation. As seen in Figure 7, the performance of bubble

sort has decreased significantly, almost by 180% for a 1000 element array. Bubble sort

was also one of the algorithms most significantly affected by the predictor, having over

six times the number of branch mispredictions with a static predictor as opposed to the

tournament predictor.
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3.2.2 Insertion sort
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Figure 8: The simulation time and branch mispredictions for insertion sort.

Although insertion sort is also an algorithm with an average complexity of O(n2),

when ran on a simulation using a tournament branch predictor it performed on par

with other O(n log n) sorting algorithms (for the investigated array sizes). When ran

on a simulation using the static predictor, the algorithms performance was drastically

degraded, to the point where it performed similarly to bubble sort. This is the most

drastic effect that the change of branch predictor had on a sorting algorithm, and it

illustrates how much it matters, especially for simple sorting algorithms.
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3.2.3 Heap sort, Quick sort, Merge sort, and Shell sort
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Figure 9: The simulation time and branch mispredictions for heap sort, quick sort, shell
sort, and merge sort.

The four algorithms are all algorithms with O(n log n) worst case and average perfor-

mance, which is why they are often chosen by programmers who require efficient sorting

algorithms. All four of the algorithms saw a 30% performance decrease for a 1000

element array when used in conjunction with a static predictor, but they were not nearly

as affected as the other two sorts with O(n2) complexities. This shows that branch

mispredictions affect all sorting algorithms, but the ones that perform more operations

and are already slower will experience more significant performance hits.
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4 Conclusions

4.1 Limitations of this investigation

Certain effects of using a simulator instead of real hardware have to be taken into

consideration.

The first effect I would like to discuss, is that modern processors have considerably

more complex and longer pipelines than the Alpha 21264 modelled in the simulation.

The processor is very dependant on the branch predictor (as these results have shown),

but we cannot know to what extend this is reflected by modern hardware. It could be

argued that due to a lower occurrence of branch mispredictions associated with having

better predictors the effects of the mispredictions are mostly negated. On the other hand

it could also be argued, that the considerably longer pipelines are much more vulnerable

to mispredictions, potentially undercutting the work performed by the predictor.

The second factor that should be taken into consideration are the discrepancies in

the simulator that make it impossible to precisely say which mechanisms were affected by

the branch mispredictions the most, and how much they contributed to the slowdown of

execution. Nonetheless, from the data available it can be said that the great majority of

additional processing time was spent on work that simply did not have to be performed by

the processor, and then on work that had to be performed to undo all of the unnecessary

work including all of the overheads associated with it. There are minor issues with

precision with this approach, it has to be stated that although the exact details of what

consequences mispredictions may be not as clear as I would like, the overall results and

the extent to which the predictions affected the execution of the algorithms tested have

not been affected by these details.

Apart from internal sources of inaccuracies, there is always the possibility of external

inaccuracies. Such inaccuracies may have an effect on the readers understanding of the

topic, but they in no way influenced the investigation, or the simulation itself.

20



4.2 Closing statements

To answer the question: To what extent do branch mispredictions affect the

performance of well-known comparison sorts?

As this investigation has shown, the performance of the tested sorting algorithms

was undoubtedly greatly affected by branch mispredictions, even though the degree of

impact varies among different algorithms.

This also implies that programs in general are also considerably impacted by mispre-

dictions. Compilers and/or interpreters should attempt to optimise programs to minimise

the number of branch instructions, and make necessary branches as predictive as possible.
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Appendices
1 # include <stdio.h>

2 # include <stdlib .h>

3

4 void bubbleSort (int A[], int n) {

5 for (int i = 0; i < n - 1; i++) {

6 for (int j = n - 1; j > i; j--) {

7 if (A[j] < A[j - 1]) {

8

9 int temp = A[j];

10 A[j] = A[j - 1];

11 A[j - 1] = temp;

12 }

13 }

14 }

15 }

16

17 int main(int argc , char *argv []) {

18 if (argc < 2) {

19 printf ("Usage: %s <num_elements > <element1 > <element2 > ...\

n", argv [0]);

20 return 1;

21 }

22

23 int n = atoi(argv [1]);

24 int *arr = (int *) malloc (n * sizeof (int));

25

26 if (argc != n + 2) {

27 printf ("Error: Incorrect number of elements provided .\n");

28 return 1;

29 }

30

31 for (int i = 0; i < n; i++) {

32 arr[i] = atoi(argv[i + 2]);

33 }

34
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35 printf (" Before sorting : ");

36 for (int i = 0; i < n; i++) {

37 printf ("%d ", arr[i]);

38 }

39 printf ("\n");

40

41 bubbleSort (arr , n);

42

43 printf ("After sorting : ");

44 for (int i = 0; i < n; i++) {

45 printf ("%d ", arr[i]);

46 }

47 printf ("\n");

48

49 free(arr);

50 return 0;

51 }

Listing 1: Bubblesort implementation

1 # include <stdio.h>

2 # include <stdlib .h>

3

4 void quicksort (int A[], int p, int r);

5 int partition (int A[], int p, int r);

6

7 void quicksort (int A[], int p, int r) {

8 if (p < r) {

9 int q = partition (A, p, r);

10 quicksort (A, p, q - 1);

11 quicksort (A, q + 1, r);

12 }

13 }

14

15 int partition (int A[], int p, int r) {

16 int x = A[r];

17 int i = p - 1;

18
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19 for (int j = p; j <= r - 1; j++) {

20 if (A[j] <= x) {

21 i++;

22 int temp = A[i];

23 A[i] = A[j];

24 A[j] = temp;

25 }

26 }

27

28 int temp = A[i + 1];

29 A[i + 1] = A[r];

30 A[r] = temp;

31

32 return i + 1;

33 }

34

35 int main(int argc , char *argv []) {

36 if (argc < 2) {

37 printf ("Usage: %s <num_elements > <element1 > <element2 > ...\

n", argv [0]);

38 return 1;

39 }

40

41 int n = atoi(argv [1]);

42 int *arr = (int *) malloc (n * sizeof (int));

43

44 if (argc != n + 2) {

45 printf ("Error: Incorrect number of elements provided .\n");

46 return 1;

47 }

48

49 for (int i = 0; i < n; i++) {

50 arr[i] = atoi(argv[i + 2]);

51 }

52

53 printf (" Before sorting : ");
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54 for (int i = 0; i < n; i++) {

55 printf ("%d ", arr[i]);

56 }

57 printf ("\n");

58

59 quicksort (arr , 0, n - 1);

60

61 printf ("After sorting : ");

62 for (int i = 0; i < n; i++) {

63 printf ("%d ", arr[i]);

64 }

65 printf ("\n");

66

67 free(arr);

68 return 0;

69 }

Listing 2: Quicksort implementation

1 # include <stdio.h>

2 # include <stdlib .h>

3

4 void merge(int A[], int p, int q, int r);

5 void mergeSort (int A[], int p, int r);

6

7 void merge(int A[], int p, int q, int r) {

8 int n1 = q - p + 1;

9 int n2 = r - q;

10

11 int L[n1], R[n2];

12

13 for (int i = 0; i < n1; i++) {

14 L[i] = A[p + i];

15 }

16 for (int j = 0; j < n2; j++) {

17 R[j] = A[q + 1 + j];

18 }

19
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20 int i = 0, j = 0, k = p;

21

22 while (i < n1 && j < n2) {

23 if (L[i] <= R[j]) {

24 A[k] = L[i];

25 i++;

26 } else {

27 A[k] = R[j];

28 j++;

29 }

30 k++;

31 }

32

33 while (i < n1) {

34 A[k] = L[i];

35 i++;

36 k++;

37 }

38

39 while (j < n2) {

40 A[k] = R[j];

41 j++;

42 k++;

43 }

44 }

45

46 void mergeSort (int A[], int p, int r) {

47 if (p < r) {

48 int q = (p + r) / 2;

49 mergeSort (A, p, q);

50 mergeSort (A, q + 1, r);

51 merge(A, p, q, r);

52 }

53 }

54

55 int main(int argc , char *argv []) {
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56 if (argc < 2) {

57 printf ("Usage: %s <num_elements > <element1 > <element2 > ...\

n", argv [0]);

58 return 1;

59 }

60

61 int n = atoi(argv [1]);

62 int *arr = (int *) malloc (n * sizeof (int));

63

64 if (argc != n + 2) {

65 printf ("Error: Incorrect number of elements provided .\n");

66 return 1;

67 }

68

69 for (int i = 0; i < n; i++) {

70 arr[i] = atoi(argv[i + 2]);

71 }

72

73 printf (" Before sorting : ");

74 for (int i = 0; i < n; i++) {

75 printf ("%d ", arr[i]);

76 }

77 printf ("\n");

78

79 mergeSort (arr , 0, n - 1);

80

81 printf ("After sorting : ");

82 for (int i = 0; i < n; i++) {

83 printf ("%d ", arr[i]);

84 }

85 printf ("\n");

86

87 free(arr);

88 return 0;

89 }

Listing 3: Mergesort implementation
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1 # include <stdio.h>

2 # include <stdlib .h>

3

4 void shellSort (int arr [], int n) {

5 for (int gap = n / 2; gap > 0; gap /= 2) {

6 for (int i = gap; i < n; i++) {

7 int temp = arr[i];

8 int j;

9 for (j = i; j >= gap && arr[j - gap] > temp; j -= gap)

{

10 arr[j] = arr[j - gap ];

11 }

12 arr[j] = temp;

13 }

14 }

15 }

16

17 int main(int argc , char *argv []) {

18 if (argc < 2) {

19 printf ("Usage: %s <num_elements > <element1 > <element2 > ...\

n", argv [0]);

20 return 1;

21 }

22

23 int n = atoi(argv [1]);

24 int *arr = (int *) malloc (n * sizeof (int));

25

26 if (argc != n + 2) {

27 printf ("Error: Incorrect number of elements provided .\n");

28 return 1;

29 }

30

31 for (int i = 0; i < n; i++) {

32 arr[i] = atoi(argv[i + 2]);

33 }

34
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35 printf (" Before sorting : ");

36 for (int i = 0; i < n; i++) {

37 printf ("%d ", arr[i]);

38 }

39 printf ("\n");

40

41 shellSort (arr , n);

42

43 printf ("After sorting : ");

44 for (int i = 0; i < n; i++) {

45 printf ("%d ", arr[i]);

46 }

47 printf ("\n");

48

49 free(arr);

50 return 0;

51 }

Listing 4: Shellsort implementation

1 # include <stdio.h>

2 # include <stdlib .h>

3

4 void insertionSort (int A[], int n) {

5 for (int i = 1; i < n; i++) {

6 int key = A[i];

7 int j = i - 1;

8

9 while (j >= 0 && A[j] > key) {

10 A[j + 1] = A[j];

11 j--;

12 }

13

14 A[j + 1] = key;

15 }

16 }

17

18 int main(int argc , char *argv []) {
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19 if (argc < 2) {

20 printf ("Usage: %s <num_elements > <element1 > <element2 > ...\

n", argv [0]);

21 return 1;

22 }

23

24 int n = atoi(argv [1]);

25 int *arr = (int *) malloc (n * sizeof (int));

26

27 if (argc != n + 2) {

28 printf ("Error: Incorrect number of elements provided .\n");

29 return 1;

30 }

31

32 for (int i = 0; i < n; i++) {

33 arr[i] = atoi(argv[i + 2]);

34 }

35

36 printf (" Before sorting : ");

37 for (int i = 0; i < n; i++) {

38 printf ("%d ", arr[i]);

39 }

40 printf ("\n");

41

42 insertionSort (arr , n);

43

44 printf ("After sorting : ");

45 for (int i = 0; i < n; i++) {

46 printf ("%d ", arr[i]);

47 }

48 printf ("\n");

49

50 free(arr);

51 return 0;

52 }

Listing 5: Insertion sort implementation
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1 # include <stdio.h>

2 # include <stdlib .h>

3

4 void maxHeapify (int A[], int i, int heapSize );

5 void buildMaxHeap (int A[], int n);

6 void heapSort (int A[], int n);

7

8 void maxHeapify (int A[], int i, int heapSize ) {

9 int largest = i;

10 int left = 2 * i + 1;

11 int right = 2 * i + 2;

12

13 if (left < heapSize && A[left] > A[ largest ]) {

14 largest = left;

15 }

16

17 if (right < heapSize && A[right] > A[ largest ]) {

18 largest = right;

19 }

20

21 if ( largest != i) {

22 int temp = A[i];

23 A[i] = A[ largest ];

24 A[ largest ] = temp;

25 maxHeapify (A, largest , heapSize );

26 }

27 }

28

29 void buildMaxHeap (int A[], int n) {

30 int heapSize = n;

31

32 for (int i = n / 2 - 1; i >= 0; i--) {

33 maxHeapify (A, i, heapSize );

34 }

35 }

36
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37 void heapSort (int A[], int n) {

38 buildMaxHeap (A, n);

39

40 for (int i = n - 1; i >= 1; i--) {

41 int temp = A[0];

42 A[0] = A[i];

43 A[i] = temp;

44

45 maxHeapify (A, 0, i);

46 }

47 }

48

49 int main(int argc , char *argv []) {

50 if (argc < 2) {

51 printf ("Usage: %s <num_elements > <element1 > <element2 > ...\

n", argv [0]);

52 return 1;

53 }

54

55 int n = atoi(argv [1]);

56 int *arr = (int *) malloc (n * sizeof (int));

57

58 if (argc != n + 2) {

59 printf ("Error: Incorrect number of elements provided .\n");

60 return 1;

61 }

62

63 for (int i = 0; i < n; i++) {

64 arr[i] = atoi(argv[i + 2]);

65 }

66

67 printf (" Before sorting : ");

68 for (int i = 0; i < n; i++) {

69 printf ("%d ", arr[i]);

70 }

71 printf ("\n");
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72

73 heapSort (arr , n);

74

75 printf ("After sorting : ");

76 for (int i = 0; i < n; i++) {

77 printf ("%d ", arr[i]);

78 }

79 printf ("\n");

80

81 free(arr);

82 return 0;

83 }

Listing 6: Heapsort implementation
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