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1. Introduction 

Research Question: What is the difference between the runtime efficiency of Dijkstra’s and 

the A* pathfinding algorithms in finding the shortest path in mazes with varying size? 

 

Pathfinding algorithms (finding the shortest path between two set points on a grid), although 

might sound related only to technology, are an integral part of life. We, humans, have to 

determine our path in tasks like commuting to work, assessing the length and other factors of 

the road. Computers, however, need algorithms to determine the shortest path in such 

problems (Krafft 1,2). Pathfinding in computers is used in “navigation, video games, 

robotics, logistics” and others. (Algfoor, Sunar and Kolivand 1-3) 

 

There are different pathfinding algorithms, from which Dijkstra’s (Khan) and the A* 

algorithm (Mehta et al.) stand out as one of the most used algorithms. 

 

This extended essay aims to investigate the runtime difference between Dijkstra’s and the A* 

pathfinding algorithm in finding the shortest path from a starting and ending point in a maze 

problem with multiple paths between the starting and ending points in the maze. 

 

This paper can aid especially in the video game and navigation fields. In real time strategy 

games such as Age of Empires, numerous units (armies, workers, etc.) constantly pathfind 

around in a large map consisting of a 256x256 grid (Cui and Shi 128,129). Even though the 

game is able to compute the paths of the units without visible lag, the players have 

consistently complained about units getting stuck or traverse a nonsensical path (H. Patel). 

Increasing the efficiency of the pathfinding algorithm used can aid in the better playability of 

the game by solving the existing problems. 
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 Furthermore, autonomous drones are also starting to be a part of our lives, potentially 

shipping crucial cargo in the future. Employing the most efficient pathfinding algorithm can 

help in reducing costs and increasing mission success chances of such drones (Fu et al. 1,2).  

To investigate the difference between the algorithms, a maze generation algorithm (Recursive 

backtracking with dead end culling) along with the A* and Dijkstra’s algorithms were 

programmed in C#. Their runtimes on different sizes of procedurally generated mazes were 

measured and analyzed. 
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2. Background Information 

2.1 Procedural Maze Generation 

Mazes are so old as to inspire Greek myths like the Minotaur and the labyrinth and are used 

currently as entertainment in means of video games (Pac-man, many roguelike games, etc.) 

or simply as puzzles to solve on the backs of newspapers (Hybesis). With the use of 

computers, completely random and very large mazes can be generated. There are many 

different procedural maze generation algorithms. (Pullen) 

 

2.1.1 Maze Properties 

Mazes have many different properties, indicating their nature. The properties relevant to this 

investigation are shown below. 

 

Perfect mazes are defined by three properties: not having any passage loops, not having any 

isolated nodes and having only one path between any node pair in the maze. There are 

numerous ways to generate and solve such mazes as they are the most commonly used maze 

type. (Foltin 7) 

 

Braided mazes, unlike perfect mazes, have no dead ends and may have multiple paths of 

varying length between two node in the maze (Foltin 7). Although there are different ways to 

generate such mazes (Ioannidis 31-35), the algorithms are much rarer since this maze type 

isn’t as popular as perfect mazes.  
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Partial braided mazes are a combination of dead ends and loops. The ratio between the dead 

ends and loops can be calculated or manipulated. Similar to braided mazes, algorithms for the 

procedural generation for partial braided mazes are uncommon. 

(Pullen) 

The elitism of a maze is how much the solution of the maze covers its area. An elitist maze 

has a shorter and more direct solution, a non-elitist maze has a longer solution, covering more 

of its area. If there are multiple solutions, the elitism applies to the shortest path. 

(Pullen) 

2.1.2 The Recursive Backtracker Algorithm 

A simple way to generate perfect mazes is the ‘Recursive Backtracker’ algorithm, which is 

based on the ‘depth first search technique’ (DFS). “The DFS algorithm wanders through the 

graph in a depth-oriented way”. (Foltin 20-22) The algorithm travels whenever possible to a 

neighbor of the current node, and if it can’t, it goes back to the previous vertex until it has 

iterated through all vertices. While generating a maze, a grid with node which all have 4 

walls around them is firstly created. Then when the algorithm is traveling between vertices 

(or nodes), the wall between the two are destroyed, eventually generating a maze by boring 

walls though the grid. (Hybesis) 

 

The algorithm has two possible implementations, either by recursion or iterative. (Ioannidis 

23-25) The recursive version uses a lot of memory and is prone to overflow errors, while the 

iterative version uses a stack to store less data. 
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The steps for the iterative implementation and an illustration for the generation (figure 1) and 

a sample (figure 2) can be seen below. 

1. Choose a starting point in the field. 

2. Randomly choose a wall at that point and carve a passage through to the adjacent 

node, but only if the adjacent node has not been visited yet. This becomes the new 

current node. 

3. If all adjacent node have been visited, back up to the last node that has uncarved 

walls (shown by the yellow points in figure 1) and repeat step 2. 

4. The algorithm ends when the process has backed all the way up to the starting 

point. (Buck Maze Generation: Recursive Backtracking) 

 

 Figure 1: Image depicting recursive backtracker steps (Foltin 22) 
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2.1.3 Dead End Culling 

While a vast number of algorithms exist for perfect maze generation, that is not the case for 

braided maze generation. Even though algorithms such as “Random Restarts” (Ioannidis 35-

39) exist, they are uncommon. An easy way to obtain braided mazes is applying “dead-end 

culling” to a perfect maze, changing the walls on the dead ends so that they no longer are 

dead ends. Dead end culling also provides the option for exceptionally easy partial braiding 

(with desired dead end to loop ratios). Pseudocode for dead end culling can be seen below. 

1. Iterate through all node 

2. If current node is a dead end (3 walls including outside borders) remove random wall 

excluding outside borders 

(Buck Mazes for Programmers) 

Figure 2: Image depicting a maze created using the recursive backtracking algorithm (Ioannidis 28) 
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2.2 Pathfinding Algorithms 

Pathfinding algorithms are aimed to find the shortest possible path between two set points. It 

has many applications such as street navigation in Google Maps, video games and maze 

solving. There is a multitude of pathfinding algorithms. (Algfoor, Sunar and Kolivand 1-3) 

2.2.1 Dijkstra’s Pathfinding Algorithm 

Dijkstra’s algorithm expands outwards from its starting point until it meets the ending point. 

There is a 100 % chance that the algorithm will find a shortest path (there can be multiple 

shortest paths, with the same length). The illustration below shows the algorithm working on 

a blank grid. The blue nodes have been visited by the algorithm, and the pink and purple 

nodes are the start and end points respectively. (A. Patel) 

 

 

 

 

 

 

 

 

Figure 3: Image depicting Dijkstra’s algorithm (A. Patel) 
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Pseudocode for the algorithm can be seen below. 

 

 

2.2.2 The A* Pathfinding Algorithm 

A* is the most popular choice for pathfinding in video games (Mehta et al.) among others, 

and is a modification of Dijkstra’s algorithm, and expands in the direction towards the goal. It 

uses a heuristic function (finding an approximate solution) to find out paths which seem to be 

leading to the goal and also favors paths which have the shortest path from the starting point. 

It always finds a shortest path. (A. Patel) 

 

 

 

 

Figure 4: Pseudocode for Dijkstra’s algorithm (Swift Easy Dijkstra’s Pathfinding) 
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Calculating the cost of a node 

The two goals of the algorithm (distance to the start and end nodes) are weighted by the f-

cost, which is the overall ‘cost’ of a node based on its distance to the start node (g-cost) and 

the projected distance to the end node (h-cost). The f-, g- and h-costs are explained below. 

f-cost: total cost of the node (g-cost + h-cost) 

g-cost: length of the path between the node and the start 

h-cost: heuristic, distance estimated to be between the node and the end. It can be acquired by 

using the Pythagorean theorem on the x- and y-difference between the end and current node, 

although other methods exist (Peters) 

 

The pseudocode can be seen below. 

 
Figure 5: Pseudocode for the A* algorithm (Swift Easy A*) 
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Example illustrations of the algorithm can be seen in figures 6 and 7. 

 

 

2.3 Time Complexity of Algorithms 

Big O notation is commonly used for the time complexity (the relation of runtime as the input 

gets larger). Big O notation has different cases for the best, average and worst outcomes, the 

worst outcome being the most used. (Cormen et al. 43-50) 

 

Worst-Case 

The worst-case complexity is done most frequently since it is easy to calculate and can show 

a general picture. Although it is useful, it might be too pessimistic in some cases or ignore the 

complete picture. (Chauan) 

 

Best-Case 

The best case shows the lower bound of the time taken for the algorithm. This isn’t popular to 

analyze since it can’t provide reliable information. An algorithm iterating over a very large 

data set could have small best-case time complexity, while needing years to finish operating 

on average. (Chauan) 

 

 

Figure 6: Unobstructed A* algorithm (A. Patel) 

 

Figure 7: Obstructed A* algorithm (A. Patel) 
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Average-Case 

The average case shows the time complexity of the algorithm in a more realistic and whole 

sense than both the worst- and best- case. It is however difficult to calculate since the 

‘average set of inputs’ is needed to be known. The set of inputs are assessed by their 

probability and how much time they take, calculating the expected value. This nature of input 

is then used to get the time complexity. (Zeil) 

 

2.3.1 Time complexity of Dijkstra’s Algorithm 

The worst-case time complexity of Dijkstra’s Algorithm is 𝑂(𝑉2), with V being the amount 

of vertices (nodes) in the graph. (“Shortest Path Algorithms”) 

 

To get the average case, the expected value of iterations is needed, which is wholly 

dependent on the input. The nature of the input is needed to be known to find the average 

case of Dijkstra’s algorithm. 

(Nilsson) 

 

2.3.2 Time complexity of the A* algorithm 

The worst-case time complexity of the A* algorithm is the same as Dijkstra’s. This is due to 

both algorithms having to iterate through all the nodes in the worst-case, resulting in the 

same amount of iterations. This is also the case for the best-case, as a direct path towards 

the end node without any diverging paths would result in the same amount of iterations as 

well. However, due to using a heuristic function, the average case time complexity is aimed 

to be improved. (Bast) 
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Due to the usage of a heuristic function and the required nature of input, the average time 

complexity can only be determined by finding the ‘quality’ of the heuristic and nature of the 

input. (Russell and Norvig 97-104) 

3. Hypothesis 

Even though the best- and worst-case time complexities of Dijkstra’s algorithm and A*, a 

heuristic function is used to make the A* algorithm be more guided towards the goal to 

decrease the amount of iterations, hence decreasing the overall runtime. Therefore, the A* 

algorithm is expected to have a shorter runtime than Dijkstra’s on average. 

As the size of the maze gets smaller, the cost of the heuristic function is expected to get 

more significant, which will result in the difference between the runtimes of the two 

functions getting smaller. 

 

The average time complexities of the two algorithms can’t be used to predict their runtimes 

because they cannot be determined without running tests on the algorithms.  

4. Methodology 

The recursive backtracker, dead end culling; Dijkstra’s and the A* pathfinding algorithms 

were written for the investigation (see appendix 1). The code was written with the steps in the 

background information. The IDE “Visual Studio” was used for the C# implementation for 

the algorithms in the investigation. Although diagonal movement isn’t allowed, the 

Pythagorean theorem is still used to calculate the heuristics function (h-cost) for the A* 

algorithm to maintain its integrity from real life applications. 

 



 14 

The runtime is measured by the “System.Diagnostics.Stopwatch” class, which is the class 

commonly used for measuring runtime. (Allen) 

 

The startup runtime output shows the speed at which the computer is running at the time of 

startup. It accesses and edits an integer variable 100000000 times. 

 

The two pathfinding algorithms are to find the shortest path from the starting point to the 

ending point (declared to be at contrasting fifths of the whole grid. For example, on a 

100x100 grid, the starting point is at coordinates relative to the top left corner (20,20), and 

the ending point at (80,80)). This allows the algorithms to venture behind the starting and 

ending points, rather than them being on opposite ends of the grid, not allowing any 

movement back. 

 

The output of the code will be easy to transfer manually to MS Excel for analysis. Sample 

code output for a single trial is below.

 

  

 

Figure 8: Sample code output for a single trial 

 

Dijkstra Runtime (ms) 

 

A* Runtime (ms) 

 

Shortest path found by Dijkstra 

 

Shortest path found by A* 
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4.1 Controlled Variables: 

Maze characteristics: The characteristics of the maze are to be kept identical throughout the 

whole tests. Three aspects of mazes are listed below. 

Elitism: Constraining the shortest path length between the start and end points could help in 

reducing random errors for the end result. Doing this however would be very tedious and 

there is no clear algorithm which improves upon the elitism. 

Braiding density: The maze will not be partially braided, since randomly picking dead ends 

which won’t be removed will increase the effect of random errors on the end result. As 

random errors due to the unchangeable elitism of the maze will be caused, it was opted out of 

having partial braiding. 

Tile costs/weights: Having random tile weights (the path length between two node) would 

increase random errors just like the partial braiding, and therefore not implemented. 

 

The computer that will be used (Macbook Air 2017) has the following specifications: 

• 1.8GHz dual-core Intel Core i5 processor with 3MB shared L3 cache 

• 8GB of 1,600MHz LPDDR3 RAM 

• Intel HD Graphics 6000 (Haslam) 

 

The exact same code except for the size of the maze (the independent variable) will be used 

throughout the tests. 

The IDE Visual Basic and language C# will be used for the code implementation throughout 

the tests. 
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4.2 Procedure Steps 

1. Mazes of sizes ranging from 40x40 to 320x320 with intervals of 40 (40x40, 80x80, 

etc.) with 10 repeats for each are generated by the recursive backtracking algorithm. 

2. The dead-end culling algorithm is used to turn the perfect mazes generated in step 1 to 

braided mazes. 

3. The mazes are solved by Dijkstra’s pathfinding algorithm and the A* algorithm. The 

runtimes and shortest path lengths for each maze are recorded. 

5. Data Presentation 

After the tests, the output of the code (appendix 2) was manually translated into MS Excel, 

where the average and uncertainty of all the trials were calculated (raw data tables in 

appendix 3) then formed into the following tables. 

 

Maze Size Against Average Shortest Path Found 

The two algorithms aren’t separated in this table since they had the exact same output. 

Maze Size Shortest 

Path 

40x40 78 ± 20 

80x80 148 ± 15 

120x120 219 ± 19 

160x160 287 ± 21 

200x200 367 ± 33 

240x240 426 ± 35 

280x280 494 ± 25 

320x320 559 ± 45 

Table 1: Maze size against average shortest path 
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Maze Size Against Average Runtime of Dijkstra’s and the A* Algorithm 

Maze Size Dijkstra Runtime (ms) A* Runtime (ms) 

40x40 26,6 ± 4,0 10,3 ± 8,0 

80x80 417,9 ± 19,5 134 ± 58,0 

120x120 2131,8 ± 60,5 802 ± 317,0 

160x160 7780,9 ± 827,5 2706,9 ± 762,0 

200x200 23049,9 ± 2226,5 9733,8 ± 4736,5 

240x240 51978,3 ± 3651,0 24833,6 ± 13527,0 

280x280 109061,1 ± 29995,0 65271,1 ± 19982,5 

320x320 184742,9 ± 20941,0 121041,2 ± 57608,0 

 

Maze Size Against Ratio Between the Average Runtimes of Dijkstra and A* 

The values were calculated simply by doing the operation Dijkstra Runtime divided by A* 

Runtime. 

Maze Size Ratio 

40 2,58 

80 3,12 

120 2,69 

160 2,87 

200 2,37 

240 2,10 

280 1,67 

320 1,53 

 

The tables 1, 2 and 3 were used to create the following graphs (graphs 1, 2, 3, 4, 5). 

Table 2: Maze size against average runtimes of Dijkstra and A* 

 

Table 3: Maze size against ratio between average runtimes of Dijkstra and A* 
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Shortest Path against Maze Size 

 

 

Runtime of Dijkstra’s and the A* Pathfinding Algorithms against Maze Size 

Uncertainties were not added to this graph as they would obstruct the view.  
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Graph 2: Maze size against Dijkstra and A* runtime 
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Runtime of Dijkstra’s Algorithm against Maze Size 

 

 

Runtime of the A* Algorithm against Maze Size 
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Graph 4: Maze size against A* runtime 
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Dijkstra to A* Runtime Ratio against Maze Size 

 

 

The graphs 1, 2, 3, 4, 5 were against the length of one axis of the maze (taken as “Maze 

Size”) instead of its area (total number of nodes in the maze) because the shortest path length 

is linear to it value unlike its area. This helps in analyze the runtimes of the algorithms 

because they operate mainly on the shortest path and not the whole maze. 

6. Data Analysis 

The shortest paths found for the same mazes by the two algorithms were always the same, 

showing that both are capable of finding the shortest path successfully, which was predicted 

in the hypothesis. Seeing graph 1, the relationship between the size of one side of the maze is 

linear to the shortest path between the specified starting and ending points. 

 

Seeing graph 2 and table 2, the runtime of the A* algorithm is always shorter than Dijkstra’s.  
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It can be understood from graphs 3 and 4 that the curves roughly have the same shape 

(exponential increase), which relates to the fact that they derive from the same algorithm.  

 

Seeing graph 3, Dijkstra’s algorithm has unstable error bars, even while tending to have a 

bigger uncertainty as the maze gets larger. This is however not a direct correlation as the 

uncertainty for the 280x280 maze (± 29995) is larger than the uncertainty for the 320x320 

maze (± 20941). These two uncertainties are also very large, showing that there are random 

errors in the form of the complexities of the mazes.  

 

Seeing graph 4, the A* algorithm has its error bars widen steadily in correlation with the 

runtime, but the uncertainties are very large, especially at points 40 (nearly as large as the 

runtime value), 240 and 320 (approximately half the value). This shows that there have been 

a very large range of random errors throughout the tests. Despite this range of runtime, a very 

little portion of it falls in the range of the runtime of Dijkstra’s algorithm, showing that A* 

has less runtime. This large range can be attributed to the predicting characteristics of the 

heuristic function and the varying shortest solution of the maze even when size is constant. 

 

Finally, from the last graph it can be seen that there is a general decrease of the ratio between 

the runtimes of the two algorithms. This means that the difference between the two gets 

smaller as the size of the maze increases. This contradicts the hypothesis, as it was predicted 

that the difference would decrease as the size of the maze gets smaller. This change in 

difference might be due to the heuristic function not being able to approximate the h-cost as 

well in larger mazes. 
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From the data, it can be seen that even though their difference decreases as the maze gets 

larger, the A* star algorithm performs much faster that Dijkstra’s algorithm. In smaller mazes 

such as in an 80x80 grid, it can find the same shortest path approximately 3 times faster, 

doing the same operation on a 320x320 grid 1,5 times faster than Dijkstra’s algorithm. 

7. Limitations 

One of the major limitations of the methodology as seen in the data analysis is the fact that 

the runtime values of both algorithms are very imprecise. This is mainly caused by the fact 

that different mazes of the same size can have different complexities or difficulty, also having 

shortest paths with different lengths. This was also talked about in the control variables 

section, where it was stated that it was very hard to procedurally generate mazes with very 

similar difficulty and similar shortest path length (similar elitism). The impreciseness of the 

result degrades its reliability. 

 

Another limitation which contributed to the impreciseness of the result is the fact that only 10 

trials are being done for each selected maze size. This renders many different mazes 

untouchable and increases random errors vastly as the mazes are randomly generated. It also 

doesn’t show the worst- and best-case scenarios.  

 

The lack of variation of the dead ends and loops (the maze not being partially braided) might 

affect the results in a real-life application side. Although having random decisions between 

dead ends and loops would significantly increase the random errors which are already very 

high, they would represent a maze in a game or actual city streets much better than the 

current fully braided model. The same can be said about putting weights into paths between 

nodes. 
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The last graph showed that the ratio between the algorithms was decreasing but didn’t show a 

1:1 ratio. It cannot be known if A* will still be superior if gone into larger mazes. 

8. Further Development 

To increase precision, the independent variable could be changed to a specific shortest path 

length in a specific maze size. This could be done through setting a wanted path length and 

iterating until a maze which has the wanted shortest path length has been found and doing the 

usual tests on it. This could reduce random errors, even though the code would take 

significantly more time to operate. 

 

Instead of looking at 10 samples from a specific maze size, all the mazes in that size can be 

evaluated. Algorithms which are uniform (can create all possible mazes) such as Wilson’s or 

the Aldous-Broder algorithm can be used for the maze generation (Pullen). This would 

include the best- and worst-case scenarios in the result. This would also make finding the 

precise average time complexity of both algorithms possible as the nature of the input can be 

analyzed wholly. 

 

Partially braiding the maze (as opposed to full braiding) or assigning weights for paths 

between nodes can make the maze resemble a web of streets or a videogame map more(with 

dead-ends, loops and harder paths to traverse), even though it would decrease the precision 

drastically. 

9. Final Conclusion 

This investigation aimed at finding the runtime difference between Dijkstra’s and the A* 

pathfinding algorithms at solving maze problems with varying sizes. After the experiment 
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and result analysis, it can be concluded that the A* algorithm performs much faster than 

Dijkstra’s algorithm. 

This investigation aimed at finding the runtime difference between Dijkstra’s and the A* 

pathfinding algorithms at solving maze problems. After doing the experiment by running the 

two algorithms on procedurally generated mazes of varying sizes and recording the runtimes, 

it can be seen that the runtime of both algorithms increased exponentially as the size (hence 

the shortest path) of the mazes increased. It was observed that the uncertainties of the 

Dijkstra algorithm increased along with the increase of the average runtime, albeit without a 

clear correlation. Similarly, the uncertainty of the A* algorithm increased with the average 

runtime, but it was consistent and much larger than Dijkstra’s. The runtime of the A* 

algorithm was always better than Dijkstra’s, with the difference between them reducing from 

3 times to 1,5 times as the maze size increased. 

 

The problem of the mazes having different lengths of shortest paths even when the size is the 

same (resulting in large random errors) can be solved by having the independent variable as 

shortest path length instead of size. Also, partially braiding the maze might lead to more 

realistic results or assessing all mazes for a single size can increase precision and aid in 

acquiring the time complexity. 

 

Since the A* algorithm was found to be faster than Dijkstra’s algorithm, it is advised to use 

the A* algorithm in pathfinding problems which resemble or are non-weighted mazes with 

multiple paths going from the start to the goal to decrease the runtime required.  
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11. Appendix 
11.1 Body of Code 
It must be noted that the code written for the investigation isn’t documented. 

 

using System; 

using System.Collections; 

using System.Collections.Generic; 

 

public class Node 

{ 

    public int x; 

    public int y; 

    public Node(int xPosition, int yPosition) //argument for x,y positions in Setup() 

    { 

        x = xPosition; 

        y = yPosition; 

    } 

    public bool isVisited = false; 

    public bool[] walls = new bool[4]; 

 

    //Djkstra components 

    public int dDistance = int.MaxValue; 

    public Node previous = null; 

 

    //A* components 

    public int fCost; 

    public int gCost; 

    public int hCost; 

} 

 

namespace General_Test 

{ 

    class Program 

    { 

        static void Main(string[] args) 

        { 

            Console.WriteLine("-------------------------------------------------"); 

            var mainWatch = System.Diagnostics.Stopwatch.StartNew(); 

            //startup 

            int iterate = 5; 

            var Watch = System.Diagnostics.Stopwatch.StartNew(); 

            for (int i = 0; i < 100000000; i++) 

            { 

                iterate++; 

            } 

            Watch.Stop(); 

            Console.Write("Startup Runtime: "); 

            Console.WriteLine(Watch.Elapsed); 
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            //important variables 

            int size = 40; 

            bool braidOn = true; 

            bool captionsOn = false; 

            int trialAmount = 1; 

 

            Console.Write("Size: "); 

            Console.WriteLine(size); 

            Console.WriteLine(""); 

 

            for (int globalCounter = 0; globalCounter < trialAmount; globalCounter++) //repeat 

test 

            { 

                Stack stack = new Stack(); 

                Node[,] allNodes = new Node[size, size]; 

 

 

                List<Node> FindUnvisitedNeighbors(Node inputNode) 

                { 

                    List<Node> neighbors = new List<Node>(); 

                    int x = inputNode.x; 

                    int y = inputNode.y; 

 

                    if (x != 0) 

                    { 

                        if (!allNodes[y, x - 1].isVisited) 

                        { 

                            neighbors.Add(allNodes[y, x - 1]); 

                        } 

                    } 

                    if (x != size - 1) 

                    { 

                        if (!allNodes[y, x + 1].isVisited) 

                        { 

                            neighbors.Add(allNodes[y, x + 1]); 

                        } 

                    } 

                    if (y != 0) 

                    { 

                        if (!allNodes[y - 1, x].isVisited) 

                        { 

                            neighbors.Add(allNodes[y - 1, x]); 

                        } 

                    } 

                    if (y != size - 1) 

                    { 

                        if (!allNodes[y + 1, x].isVisited) 

                        { 

                            neighbors.Add(allNodes[y + 1, x]); 

                        } 
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                    } 

 

                    return neighbors; 

                } 

 

                Node PickRandomFromNeighbors(List<Node> neighbors) 

                { 

                    Random rnd = new Random(); 

                    return neighbors[rnd.Next(0, neighbors.Count)];  //can implement if statement if 

0,0 doesnt work 

                } 

 

                void RemoveWall(Node node1, Node node2) 

                { 

                    int xDif = node1.x - node2.x; 

                    int yDif = node1.y - node2.y; 

 

                    if (yDif == 1)  //Top 

                    { 

                        node1.walls[0] = true; 

                        node2.walls[2] = true; 

                    } 

                    if (xDif == -1) //Right 

                    { 

                        node1.walls[1] = true; 

                        node2.walls[3] = true; 

                    } 

                    if (yDif == -1) //Bottom 

                    { 

                        node1.walls[2] = true; 

                        node2.walls[0] = true; 

                    } 

                    if (xDif == 1)  //Left 

                    { 

                        node1.walls[3] = true; 

                        node2.walls[1] = true; 

                    } 

                } 

 

                int WallAmount(Node node) 

                { 

                    int wallAmount = 0; 

                    int x = node.x; 

                    int y = node.y; 

 

                    foreach (var wall in node.walls) 

                    { 

                        //no need for checking if border node 

                        if (!wall) 

                        { 
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                            wallAmount++; 

                        } 

                    } 

 

                    return wallAmount; 

                } 

 

                void RemoveRandomWall(Node node1) 

                { 

                    int x = node1.x; 

                    int y = node1.y; 

                    List<Node> walledNeighbors = new List<Node>(); 

 

                    if (y != 0) 

                    { 

                        if (node1.walls[0] == false) 

                        { 

                            walledNeighbors.Add(allNodes[y - 1, x]); 

                        } 

                    }   //top 

 

                    if (x != size - 1) 

                    { 

                        if (node1.walls[1] == false) 

                        { 

                            walledNeighbors.Add(allNodes[y, x + 1]); 

                        } 

                    }   //right 

 

                    if (y != size - 1) 

                    { 

                        if (node1.walls[2] == false) 

                        { 

                            walledNeighbors.Add(allNodes[y + 1, x]); 

                        } 

                    }   //bottom 

 

                    if (x != 0) 

                    { 

                        if (node1.walls[3] == false) 

                        { 

                            walledNeighbors.Add(allNodes[y, x - 1]); 

                        } 

                    }   //left 

 

                    RemoveWall(node1, PickRandomFromNeighbors(walledNeighbors)); 

                } 

 

                void Setup() 

                { 
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                    for (int i = 0; i < size; i++) 

                    { 

                        for (int j = 0; j < size; j++) 

                        { 

                            allNodes[i, j] = new Node(j, i); 

                        } 

                    } 

                }   //Sets up the maze board 

 

                Setup(); 

                allNodes[0, 0].isVisited = true; 

                stack.Push(allNodes[0, 0]); 

 

                while (stack.Count > 0) 

                { 

                    Node current = (Node)stack.Pop(); 

                    List<Node> unvisitedNeighbors = FindUnvisitedNeighbors(current); 

 

                    if (unvisitedNeighbors.Count > 0) 

                    { 

                        stack.Push(current); 

                        Node chosen = PickRandomFromNeighbors(unvisitedNeighbors); 

                        RemoveWall(current, chosen); 

                        chosen.isVisited = true; 

                        stack.Push(chosen); 

 

                    } 

 

                }   //Main Maze Construction 

 

                if (braidOn) 

                { 

                    foreach (var node in allNodes) 

                    { 

                        int wallAmount = WallAmount(node); 

                        if (wallAmount > 2) 

                        { 

                            RemoveRandomWall(node); 

                        } 

                    } 

                }   //Dead End Culling 

 

 

                bool flag = false; 

                for (int i = 0; i < size; i++) 

                { 

                    for (int j = 0; j < size; j++) 

                    { 

                        bool flag2 = false; 

                        for (int k = 0; k < 4; k++) 
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                        { 

                            if (allNodes[i, j].walls[k]) 

                            { 

                                flag2 = true; 

                            } 

                        } 

                        if (!flag2) 

                        { 

                            flag = true; 

                        } 

                    } 

                }   //Maze Dimensions Output 

                if (!flag && captionsOn) 

                { 

                    Console.WriteLine("Success"); 

                }   //Checking if any node is isolated 

 

 

                foreach (var node in allNodes) 

                { 

                    node.isVisited = false; 

                }   //reset variables 

 

 

                //DIJKSTRA 

                Node startNode = allNodes[size / 5, size / 5]; 

                Node endNode = allNodes[4 * size / 5, 4 * size / 5];    //other end of maze 

 

                List<Node> unvisitedNodes = new List<Node>(); 

                for (int i = 0; i < size; i++) 

                { 

                    for (int j = 0; j < size; j++) 

                    { 

                        unvisitedNodes.Add(allNodes[i, j]); 

                    } 

                }   //fill unvisitedNodes 

 

                List<Node> FindUnvisitedReachableNeighbors(Node inputNode) 

                { 

                    List<Node> neighbors = new List<Node>(); 

                    int x = inputNode.x; 

                    int y = inputNode.y; 

 

                    if (x != 0) 

                    { 

                        if (unvisitedNodes.Contains(allNodes[y, x - 1]) && inputNode.walls[3]) 

                        { 

                            neighbors.Add(allNodes[y, x - 1]); 

                        } 

                    } 



 36 

                    if (x != size - 1) 

                    { 

                        if (unvisitedNodes.Contains(allNodes[y, x + 1]) && inputNode.walls[1]) 

                        { 

                            neighbors.Add(allNodes[y, x + 1]); 

                        } 

                    } 

                    if (y != 0) 

                    { 

                        if (unvisitedNodes.Contains(allNodes[y - 1, x]) && inputNode.walls[0]) 

                        { 

                            neighbors.Add(allNodes[y - 1, x]); 

                        } 

                    } 

                    if (y != size - 1) 

                    { 

                        if (unvisitedNodes.Contains(allNodes[y + 1, x]) && inputNode.walls[2]) 

                        { 

                            neighbors.Add(allNodes[y + 1, x]); 

                        } 

                    } 

 

                    return neighbors; 

                }    

 

                Node PickCheapestUnvisitedNode() 

                { 

                    int lowestCost = int.MaxValue; 

                    Node lowestNode = null; 

                    foreach (Node node in unvisitedNodes) 

                    { 

                        if (node.dDistance < lowestCost) 

                        { 

                            lowestCost = node.dDistance; 

                            lowestNode = node; 

                        } 

                    } 

                     

                    return lowestNode; 

                } 

 

                var dijkstraWatch = System.Diagnostics.Stopwatch.StartNew(); 

                //Dijkstra start 

                Node currentNode = startNode; 

                currentNode.dDistance = 0; 

                while (currentNode != endNode) 

                { 

                    if (currentNode == null) 

                    { 

                        break; 
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                    } 

                    List<Node> availableNeighbors = 

FindUnvisitedReachableNeighbors(currentNode); 

                    if (availableNeighbors.Count > 0) 

                    { 

                        foreach (Node neighbor in availableNeighbors) 

                        { 

                            int cost = currentNode.dDistance + 1; 

                            if (cost < neighbor.dDistance) 

                            { 

                                neighbor.dDistance = cost; 

                                neighbor.previous = currentNode; 

                            } 

                        } 

                    } 

                     

                    currentNode.isVisited = true; 

                    unvisitedNodes.Remove(currentNode); 

                    currentNode = PickCheapestUnvisitedNode(); 

                }   //Main Body 

                    //Dijkstra end 

                dijkstraWatch.Stop(); 

                if (captionsOn) { Console.Write("Dijkstra Runtime (ms): "); } 

                Console.WriteLine(dijkstraWatch.ElapsedMilliseconds); 

 

                //Shortest path output 

                currentNode = endNode; 

                List<Node> shortestPath = new List<Node>(); 

                if (endNode.previous == null) 

                { 

                    Console.WriteLine("No path found"); 

                }   //path has not been found 

                else 

                { 

                    while (currentNode != startNode) 

                    { 

                        shortestPath.Add(currentNode); 

                        currentNode = currentNode.previous; 

                    }   //Path determination 

                    if (captionsOn) { Console.Write("Shortest path length: "); } 

                    Console.WriteLine(shortestPath.Count + 1); 

                }   //path has been found 

 

 

                currentNode = null; 

                foreach (var node in allNodes) 

                { 

                    node.isVisited = false; 

                    node.dDistance = int.MaxValue; 

                    node.previous = null; 
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                }   //reset variables 

 

                //A STAR 

                List<Node> open = new List<Node>(); 

                List<Node> closed = new List<Node>(); 

 

                int visitedNodeCount = 0; 

 

                Node LowestInOpen() 

                { 

                    int lowestFCost = size * size; 

                    Node cheapestNode = open[0]; 

                    foreach (var node in open) 

                    { 

 

                        if (node.fCost < lowestFCost) 

                        { 

                            lowestFCost = node.fCost; 

                            cheapestNode = node; 

                        } 

                    } 

 

                    if (cheapestNode != null) 

                    { 

                        return cheapestNode; 

                    } 

                    return null; 

                } 

 

                List<Node> TraversibleNotClosedNeighbors(Node inputNode) 

                { 

                    List<Node> neighbors = new List<Node>(); 

                    int x = inputNode.x; 

                    int y = inputNode.y; 

 

                    if (x != 0) 

                    { 

                        if (!closed.Contains(allNodes[y, x - 1]) && inputNode.walls[3]) 

                        { 

                            neighbors.Add(allNodes[y, x - 1]); 

                        } 

                    } 

                    if (x != size - 1) 

                    { 

                        if (!closed.Contains(allNodes[y, x + 1]) && inputNode.walls[1]) 

                        { 

                            neighbors.Add(allNodes[y, x + 1]); 

                        } 

                    } 

                    if (y != 0) 
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                    { 

                        if (!closed.Contains(allNodes[y - 1, x]) && inputNode.walls[0]) 

                        { 

                            neighbors.Add(allNodes[y - 1, x]); 

                        } 

                    } 

                    if (y != size - 1) 

                    { 

                        if (!closed.Contains(allNodes[y + 1, x]) && inputNode.walls[2]) 

                        { 

                            neighbors.Add(allNodes[y + 1, x]); 

                        } 

                    } 

 

                    return neighbors; 

                } 

 

                int CalculateFCost(Node inputNode) 

                { 

                    Node current = inputNode; 

                    while (current != startNode)    //calculating path to start 

                    { 

                        inputNode.gCost++; 

                        current = current.previous; 

                    } 

 

                    inputNode.hCost = (int)Math.Sqrt(Math.Pow(Math.Abs(inputNode.x - 

endNode.x),2) + Math.Pow(Math.Abs(inputNode.y - endNode.y),2)); 

                     

                    return inputNode.gCost + inputNode.hCost; 

                } 

 

                var aStarWatch = System.Diagnostics.Stopwatch.StartNew(); 

                startNode.fCost = CalculateFCost(startNode); 

                open.Add(startNode); 

                while (currentNode != endNode) 

                { 

                    currentNode = LowestInOpen(); 

                    open.Remove(currentNode); 

                    closed.Add(currentNode); 

 

                    visitedNodeCount++; 

 

                    foreach (var neighbor in TraversibleNotClosedNeighbors(currentNode)) 

                    { 

                        if (!open.Contains(neighbor)) 

                        { 

                            open.Add(neighbor); 

                            neighbor.previous = currentNode; 

                            neighbor.fCost = CalculateFCost(neighbor); 
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                        } else 

                        { 

                            if (neighbor.gCost > currentNode.gCost + 1) 

                            { 

                                neighbor.previous = currentNode; 

                                neighbor.fCost = CalculateFCost(neighbor); 

                            } 

                        } 

                    } 

                }   //Main Body 

                aStarWatch.Stop(); 

                if (captionsOn) { Console.Write("A* Runtime (ms): "); } 

                Console.WriteLine(aStarWatch.ElapsedMilliseconds); 

 

                if (captionsOn) { Console.Write("A* visited nodes: "); 

                    Console.WriteLine(visitedNodeCount); 

                } 

 

 

                currentNode = endNode; 

                List<Node> shortestPath2 = new List<Node>(); 

                if (endNode.previous == null) 

                { 

                    Console.WriteLine("No path found"); 

                }   //path has not been found 

                else 

                { 

                    while (currentNode != startNode) 

                    { 

                        shortestPath2.Add(currentNode); 

                        currentNode = currentNode.previous; 

                    }   //Path determination 

                    if (captionsOn) { Console.Write("Shortest path length: "); } 

                    Console.WriteLine(shortestPath2.Count + 1); 

                }   //path has been found 

 

                Console.WriteLine(""); 

            } 

 

            mainWatch.Stop(); 

            Console.Write("Total Runtime: "); 

            Console.WriteLine(mainWatch.Elapsed); 

 

            Console.WriteLine("-------------------------------------------------"); 

            Console.WriteLine(""); 

 

        } 

         

    } 

} 
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10.2 Code Ouput 
------------------------------------------------- 
Startup Runtime: 00:00:00.2343633 
Size: 40 
 
31 
87 
19 
87 
 
30 
83 
10 
83 
 
31 
103 
16 
103 
 
28 
63 
5 
63 
 
23 
75 
10 
75 
 
24 
75 
13 
75 
 
26 
81 
13 
81 
 
25 
69 
4 
69 
 
24 
79 
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10 
79 
 
24 
63 
3 
63 
 
Total Runtime: 00:00:00.6861862 
------------------------------------------------ 
------------------------------------------------- 
Startup Runtime: 00:00:00.2263400 
Size: 80 
 
420 
137 
95 
137 
 
418 
137 
134 
137 
 
400 
135 
144 
135 
 
406 
165 
93 
165 
 
436 
151 
88 
151 
 
404 
135 
120 
135 
 
426 
151 
188 
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151 
 
405 
139 
111 
139 
 
425 
163 
204 
163 
 
439 
165 
163 
165 
 
Total Runtime: 00:00:05.9816877 
------------------------------------------------- 
------------------------------------------------- 
Startup Runtime: 00:00:00.2247201 
Size: 120 
 
2187 
237 
1163 
237 
 
2140 
203 
625 
203 
 
2150 
225 
811 
225 
 
2120 
225 
1079 
225 
 
2122 
225 
899 
225 
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2150 
219 
906 
219 
 
2066 
213 
696 
213 
 
2080 
231 
758 
231 
 
2173 
209 
529 
209 
 
2130 
199 
554 
199 
 
Total Runtime: 00:00:30.0746075 
------------------------------------------------- 
------------------------------------------------- 
Startup Runtime: 00:00:00.2303321 
Size: 160 
 
8032 
289 
3157 
289 
 
8114 
297 
3164 
297 
 
7047 
303 
2379 
303 
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7264 
285 
2845 
285 
 
8702 
291 
3061 
291 
 
8032 
275 
3162 
275 
 
8205 
263 
1938 
263 
 
7809 
271 
1686 
271 
 
7545 
305 
3210 
305 
 
7059 
287 
2467 
287 
 
Total Runtime: 00:01:46.0339349 
------------------------------------------------- 
------------------------------------------------- 
Startup Runtime: 00:00:00.2237627 
Size: 200 
 
21733 
375 
7970 
375 
 
21323 
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335 
5700 
335 
 
21519 
373 
11313 
373 
 
25714 
365 
8653 
365 
 
22220 
369 
9832 
369 
 
23568 
383 
12346 
383 
 
25193 
385 
12538 
385 
 
24566 
391 
14268 
391 
 
23402 
365 
9923 
365 
 
21261 
325 
4795 
325 
 
Total Runtime: 00:05:29.5174085 
------------------------------------------------- 
------------------------------------------------- 
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Startup Runtime: 00:00:00.2262817 
Size: 240 
 
54796 
413 
22692 
413 
 
54284 
465 
38921 
465 
 
51360 
411 
16138 
411 
 
51444 
405 
17293 
405 
 
53293 
435 
28051 
435 
 
48828 
421 
22450 
421 
 
51450 
443 
25290 
443 
 
48345 
395 
11867 
395 
 
50336 
435 
29957 
435 
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55647 
441 
35677 
441 
 
Total Runtime: 00:12:50.3569303 
------------------------------------------------- 
------------------------------------------------- 
Startup Runtime: 00:00:00.2231192 
Size: 280 
 
102383 
491 
75610 
491 
 
103014 
499 
64205 
499 
 
102239 
495 
72156 
495 
 
114291 
509 
69881 
509 
 
110878 
491 
54733 
491 
 
105957 
507 
80189 
507 
 
102866 
473 
40224 
473 
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99297 
495 
64165 
495 
 
94848 
517 
60757 
517 
 
154838 
467 
70791 
467 
 
Total Runtime: 00:29:06.1506214 
------------------------------------------------- 
------------------------------------------------- 
Startup Runtime: 00:00:00.2282776 
Size: 320 
 
186551 
603 
168717 
603 
 
180088 
521 
69717 
521 
 
182661 
539 
91659 
539 
 
192621 
599 
148384 
599 
 
181899 
549 
116501 
549 
 
182335 



 50 

577 
144374 
577 
 
179879 
561 
147926 
561 
 
181219 
571 
163058 
571 
 
211029 
557 
106575 
557 
 
169147 
513 
53501 
513 
 
Total Runtime: 00:51:01.8120408 

 

10.3 Raw Data 
Maze 
Size 40  startup 2343633         

 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Avg 

uncertaint
y 

Dijkstra 
Runtim
e 31 30 31 28 23 24 26 25 24 24 26,6 4 

Dijkstra 
Path 87 83 103 63 75 75 81 69 79 63 77,8 20 
A* 

Runtim
e 19 10 16 5 10 13 13 4 10 3 10,3 8 

A* Path 87 83 103 63 75 75 81 69 79 63 77,8 20 

             

Maze 
Size 80  startup 2263400         

 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Avg 

uncertaint
y 

Dijkstra 

Runtim
e 420 418 400 406 436 404 426 405 425 439 417,9 19,5 

Dijkstra 
Path 137 137 135 165 151 135 151 139 163 165 147,8 15 
A* 
Runtim
e 95 134 144 93 88 120 188 111 204 163 134 58 

A* Path 137 137 135 165 151 135 151 139 163 165 147,8 15 

             

Maze 
Size 120  startup 2247201         

 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Avg 

uncertaint
y 

Dijkstra 
Runtim
e 2187 2140 2150 2120 2122 2150 2066 2080 2173 2130 2131,8 60,5 
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Dijkstra 
Path 237 203 225 225 225 219 213 231 209 199 218,6 19 
A* 
Runtim
e 1163 625 811 1079 899 906 696 758 529 554 802 317 

A* Path 237 203 225 225 225 219 213 231 209 199 218,6 19 

             

Maze 
Size 160  startup 2303321         

 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Avg 

uncertaint
y 

Dijkstra 
Runtim
e 8032 8114 7047 7264 8702 8032 8205 7809 7545 7059 7780,9 827,5 

Dijkstra 
Path 289 297 303 285 291 275 263 271 305 287 286,6 21 
A* 
Runtim
e 3157 3164 2379 2845 3061 3162 1938 1686 3210 2467 2706,9 762 

A* Path 289 297 303 285 291 275 263 271 305 287 286,6 21 

             

Maze 
Size 200  startup 2237627         

 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Avg 

uncertaint
y 

Dijkstra 
Runtim
e 21733 21323 21519 25714 22220 23568 25193 24566 23402 21261 23049,9 2226,5 

Dijkstra 
Path 375 335 373 365 369 383 385 391 365 325 366,6 33 
A* 
Runtim
e 7970 5700 11313 8653 9832 12346 12538 14268 9923 4795 9733,8 4736,5 

A* Path 375 335 373 365 369 383 385 391 365 325 366,6 33 

             

Maze 
Size 240  startup 2262817         

 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Avg 

uncertaint
y 

Dijkstra 
Runtim
e 54796 54284 51360 51444 53293 48828 51450 48345 50336 55647 51978,3 3651 

Dijkstra 
Path 413 465 411 405 435 421 443 395 435 441 426,4 35 
A* 
Runtim
e 22692 38921 16138 17293 28051 22450 25290 11867 29957 35677 24833,6 13527 

A* Path 413 465 411 405 435 421 443 395 435 441 426,4 35 

             

Maze 
Size 280  startup 2231192         

 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Avg 

uncertaint
y 

Dijkstra 
Runtim
e 102383 103014 102239 114291 110878 105957 102866 99297 94848 154838 109061,1 29995 

Dijkstra 

Path 491 499 495 509 491 507 473 495 517 467 494,4 25 
A* 
Runtim
e 75610 64205 72156 69881 54733 80189 40224 64165 60757 70791 65271,1 19982,5 

A* Path 491 499 495 509 491 507 473 495 517 467 494,4 25 

             

Maze 
Size 320  startup 2282776         

 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Avg 

uncertaint

y 
Dijkstra 
Runtim
e 186551 180088 182661 192621 181899 182335 179879 181219 211029 169147 184742,9 20941 

Dijkstra 
Path 603 521 539 599 549 577 561 571 557 513 559 45 
A* 
Runtim
e 168717 69717 91659 148384 116501 144374 147926 163058 106575 53501 121041,2 57608 

A* Path 603 521 539 599 549 577 561 571 557 513 559 45 
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