
THE RUNTIME

DIFFERENCE BETWEEN

THE A* AND DIJKSTRA’S

PATHFINDING

ALGORITHMS IN

SOLVING MAZE

PROBLEMS

Research Question
What is the difference between the runtime efficiency of Dijkstra’s and the A*

pathfinding algorithms in finding the shortest path in mazes with varying size?

Computer Science Extended Essay

Candidate Code: hcg315

Word Count: 3988

CS EE World
https://cseeworld.wixsite.com/home
May 2021
26/34
B
Submitter Info: Anonymous

 1

Table of Contents

1. Introduction……………………………………………………………………………….……2

2. Background Information……………………………………………………………………….4

2.1 Procedural Maze Generation………………………………………………………………4

 2.1.1 Maze Properties…………………………………………….………...…………4

 2.1.2 The Recursive Backtracker Algorithm…………………………..………...……5

 2.1.3 Dead End Culling…………………………………………..……………...……7

2.2 Pathfinding Algorithms………………………………………………………………….…8

 2.2.1 Dijkstra’s Pathfinding Algorithm……………………..……………………...…8

 2.2.2 The A* Pathfinding Algorithm………………………………….………………9

2.3 Time Complexity of Algorithms……………………………………………………….…11

 2.3.1 Time Complexity of Dijkstra’s Algorithm………………………………….…12

 2.3.2 Time Complexity of the A* Algorithm…………………………..............……12

3. Hypothesis……………………………………………………………………………………13

4. Methodology…………………………………………………………………………….……13

4.1 Controlled Variables……………………………………………………………..15

4.2 Procedure Steps…………………………………………………………...……..16

5. Data Presentation……………………………………………………………………………..16

6. Data Analysis…………………………………………………………………….………...…20

7. Limitations…………………………………………………………………………….……...22

8. Further Development…………………………………………………………………………23

9. Final Conclusion…………………………………………………………………….………..23

10. Bibliography………………………………………………………………………………….25

11. Appendix…………………………………………………………………….………………..30

11.1 Body of Code……………………………………………………………...……30

11.2 Code Output………………………………………………………………….…41

11.3 Raw Data…………………………………………………………………….…50

 2

1. Introduction

Research Question: What is the difference between the runtime efficiency of Dijkstra’s and

the A* pathfinding algorithms in finding the shortest path in mazes with varying size?

Pathfinding algorithms (finding the shortest path between two set points on a grid), although

might sound related only to technology, are an integral part of life. We, humans, have to

determine our path in tasks like commuting to work, assessing the length and other factors of

the road. Computers, however, need algorithms to determine the shortest path in such

problems (Krafft 1,2). Pathfinding in computers is used in “navigation, video games,

robotics, logistics” and others. (Algfoor, Sunar and Kolivand 1-3)

There are different pathfinding algorithms, from which Dijkstra’s (Khan) and the A*

algorithm (Mehta et al.) stand out as one of the most used algorithms.

This extended essay aims to investigate the runtime difference between Dijkstra’s and the A*

pathfinding algorithm in finding the shortest path from a starting and ending point in a maze

problem with multiple paths between the starting and ending points in the maze.

This paper can aid especially in the video game and navigation fields. In real time strategy

games such as Age of Empires, numerous units (armies, workers, etc.) constantly pathfind

around in a large map consisting of a 256x256 grid (Cui and Shi 128,129). Even though the

game is able to compute the paths of the units without visible lag, the players have

consistently complained about units getting stuck or traverse a nonsensical path (H. Patel).

Increasing the efficiency of the pathfinding algorithm used can aid in the better playability of

the game by solving the existing problems.

 3

 Furthermore, autonomous drones are also starting to be a part of our lives, potentially

shipping crucial cargo in the future. Employing the most efficient pathfinding algorithm can

help in reducing costs and increasing mission success chances of such drones (Fu et al. 1,2).

To investigate the difference between the algorithms, a maze generation algorithm (Recursive

backtracking with dead end culling) along with the A* and Dijkstra’s algorithms were

programmed in C#. Their runtimes on different sizes of procedurally generated mazes were

measured and analyzed.

 4

2. Background Information

2.1 Procedural Maze Generation

Mazes are so old as to inspire Greek myths like the Minotaur and the labyrinth and are used

currently as entertainment in means of video games (Pac-man, many roguelike games, etc.)

or simply as puzzles to solve on the backs of newspapers (Hybesis). With the use of

computers, completely random and very large mazes can be generated. There are many

different procedural maze generation algorithms. (Pullen)

2.1.1 Maze Properties

Mazes have many different properties, indicating their nature. The properties relevant to this

investigation are shown below.

Perfect mazes are defined by three properties: not having any passage loops, not having any

isolated nodes and having only one path between any node pair in the maze. There are

numerous ways to generate and solve such mazes as they are the most commonly used maze

type. (Foltin 7)

Braided mazes, unlike perfect mazes, have no dead ends and may have multiple paths of

varying length between two node in the maze (Foltin 7). Although there are different ways to

generate such mazes (Ioannidis 31-35), the algorithms are much rarer since this maze type

isn’t as popular as perfect mazes.

 5

Partial braided mazes are a combination of dead ends and loops. The ratio between the dead

ends and loops can be calculated or manipulated. Similar to braided mazes, algorithms for the

procedural generation for partial braided mazes are uncommon.

(Pullen)

The elitism of a maze is how much the solution of the maze covers its area. An elitist maze

has a shorter and more direct solution, a non-elitist maze has a longer solution, covering more

of its area. If there are multiple solutions, the elitism applies to the shortest path.

(Pullen)

2.1.2 The Recursive Backtracker Algorithm

A simple way to generate perfect mazes is the ‘Recursive Backtracker’ algorithm, which is

based on the ‘depth first search technique’ (DFS). “The DFS algorithm wanders through the

graph in a depth-oriented way”. (Foltin 20-22) The algorithm travels whenever possible to a

neighbor of the current node, and if it can’t, it goes back to the previous vertex until it has

iterated through all vertices. While generating a maze, a grid with node which all have 4

walls around them is firstly created. Then when the algorithm is traveling between vertices

(or nodes), the wall between the two are destroyed, eventually generating a maze by boring

walls though the grid. (Hybesis)

The algorithm has two possible implementations, either by recursion or iterative. (Ioannidis

23-25) The recursive version uses a lot of memory and is prone to overflow errors, while the

iterative version uses a stack to store less data.

 6

The steps for the iterative implementation and an illustration for the generation (figure 1) and

a sample (figure 2) can be seen below.

1. Choose a starting point in the field.

2. Randomly choose a wall at that point and carve a passage through to the adjacent

node, but only if the adjacent node has not been visited yet. This becomes the new

current node.

3. If all adjacent node have been visited, back up to the last node that has uncarved

walls (shown by the yellow points in figure 1) and repeat step 2.

4. The algorithm ends when the process has backed all the way up to the starting

point. (Buck Maze Generation: Recursive Backtracking)

 Figure 1: Image depicting recursive backtracker steps (Foltin 22)

 7

2.1.3 Dead End Culling

While a vast number of algorithms exist for perfect maze generation, that is not the case for

braided maze generation. Even though algorithms such as “Random Restarts” (Ioannidis 35-

39) exist, they are uncommon. An easy way to obtain braided mazes is applying “dead-end

culling” to a perfect maze, changing the walls on the dead ends so that they no longer are

dead ends. Dead end culling also provides the option for exceptionally easy partial braiding

(with desired dead end to loop ratios). Pseudocode for dead end culling can be seen below.

1. Iterate through all node

2. If current node is a dead end (3 walls including outside borders) remove random wall

excluding outside borders

(Buck Mazes for Programmers)

Figure 2: Image depicting a maze created using the recursive backtracking algorithm (Ioannidis 28)

 8

2.2 Pathfinding Algorithms

Pathfinding algorithms are aimed to find the shortest possible path between two set points. It

has many applications such as street navigation in Google Maps, video games and maze

solving. There is a multitude of pathfinding algorithms. (Algfoor, Sunar and Kolivand 1-3)

2.2.1 Dijkstra’s Pathfinding Algorithm

Dijkstra’s algorithm expands outwards from its starting point until it meets the ending point.

There is a 100 % chance that the algorithm will find a shortest path (there can be multiple

shortest paths, with the same length). The illustration below shows the algorithm working on

a blank grid. The blue nodes have been visited by the algorithm, and the pink and purple

nodes are the start and end points respectively. (A. Patel)

Figure 3: Image depicting Dijkstra’s algorithm (A. Patel)

 9

Pseudocode for the algorithm can be seen below.

2.2.2 The A* Pathfinding Algorithm

A* is the most popular choice for pathfinding in video games (Mehta et al.) among others,

and is a modification of Dijkstra’s algorithm, and expands in the direction towards the goal. It

uses a heuristic function (finding an approximate solution) to find out paths which seem to be

leading to the goal and also favors paths which have the shortest path from the starting point.

It always finds a shortest path. (A. Patel)

Figure 4: Pseudocode for Dijkstra’s algorithm (Swift Easy Dijkstra’s Pathfinding)

 10

Calculating the cost of a node

The two goals of the algorithm (distance to the start and end nodes) are weighted by the f-

cost, which is the overall ‘cost’ of a node based on its distance to the start node (g-cost) and

the projected distance to the end node (h-cost). The f-, g- and h-costs are explained below.

f-cost: total cost of the node (g-cost + h-cost)

g-cost: length of the path between the node and the start

h-cost: heuristic, distance estimated to be between the node and the end. It can be acquired by

using the Pythagorean theorem on the x- and y-difference between the end and current node,

although other methods exist (Peters)

The pseudocode can be seen below.

Figure 5: Pseudocode for the A* algorithm (Swift Easy A*)

 11

Example illustrations of the algorithm can be seen in figures 6 and 7.

2.3 Time Complexity of Algorithms

Big O notation is commonly used for the time complexity (the relation of runtime as the input

gets larger). Big O notation has different cases for the best, average and worst outcomes, the

worst outcome being the most used. (Cormen et al. 43-50)

Worst-Case

The worst-case complexity is done most frequently since it is easy to calculate and can show

a general picture. Although it is useful, it might be too pessimistic in some cases or ignore the

complete picture. (Chauan)

Best-Case

The best case shows the lower bound of the time taken for the algorithm. This isn’t popular to

analyze since it can’t provide reliable information. An algorithm iterating over a very large

data set could have small best-case time complexity, while needing years to finish operating

on average. (Chauan)

Figure 6: Unobstructed A* algorithm (A. Patel)

Figure 7: Obstructed A* algorithm (A. Patel)

 12

Average-Case

The average case shows the time complexity of the algorithm in a more realistic and whole

sense than both the worst- and best- case. It is however difficult to calculate since the

‘average set of inputs’ is needed to be known. The set of inputs are assessed by their

probability and how much time they take, calculating the expected value. This nature of input

is then used to get the time complexity. (Zeil)

2.3.1 Time complexity of Dijkstra’s Algorithm

The worst-case time complexity of Dijkstra’s Algorithm is 𝑂(𝑉2), with V being the amount

of vertices (nodes) in the graph. (“Shortest Path Algorithms”)

To get the average case, the expected value of iterations is needed, which is wholly

dependent on the input. The nature of the input is needed to be known to find the average

case of Dijkstra’s algorithm.

(Nilsson)

2.3.2 Time complexity of the A* algorithm

The worst-case time complexity of the A* algorithm is the same as Dijkstra’s. This is due to

both algorithms having to iterate through all the nodes in the worst-case, resulting in the

same amount of iterations. This is also the case for the best-case, as a direct path towards

the end node without any diverging paths would result in the same amount of iterations as

well. However, due to using a heuristic function, the average case time complexity is aimed

to be improved. (Bast)

 13

Due to the usage of a heuristic function and the required nature of input, the average time

complexity can only be determined by finding the ‘quality’ of the heuristic and nature of the

input. (Russell and Norvig 97-104)

3. Hypothesis

Even though the best- and worst-case time complexities of Dijkstra’s algorithm and A*, a

heuristic function is used to make the A* algorithm be more guided towards the goal to

decrease the amount of iterations, hence decreasing the overall runtime. Therefore, the A*

algorithm is expected to have a shorter runtime than Dijkstra’s on average.

As the size of the maze gets smaller, the cost of the heuristic function is expected to get

more significant, which will result in the difference between the runtimes of the two

functions getting smaller.

The average time complexities of the two algorithms can’t be used to predict their runtimes

because they cannot be determined without running tests on the algorithms.

4. Methodology

The recursive backtracker, dead end culling; Dijkstra’s and the A* pathfinding algorithms

were written for the investigation (see appendix 1). The code was written with the steps in the

background information. The IDE “Visual Studio” was used for the C# implementation for

the algorithms in the investigation. Although diagonal movement isn’t allowed, the

Pythagorean theorem is still used to calculate the heuristics function (h-cost) for the A*

algorithm to maintain its integrity from real life applications.

 14

The runtime is measured by the “System.Diagnostics.Stopwatch” class, which is the class

commonly used for measuring runtime. (Allen)

The startup runtime output shows the speed at which the computer is running at the time of

startup. It accesses and edits an integer variable 100000000 times.

The two pathfinding algorithms are to find the shortest path from the starting point to the

ending point (declared to be at contrasting fifths of the whole grid. For example, on a

100x100 grid, the starting point is at coordinates relative to the top left corner (20,20), and

the ending point at (80,80)). This allows the algorithms to venture behind the starting and

ending points, rather than them being on opposite ends of the grid, not allowing any

movement back.

The output of the code will be easy to transfer manually to MS Excel for analysis. Sample

code output for a single trial is below.

Figure 8: Sample code output for a single trial

Dijkstra Runtime (ms)

A* Runtime (ms)

Shortest path found by Dijkstra

Shortest path found by A*

 15

4.1 Controlled Variables:

Maze characteristics: The characteristics of the maze are to be kept identical throughout the

whole tests. Three aspects of mazes are listed below.

Elitism: Constraining the shortest path length between the start and end points could help in

reducing random errors for the end result. Doing this however would be very tedious and

there is no clear algorithm which improves upon the elitism.

Braiding density: The maze will not be partially braided, since randomly picking dead ends

which won’t be removed will increase the effect of random errors on the end result. As

random errors due to the unchangeable elitism of the maze will be caused, it was opted out of

having partial braiding.

Tile costs/weights: Having random tile weights (the path length between two node) would

increase random errors just like the partial braiding, and therefore not implemented.

The computer that will be used (Macbook Air 2017) has the following specifications:

• 1.8GHz dual-core Intel Core i5 processor with 3MB shared L3 cache

• 8GB of 1,600MHz LPDDR3 RAM

• Intel HD Graphics 6000 (Haslam)

The exact same code except for the size of the maze (the independent variable) will be used

throughout the tests.

The IDE Visual Basic and language C# will be used for the code implementation throughout

the tests.

 16

4.2 Procedure Steps

1. Mazes of sizes ranging from 40x40 to 320x320 with intervals of 40 (40x40, 80x80,

etc.) with 10 repeats for each are generated by the recursive backtracking algorithm.

2. The dead-end culling algorithm is used to turn the perfect mazes generated in step 1 to

braided mazes.

3. The mazes are solved by Dijkstra’s pathfinding algorithm and the A* algorithm. The

runtimes and shortest path lengths for each maze are recorded.

5. Data Presentation

After the tests, the output of the code (appendix 2) was manually translated into MS Excel,

where the average and uncertainty of all the trials were calculated (raw data tables in

appendix 3) then formed into the following tables.

Maze Size Against Average Shortest Path Found

The two algorithms aren’t separated in this table since they had the exact same output.

Maze Size Shortest

Path

40x40 78 ± 20

80x80 148 ± 15

120x120 219 ± 19

160x160 287 ± 21

200x200 367 ± 33

240x240 426 ± 35

280x280 494 ± 25

320x320 559 ± 45

Table 1: Maze size against average shortest path

 17

Maze Size Against Average Runtime of Dijkstra’s and the A* Algorithm

Maze Size Dijkstra Runtime (ms) A* Runtime (ms)

40x40 26,6 ± 4,0 10,3 ± 8,0

80x80 417,9 ± 19,5 134 ± 58,0

120x120 2131,8 ± 60,5 802 ± 317,0

160x160 7780,9 ± 827,5 2706,9 ± 762,0

200x200 23049,9 ± 2226,5 9733,8 ± 4736,5

240x240 51978,3 ± 3651,0 24833,6 ± 13527,0

280x280 109061,1 ± 29995,0 65271,1 ± 19982,5

320x320 184742,9 ± 20941,0 121041,2 ± 57608,0

Maze Size Against Ratio Between the Average Runtimes of Dijkstra and A*

The values were calculated simply by doing the operation Dijkstra Runtime divided by A*

Runtime.

Maze Size Ratio

40 2,58

80 3,12

120 2,69

160 2,87

200 2,37

240 2,10

280 1,67

320 1,53

The tables 1, 2 and 3 were used to create the following graphs (graphs 1, 2, 3, 4, 5).

Table 2: Maze size against average runtimes of Dijkstra and A*

Table 3: Maze size against ratio between average runtimes of Dijkstra and A*

 18

Shortest Path against Maze Size

Runtime of Dijkstra’s and the A* Pathfinding Algorithms against Maze Size

Uncertainties were not added to this graph as they would obstruct the view.

0

100

200

300

400

500

600

700

40 80 120 160 200 240 280 320

Sh
o

rt
es

t
P

at
h

 L
en

gt
h

Maze Size

Shortest Path Against Maze SIze

0

50000

100000

150000

200000

40 80 120 160 200 240 280 320

R
u

n
ti

m
e

(m
s)

Maze Size

Runtime of Dijkstra's and A* algorithms against
Maze Size

Dijkstra A*

Graph 1: Maze size against shortest path

Graph 2: Maze size against Dijkstra and A* runtime

 19

Runtime of Dijkstra’s Algorithm against Maze Size

Runtime of the A* Algorithm against Maze Size

0

50000

100000

150000

200000

250000

0 50 100 150 200 250 300 350

R
u

n
ti

m
e

(m
s)

Maze Size

Dijkstra Runtime Against Maze Size

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 50 100 150 200 250 300 350

R
u

n
ti

m
e

(m
s)

Maze Size

A* Runtime Against Maze Size

Graph 3: Maze size against Dijkstra runtime

Graph 4: Maze size against A* runtime

 20

Dijkstra to A* Runtime Ratio against Maze Size

The graphs 1, 2, 3, 4, 5 were against the length of one axis of the maze (taken as “Maze

Size”) instead of its area (total number of nodes in the maze) because the shortest path length

is linear to it value unlike its area. This helps in analyze the runtimes of the algorithms

because they operate mainly on the shortest path and not the whole maze.

6. Data Analysis

The shortest paths found for the same mazes by the two algorithms were always the same,

showing that both are capable of finding the shortest path successfully, which was predicted

in the hypothesis. Seeing graph 1, the relationship between the size of one side of the maze is

linear to the shortest path between the specified starting and ending points.

Seeing graph 2 and table 2, the runtime of the A* algorithm is always shorter than Dijkstra’s.

0

0,5

1

1,5

2

2,5

3

3,5

0 50 100 150 200 250 300 350

D
ijk

st
ra

: A
*

R
u

n
ti

m
e

R
at

io

Maze Size

Dijkstra A* Runtime Ratio against Maze Size

Graph 5: Maze size against Dijkstra to A* ratio

 21

It can be understood from graphs 3 and 4 that the curves roughly have the same shape

(exponential increase), which relates to the fact that they derive from the same algorithm.

Seeing graph 3, Dijkstra’s algorithm has unstable error bars, even while tending to have a

bigger uncertainty as the maze gets larger. This is however not a direct correlation as the

uncertainty for the 280x280 maze (± 29995) is larger than the uncertainty for the 320x320

maze (± 20941). These two uncertainties are also very large, showing that there are random

errors in the form of the complexities of the mazes.

Seeing graph 4, the A* algorithm has its error bars widen steadily in correlation with the

runtime, but the uncertainties are very large, especially at points 40 (nearly as large as the

runtime value), 240 and 320 (approximately half the value). This shows that there have been

a very large range of random errors throughout the tests. Despite this range of runtime, a very

little portion of it falls in the range of the runtime of Dijkstra’s algorithm, showing that A*

has less runtime. This large range can be attributed to the predicting characteristics of the

heuristic function and the varying shortest solution of the maze even when size is constant.

Finally, from the last graph it can be seen that there is a general decrease of the ratio between

the runtimes of the two algorithms. This means that the difference between the two gets

smaller as the size of the maze increases. This contradicts the hypothesis, as it was predicted

that the difference would decrease as the size of the maze gets smaller. This change in

difference might be due to the heuristic function not being able to approximate the h-cost as

well in larger mazes.

 22

From the data, it can be seen that even though their difference decreases as the maze gets

larger, the A* star algorithm performs much faster that Dijkstra’s algorithm. In smaller mazes

such as in an 80x80 grid, it can find the same shortest path approximately 3 times faster,

doing the same operation on a 320x320 grid 1,5 times faster than Dijkstra’s algorithm.

7. Limitations

One of the major limitations of the methodology as seen in the data analysis is the fact that

the runtime values of both algorithms are very imprecise. This is mainly caused by the fact

that different mazes of the same size can have different complexities or difficulty, also having

shortest paths with different lengths. This was also talked about in the control variables

section, where it was stated that it was very hard to procedurally generate mazes with very

similar difficulty and similar shortest path length (similar elitism). The impreciseness of the

result degrades its reliability.

Another limitation which contributed to the impreciseness of the result is the fact that only 10

trials are being done for each selected maze size. This renders many different mazes

untouchable and increases random errors vastly as the mazes are randomly generated. It also

doesn’t show the worst- and best-case scenarios.

The lack of variation of the dead ends and loops (the maze not being partially braided) might

affect the results in a real-life application side. Although having random decisions between

dead ends and loops would significantly increase the random errors which are already very

high, they would represent a maze in a game or actual city streets much better than the

current fully braided model. The same can be said about putting weights into paths between

nodes.

 23

The last graph showed that the ratio between the algorithms was decreasing but didn’t show a

1:1 ratio. It cannot be known if A* will still be superior if gone into larger mazes.

8. Further Development

To increase precision, the independent variable could be changed to a specific shortest path

length in a specific maze size. This could be done through setting a wanted path length and

iterating until a maze which has the wanted shortest path length has been found and doing the

usual tests on it. This could reduce random errors, even though the code would take

significantly more time to operate.

Instead of looking at 10 samples from a specific maze size, all the mazes in that size can be

evaluated. Algorithms which are uniform (can create all possible mazes) such as Wilson’s or

the Aldous-Broder algorithm can be used for the maze generation (Pullen). This would

include the best- and worst-case scenarios in the result. This would also make finding the

precise average time complexity of both algorithms possible as the nature of the input can be

analyzed wholly.

Partially braiding the maze (as opposed to full braiding) or assigning weights for paths

between nodes can make the maze resemble a web of streets or a videogame map more(with

dead-ends, loops and harder paths to traverse), even though it would decrease the precision

drastically.

9. Final Conclusion

This investigation aimed at finding the runtime difference between Dijkstra’s and the A*

pathfinding algorithms at solving maze problems with varying sizes. After the experiment

 24

and result analysis, it can be concluded that the A* algorithm performs much faster than

Dijkstra’s algorithm.

This investigation aimed at finding the runtime difference between Dijkstra’s and the A*

pathfinding algorithms at solving maze problems. After doing the experiment by running the

two algorithms on procedurally generated mazes of varying sizes and recording the runtimes,

it can be seen that the runtime of both algorithms increased exponentially as the size (hence

the shortest path) of the mazes increased. It was observed that the uncertainties of the

Dijkstra algorithm increased along with the increase of the average runtime, albeit without a

clear correlation. Similarly, the uncertainty of the A* algorithm increased with the average

runtime, but it was consistent and much larger than Dijkstra’s. The runtime of the A*

algorithm was always better than Dijkstra’s, with the difference between them reducing from

3 times to 1,5 times as the maze size increased.

The problem of the mazes having different lengths of shortest paths even when the size is the

same (resulting in large random errors) can be solved by having the independent variable as

shortest path length instead of size. Also, partially braiding the maze might lead to more

realistic results or assessing all mazes for a single size can increase precision and aid in

acquiring the time complexity.

Since the A* algorithm was found to be faster than Dijkstra’s algorithm, it is advised to use

the A* algorithm in pathfinding problems which resemble or are non-weighted mazes with

multiple paths going from the start to the goal to decrease the runtime required.

 25

10. Bibliography
Algfoor, Zeyad Abd, Mohd Shahrizal Sunar, and Hoshang Kolivand. "A Comprehensive

Study on Pathfinding Techniques for Robotics and Video Games." International Journal of

Computer Games Technology, vol. 2015, 2015, pp.

13. Hindawi, www.hindawi.com/journals/ijcgt/2015/736138 /. Accessed 20 November 2020.

Allen,Sam. "C# Stopwatch

Examples." Dotnetperls, 2020, https://www.dotnetperls.com/stopwatch. Accessed 20

November 2020.

Bast,Hannah. "A*, Landmarks, Dijkstra." Efficient Route Planning, 9 May 2012, University

of Freiburg, Freiburg, ad-teaching.informatik.uni-freiburg.de/route-plann ing-ss2012/lecture-

3.mp4. Accessed 20 November 2020.

Buck,Jamis. "Maze Generation: Recursive Backtracking." The Buckblog,

2010, weblog.jamisbuck.org/2010/12/27/maze-genera tion-recursive-

backtracking.html. Accessed 01 October 2020.

Buck,Jamis. Mazes for Programmers: Code Your Own Twisty Little Passages. Edited

by Jacquelyn, Carter, Pragmatic Bookshelf, 2015.

Chauan,Sankalp., creator, Analysis of Algorithms | Set 2 (Worst, Average and Best Cases) |

GeeksforGeeks. Youtube, Uploaded by Geeksforgeeks, 18 February

2019, www.youtube.com/watch?v=rlzpz8es_6k&feature=emb_lo go. Accessed 20 November

2020.

 26

Cormen, Thomas H., Leiserson Charles E., Rivest Ronald L., and Stein Clifford. Introduction

to Algorithms. 3rd ed., The MIT Press, 2009, Pp. 43-50, 682-683.

Cui,Xiao, and Hao Shi. "A*-based Pathfinding in Modern Computer Games." IJCSNS

International Journal of Computer Science and Network Security, vol. 11, no. 1, 2011, P.

128,129. Researchgate, www.researchgate.net/publication/267809499 _a-

based_pathfinding_in_modern_computer_games. Accessed 20 November 2020.

Foltin,Martin. Automated Maze Generation and Human Interaction. Masaryk University

Faculty of Informatics, 2011, pp. 7-9, 20-22. is.muni.cz/th/xofma/thesis.pdf. Accessed 1

October 2020.

Fu,Zhangjie, Jignan Yu, Guowu Xie, Yiming Chen, and Yuanhang Mao. "A Heuristic

Evolutionary Algorithm of UAV Path Planning." Wireless Communications and Mobile

Computing, vol. 2018, 2018, P.

1,2. Hindawi, www.hindawi.com/journals/wcmc/2018/2851964 /#copyright. Accessed 20

November 2020.

Haslam,Karen. "Apple MacBook Air (2017)

review." Macworld, 2018, https://www.macworld.co.uk/review/macbook-air-2017 -

3659879/. Accessed 20 November 2020.

Hybesis, -. H.urna. "Maze generations: Algorithms and

Visualizations." Medium, 2019, medium.com/analytics-vidhya/maze-generatio ns-algorithms-

and-visualizations-9f5e88a3ae37. Accessed 20 November 2020.

 27

Ioannidis, Petros L. Procedural Maze Generation. National and Kapodastrian University of

Athens, 2016, pp. 23-25, 28, 31-39. pergamos.lib.uoa.gr/uoa/dl/frontend/file/lib/defau

lt/data/1324569/theFile/1324570. Accessed 01 October 2020.

Khan, Zafer Ali. Comparison of Dijkstra’s Algorithm with other proposed algorithms. 2016.

Virtual University of Pakistan. Researchgate,

https://www.researchgate.net/publication/309771211_Comparison_of_Dijkstra's_Algorithm_

with_other_proposed_algorithms

Krafft,Carina. Implementation and Comparison of Pathfinding Algorithms in a Dynamic 3D

Space. University of Applied Sciences Hamburg Faculty of Design. Media and Information

Department Media Technology, 2019, p. 1,2. users.informatik.haw-hamburg.de/~schumann/

BachelorArbeitCarinaKrafft.pdf. Accessed 20 November 2020.

Mehta,Parth, Hetasha Shah, Soumya Shukla, and Saurav Verma. "A Review on Algorithms

for Pathfinding in Computer Games." IEEE Sponsored 2nd International Conference on

Innovations in Information Embedded and Communication Systems ICIIECS’15, Karpagam

College of Engineering, Tamil Nadu, 19 March 2015.

Patel,Amit. "Introduction to A*." Stanford,

2020, theory.stanford.edu/~amitp/gameprogramming/astarco

mparison.html#:~:text=a*%20is%20the%20most%20popul

ar,a%20heuristic%20to%20guide%20itself. Accessed 01 October 2020.

https://www.researchgate.net/publication/309771211_Comparison_of_Dijkstra's_Algorithm_with_other_proposed_algorithms
https://www.researchgate.net/publication/309771211_Comparison_of_Dijkstra's_Algorithm_with_other_proposed_algorithms

 28

Patel, Hardik. “How does Age of Empires II pathfinding algorithm work?”. Quora,

https://www.quora.com/How-does-Age-of-Empires-II-pathfinding-algorithm-work. Accessed

20 November 2020.

Peters, Mark. “Re: What are some good methods to finding a heuristic for the A*

algorithm?”. Stack Overflow. https://stackoverflow.com/questions/5687882/what-are-some-

good-methods-to-finding-a-heuristic-for-the-a-algorithm. Accessed 20 November 2020.

Pullen, Walter D. "Maze

Classification." Astrolog, 2015, www.astrolog.org/labyrnth/algrithm.htm#perfect. Accessed

01 October 2020.

"Shortest Path

Algorithms." Hackerearth, 2020, https://www.hackerearth.com/practice/algorithms/gr

aphs/shortest-path-algorithms/tutorial/. Accessed 20 November 2020. Nilsson,Stefan. "How

to analyze time complexity: Count your

steps." Yourbasic, 2020, https://yourbasic.org/algorithms/time-complexity-e

xplained/. Accessed 20 November 2020. Russell, Stuart J., and Peter Norvig. Artificial

Intelligence a Modern Approach. Edited by Mona Pompili, Prentice-Hall, 1995, Pp. 97-104.

Swift,Nicholas. "Easy A* (star)

Pathfinding." Medium, 2017, medium.com/@nicholas.w.swift/easy-a-star-p athfinding-

7e6689c7f7b2. Accessed 01 October 2020.

https://www.quora.com/How-does-Age-of-Empires-II-pathfinding-algorithm-work
https://stackoverflow.com/questions/5687882/what-are-some-good-methods-to-finding-a-heuristic-for-the-a-algorithm
https://stackoverflow.com/questions/5687882/what-are-some-good-methods-to-finding-a-heuristic-for-the-a-algorithm

 29

Swift,Nicholas. "Easy Dijkstra’s Pathfinding." Medium,

2017, medium.com/@nicholas.w.swift/easy-dijkstra s-pathfinding-324a51eeb0f. Accessed 01

October 2020.

Zeil, Steven J. "Analysis of Algorithms: Average Case Analysis." Old Dominion

University, 2017, https://www.cs.odu.edu/~zeil/cs361/f17/public/averagecase/index.html. Ac

cessed 20 November 2020.

 30

11. Appendix
11.1 Body of Code
It must be noted that the code written for the investigation isn’t documented.

using System;

using System.Collections;

using System.Collections.Generic;

public class Node

{

 public int x;

 public int y;

 public Node(int xPosition, int yPosition) //argument for x,y positions in Setup()

 {

 x = xPosition;

 y = yPosition;

 }

 public bool isVisited = false;

 public bool[] walls = new bool[4];

 //Djkstra components

 public int dDistance = int.MaxValue;

 public Node previous = null;

 //A* components

 public int fCost;

 public int gCost;

 public int hCost;

}

namespace General_Test

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("---");

 var mainWatch = System.Diagnostics.Stopwatch.StartNew();

 //startup

 int iterate = 5;

 var Watch = System.Diagnostics.Stopwatch.StartNew();

 for (int i = 0; i < 100000000; i++)

 {

 iterate++;

 }

 Watch.Stop();

 Console.Write("Startup Runtime: ");

 Console.WriteLine(Watch.Elapsed);

 31

 //important variables

 int size = 40;

 bool braidOn = true;

 bool captionsOn = false;

 int trialAmount = 1;

 Console.Write("Size: ");

 Console.WriteLine(size);

 Console.WriteLine("");

 for (int globalCounter = 0; globalCounter < trialAmount; globalCounter++) //repeat

test

 {

 Stack stack = new Stack();

 Node[,] allNodes = new Node[size, size];

 List<Node> FindUnvisitedNeighbors(Node inputNode)

 {

 List<Node> neighbors = new List<Node>();

 int x = inputNode.x;

 int y = inputNode.y;

 if (x != 0)

 {

 if (!allNodes[y, x - 1].isVisited)

 {

 neighbors.Add(allNodes[y, x - 1]);

 }

 }

 if (x != size - 1)

 {

 if (!allNodes[y, x + 1].isVisited)

 {

 neighbors.Add(allNodes[y, x + 1]);

 }

 }

 if (y != 0)

 {

 if (!allNodes[y - 1, x].isVisited)

 {

 neighbors.Add(allNodes[y - 1, x]);

 }

 }

 if (y != size - 1)

 {

 if (!allNodes[y + 1, x].isVisited)

 {

 neighbors.Add(allNodes[y + 1, x]);

 }

 32

 }

 return neighbors;

 }

 Node PickRandomFromNeighbors(List<Node> neighbors)

 {

 Random rnd = new Random();

 return neighbors[rnd.Next(0, neighbors.Count)]; //can implement if statement if

0,0 doesnt work

 }

 void RemoveWall(Node node1, Node node2)

 {

 int xDif = node1.x - node2.x;

 int yDif = node1.y - node2.y;

 if (yDif == 1) //Top

 {

 node1.walls[0] = true;

 node2.walls[2] = true;

 }

 if (xDif == -1) //Right

 {

 node1.walls[1] = true;

 node2.walls[3] = true;

 }

 if (yDif == -1) //Bottom

 {

 node1.walls[2] = true;

 node2.walls[0] = true;

 }

 if (xDif == 1) //Left

 {

 node1.walls[3] = true;

 node2.walls[1] = true;

 }

 }

 int WallAmount(Node node)

 {

 int wallAmount = 0;

 int x = node.x;

 int y = node.y;

 foreach (var wall in node.walls)

 {

 //no need for checking if border node

 if (!wall)

 {

 33

 wallAmount++;

 }

 }

 return wallAmount;

 }

 void RemoveRandomWall(Node node1)

 {

 int x = node1.x;

 int y = node1.y;

 List<Node> walledNeighbors = new List<Node>();

 if (y != 0)

 {

 if (node1.walls[0] == false)

 {

 walledNeighbors.Add(allNodes[y - 1, x]);

 }

 } //top

 if (x != size - 1)

 {

 if (node1.walls[1] == false)

 {

 walledNeighbors.Add(allNodes[y, x + 1]);

 }

 } //right

 if (y != size - 1)

 {

 if (node1.walls[2] == false)

 {

 walledNeighbors.Add(allNodes[y + 1, x]);

 }

 } //bottom

 if (x != 0)

 {

 if (node1.walls[3] == false)

 {

 walledNeighbors.Add(allNodes[y, x - 1]);

 }

 } //left

 RemoveWall(node1, PickRandomFromNeighbors(walledNeighbors));

 }

 void Setup()

 {

 34

 for (int i = 0; i < size; i++)

 {

 for (int j = 0; j < size; j++)

 {

 allNodes[i, j] = new Node(j, i);

 }

 }

 } //Sets up the maze board

 Setup();

 allNodes[0, 0].isVisited = true;

 stack.Push(allNodes[0, 0]);

 while (stack.Count > 0)

 {

 Node current = (Node)stack.Pop();

 List<Node> unvisitedNeighbors = FindUnvisitedNeighbors(current);

 if (unvisitedNeighbors.Count > 0)

 {

 stack.Push(current);

 Node chosen = PickRandomFromNeighbors(unvisitedNeighbors);

 RemoveWall(current, chosen);

 chosen.isVisited = true;

 stack.Push(chosen);

 }

 } //Main Maze Construction

 if (braidOn)

 {

 foreach (var node in allNodes)

 {

 int wallAmount = WallAmount(node);

 if (wallAmount > 2)

 {

 RemoveRandomWall(node);

 }

 }

 } //Dead End Culling

 bool flag = false;

 for (int i = 0; i < size; i++)

 {

 for (int j = 0; j < size; j++)

 {

 bool flag2 = false;

 for (int k = 0; k < 4; k++)

 35

 {

 if (allNodes[i, j].walls[k])

 {

 flag2 = true;

 }

 }

 if (!flag2)

 {

 flag = true;

 }

 }

 } //Maze Dimensions Output

 if (!flag && captionsOn)

 {

 Console.WriteLine("Success");

 } //Checking if any node is isolated

 foreach (var node in allNodes)

 {

 node.isVisited = false;

 } //reset variables

 //DIJKSTRA

 Node startNode = allNodes[size / 5, size / 5];

 Node endNode = allNodes[4 * size / 5, 4 * size / 5]; //other end of maze

 List<Node> unvisitedNodes = new List<Node>();

 for (int i = 0; i < size; i++)

 {

 for (int j = 0; j < size; j++)

 {

 unvisitedNodes.Add(allNodes[i, j]);

 }

 } //fill unvisitedNodes

 List<Node> FindUnvisitedReachableNeighbors(Node inputNode)

 {

 List<Node> neighbors = new List<Node>();

 int x = inputNode.x;

 int y = inputNode.y;

 if (x != 0)

 {

 if (unvisitedNodes.Contains(allNodes[y, x - 1]) && inputNode.walls[3])

 {

 neighbors.Add(allNodes[y, x - 1]);

 }

 }

 36

 if (x != size - 1)

 {

 if (unvisitedNodes.Contains(allNodes[y, x + 1]) && inputNode.walls[1])

 {

 neighbors.Add(allNodes[y, x + 1]);

 }

 }

 if (y != 0)

 {

 if (unvisitedNodes.Contains(allNodes[y - 1, x]) && inputNode.walls[0])

 {

 neighbors.Add(allNodes[y - 1, x]);

 }

 }

 if (y != size - 1)

 {

 if (unvisitedNodes.Contains(allNodes[y + 1, x]) && inputNode.walls[2])

 {

 neighbors.Add(allNodes[y + 1, x]);

 }

 }

 return neighbors;

 }

 Node PickCheapestUnvisitedNode()

 {

 int lowestCost = int.MaxValue;

 Node lowestNode = null;

 foreach (Node node in unvisitedNodes)

 {

 if (node.dDistance < lowestCost)

 {

 lowestCost = node.dDistance;

 lowestNode = node;

 }

 }

 return lowestNode;

 }

 var dijkstraWatch = System.Diagnostics.Stopwatch.StartNew();

 //Dijkstra start

 Node currentNode = startNode;

 currentNode.dDistance = 0;

 while (currentNode != endNode)

 {

 if (currentNode == null)

 {

 break;

 37

 }

 List<Node> availableNeighbors =

FindUnvisitedReachableNeighbors(currentNode);

 if (availableNeighbors.Count > 0)

 {

 foreach (Node neighbor in availableNeighbors)

 {

 int cost = currentNode.dDistance + 1;

 if (cost < neighbor.dDistance)

 {

 neighbor.dDistance = cost;

 neighbor.previous = currentNode;

 }

 }

 }

 currentNode.isVisited = true;

 unvisitedNodes.Remove(currentNode);

 currentNode = PickCheapestUnvisitedNode();

 } //Main Body

 //Dijkstra end

 dijkstraWatch.Stop();

 if (captionsOn) { Console.Write("Dijkstra Runtime (ms): "); }

 Console.WriteLine(dijkstraWatch.ElapsedMilliseconds);

 //Shortest path output

 currentNode = endNode;

 List<Node> shortestPath = new List<Node>();

 if (endNode.previous == null)

 {

 Console.WriteLine("No path found");

 } //path has not been found

 else

 {

 while (currentNode != startNode)

 {

 shortestPath.Add(currentNode);

 currentNode = currentNode.previous;

 } //Path determination

 if (captionsOn) { Console.Write("Shortest path length: "); }

 Console.WriteLine(shortestPath.Count + 1);

 } //path has been found

 currentNode = null;

 foreach (var node in allNodes)

 {

 node.isVisited = false;

 node.dDistance = int.MaxValue;

 node.previous = null;

 38

 } //reset variables

 //A STAR

 List<Node> open = new List<Node>();

 List<Node> closed = new List<Node>();

 int visitedNodeCount = 0;

 Node LowestInOpen()

 {

 int lowestFCost = size * size;

 Node cheapestNode = open[0];

 foreach (var node in open)

 {

 if (node.fCost < lowestFCost)

 {

 lowestFCost = node.fCost;

 cheapestNode = node;

 }

 }

 if (cheapestNode != null)

 {

 return cheapestNode;

 }

 return null;

 }

 List<Node> TraversibleNotClosedNeighbors(Node inputNode)

 {

 List<Node> neighbors = new List<Node>();

 int x = inputNode.x;

 int y = inputNode.y;

 if (x != 0)

 {

 if (!closed.Contains(allNodes[y, x - 1]) && inputNode.walls[3])

 {

 neighbors.Add(allNodes[y, x - 1]);

 }

 }

 if (x != size - 1)

 {

 if (!closed.Contains(allNodes[y, x + 1]) && inputNode.walls[1])

 {

 neighbors.Add(allNodes[y, x + 1]);

 }

 }

 if (y != 0)

 39

 {

 if (!closed.Contains(allNodes[y - 1, x]) && inputNode.walls[0])

 {

 neighbors.Add(allNodes[y - 1, x]);

 }

 }

 if (y != size - 1)

 {

 if (!closed.Contains(allNodes[y + 1, x]) && inputNode.walls[2])

 {

 neighbors.Add(allNodes[y + 1, x]);

 }

 }

 return neighbors;

 }

 int CalculateFCost(Node inputNode)

 {

 Node current = inputNode;

 while (current != startNode) //calculating path to start

 {

 inputNode.gCost++;

 current = current.previous;

 }

 inputNode.hCost = (int)Math.Sqrt(Math.Pow(Math.Abs(inputNode.x -

endNode.x),2) + Math.Pow(Math.Abs(inputNode.y - endNode.y),2));

 return inputNode.gCost + inputNode.hCost;

 }

 var aStarWatch = System.Diagnostics.Stopwatch.StartNew();

 startNode.fCost = CalculateFCost(startNode);

 open.Add(startNode);

 while (currentNode != endNode)

 {

 currentNode = LowestInOpen();

 open.Remove(currentNode);

 closed.Add(currentNode);

 visitedNodeCount++;

 foreach (var neighbor in TraversibleNotClosedNeighbors(currentNode))

 {

 if (!open.Contains(neighbor))

 {

 open.Add(neighbor);

 neighbor.previous = currentNode;

 neighbor.fCost = CalculateFCost(neighbor);

 40

 } else

 {

 if (neighbor.gCost > currentNode.gCost + 1)

 {

 neighbor.previous = currentNode;

 neighbor.fCost = CalculateFCost(neighbor);

 }

 }

 }

 } //Main Body

 aStarWatch.Stop();

 if (captionsOn) { Console.Write("A* Runtime (ms): "); }

 Console.WriteLine(aStarWatch.ElapsedMilliseconds);

 if (captionsOn) { Console.Write("A* visited nodes: ");

 Console.WriteLine(visitedNodeCount);

 }

 currentNode = endNode;

 List<Node> shortestPath2 = new List<Node>();

 if (endNode.previous == null)

 {

 Console.WriteLine("No path found");

 } //path has not been found

 else

 {

 while (currentNode != startNode)

 {

 shortestPath2.Add(currentNode);

 currentNode = currentNode.previous;

 } //Path determination

 if (captionsOn) { Console.Write("Shortest path length: "); }

 Console.WriteLine(shortestPath2.Count + 1);

 } //path has been found

 Console.WriteLine("");

 }

 mainWatch.Stop();

 Console.Write("Total Runtime: ");

 Console.WriteLine(mainWatch.Elapsed);

 Console.WriteLine("---");

 Console.WriteLine("");

 }

 }

}

 41

10.2 Code Ouput

Startup Runtime: 00:00:00.2343633
Size: 40

31
87
19
87

30
83
10
83

31
103
16
103

28
63
5
63

23
75
10
75

24
75
13
75

26
81
13
81

25
69
4
69

24
79

 42

10
79

24
63
3
63

Total Runtime: 00:00:00.6861862
--

Startup Runtime: 00:00:00.2263400
Size: 80

420
137
95
137

418
137
134
137

400
135
144
135

406
165
93
165

436
151
88
151

404
135
120
135

426
151
188

 43

151

405
139
111
139

425
163
204
163

439
165
163
165

Total Runtime: 00:00:05.9816877

Startup Runtime: 00:00:00.2247201
Size: 120

2187
237
1163
237

2140
203
625
203

2150
225
811
225

2120
225
1079
225

2122
225
899
225

 44

2150
219
906
219

2066
213
696
213

2080
231
758
231

2173
209
529
209

2130
199
554
199

Total Runtime: 00:00:30.0746075

Startup Runtime: 00:00:00.2303321
Size: 160

8032
289
3157
289

8114
297
3164
297

7047
303
2379
303

 45

7264
285
2845
285

8702
291
3061
291

8032
275
3162
275

8205
263
1938
263

7809
271
1686
271

7545
305
3210
305

7059
287
2467
287

Total Runtime: 00:01:46.0339349

Startup Runtime: 00:00:00.2237627
Size: 200

21733
375
7970
375

21323

 46

335
5700
335

21519
373
11313
373

25714
365
8653
365

22220
369
9832
369

23568
383
12346
383

25193
385
12538
385

24566
391
14268
391

23402
365
9923
365

21261
325
4795
325

Total Runtime: 00:05:29.5174085

 47

Startup Runtime: 00:00:00.2262817
Size: 240

54796
413
22692
413

54284
465
38921
465

51360
411
16138
411

51444
405
17293
405

53293
435
28051
435

48828
421
22450
421

51450
443
25290
443

48345
395
11867
395

50336
435
29957
435

 48

55647
441
35677
441

Total Runtime: 00:12:50.3569303

Startup Runtime: 00:00:00.2231192
Size: 280

102383
491
75610
491

103014
499
64205
499

102239
495
72156
495

114291
509
69881
509

110878
491
54733
491

105957
507
80189
507

102866
473
40224
473

 49

99297
495
64165
495

94848
517
60757
517

154838
467
70791
467

Total Runtime: 00:29:06.1506214

Startup Runtime: 00:00:00.2282776
Size: 320

186551
603
168717
603

180088
521
69717
521

182661
539
91659
539

192621
599
148384
599

181899
549
116501
549

182335

 50

577
144374
577

179879
561
147926
561

181219
571
163058
571

211029
557
106575
557

169147
513
53501
513

Total Runtime: 00:51:01.8120408

10.3 Raw Data
Maze
Size 40 startup 2343633

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Avg

uncertaint
y

Dijkstra
Runtim
e 31 30 31 28 23 24 26 25 24 24 26,6 4

Dijkstra
Path 87 83 103 63 75 75 81 69 79 63 77,8 20
A*

Runtim
e 19 10 16 5 10 13 13 4 10 3 10,3 8

A* Path 87 83 103 63 75 75 81 69 79 63 77,8 20

Maze
Size 80 startup 2263400

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Avg

uncertaint
y

Dijkstra

Runtim
e 420 418 400 406 436 404 426 405 425 439 417,9 19,5

Dijkstra
Path 137 137 135 165 151 135 151 139 163 165 147,8 15
A*
Runtim
e 95 134 144 93 88 120 188 111 204 163 134 58

A* Path 137 137 135 165 151 135 151 139 163 165 147,8 15

Maze
Size 120 startup 2247201

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Avg

uncertaint
y

Dijkstra
Runtim
e 2187 2140 2150 2120 2122 2150 2066 2080 2173 2130 2131,8 60,5

 51

Dijkstra
Path 237 203 225 225 225 219 213 231 209 199 218,6 19
A*
Runtim
e 1163 625 811 1079 899 906 696 758 529 554 802 317

A* Path 237 203 225 225 225 219 213 231 209 199 218,6 19

Maze
Size 160 startup 2303321

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Avg

uncertaint
y

Dijkstra
Runtim
e 8032 8114 7047 7264 8702 8032 8205 7809 7545 7059 7780,9 827,5

Dijkstra
Path 289 297 303 285 291 275 263 271 305 287 286,6 21
A*
Runtim
e 3157 3164 2379 2845 3061 3162 1938 1686 3210 2467 2706,9 762

A* Path 289 297 303 285 291 275 263 271 305 287 286,6 21

Maze
Size 200 startup 2237627

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Avg

uncertaint
y

Dijkstra
Runtim
e 21733 21323 21519 25714 22220 23568 25193 24566 23402 21261 23049,9 2226,5

Dijkstra
Path 375 335 373 365 369 383 385 391 365 325 366,6 33
A*
Runtim
e 7970 5700 11313 8653 9832 12346 12538 14268 9923 4795 9733,8 4736,5

A* Path 375 335 373 365 369 383 385 391 365 325 366,6 33

Maze
Size 240 startup 2262817

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Avg

uncertaint
y

Dijkstra
Runtim
e 54796 54284 51360 51444 53293 48828 51450 48345 50336 55647 51978,3 3651

Dijkstra
Path 413 465 411 405 435 421 443 395 435 441 426,4 35
A*
Runtim
e 22692 38921 16138 17293 28051 22450 25290 11867 29957 35677 24833,6 13527

A* Path 413 465 411 405 435 421 443 395 435 441 426,4 35

Maze
Size 280 startup 2231192

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Avg

uncertaint
y

Dijkstra
Runtim
e 102383 103014 102239 114291 110878 105957 102866 99297 94848 154838 109061,1 29995

Dijkstra

Path 491 499 495 509 491 507 473 495 517 467 494,4 25
A*
Runtim
e 75610 64205 72156 69881 54733 80189 40224 64165 60757 70791 65271,1 19982,5

A* Path 491 499 495 509 491 507 473 495 517 467 494,4 25

Maze
Size 320 startup 2282776

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Avg

uncertaint

y
Dijkstra
Runtim
e 186551 180088 182661 192621 181899 182335 179879 181219 211029 169147 184742,9 20941

Dijkstra
Path 603 521 539 599 549 577 561 571 557 513 559 45
A*
Runtim
e 168717 69717 91659 148384 116501 144374 147926 163058 106575 53501 121041,2 57608

A* Path 603 521 539 599 549 577 561 571 557 513 559 45

	Table of Contents
	1. Introduction
	2. Background Information
	2.1 Procedural Maze Generation
	2.1.1 Maze Properties
	2.1.2 The Recursive Backtracker Algorithm
	2.1.3 Dead End Culling

	2.2 Pathfinding Algorithms
	2.2.1 Dijkstra’s Pathfinding Algorithm
	2.2.2 The A* Pathfinding Algorithm

	2.3 Time Complexity of Algorithms
	2.3.1 Time complexity of Dijkstra’s Algorithm
	2.3.2 Time complexity of the A* algorithm

	3. Hypothesis
	4. Methodology
	4.1 Controlled Variables:
	4.2 Procedure Steps

	5. Data Presentation
	6. Data Analysis
	7. Limitations
	8. Further Development
	9. Final Conclusion
	10. Bibliography
	11. Appendix
	11.1 Body of Code
	10.2 Code Ouput
	10.3 Raw Data

