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 Introduction 
 

We use the QWERTY keyboard every day but is it really the best layout to use? This 

paper tries to find a better layout by using a modern optimization technique, treating the 

question: To what extent can Genetic Algorithms optimize the English Keyboard Layout for 

Speed? First, it covers metaheuristic algorithms in general, poses the problem of finding an ideal 

keyboard layout and the process of solving it effectively with a Genetic Algorithm (GA), and 

then it critically evaluates the solution. To solve this optimization problem multiple, scholarly 

sources on optimization and GAs were examined. From this knowledge, I wrote a Java program 

that implements a GA from scratch to find a solution to the keyboard layout problem.  

The purpose of this research is to analyze and find value in ‘soft-computing’ techniques 

for solving everyday optimization problems. Soft-computing -- the process of approximating 

solutions dynamically instead of hard-coding known algorithms -- is a field that consists of 

nature-inspired algorithms to solve difficult problems, and can create working, low-cost 

solutions in little amounts of time (Korošec). More specifically GAs model Darwin’s Theory of 

Evolution: by leveraging ‘survival of the fittest,’ genetic mutations, and reproduction, they can 

traverse a large search space of solutions to find a near-optimal solution to a problem. I 

researched scientific and reputable papers and found that the scope of GAs is extensive, as they 

can be used to solve a range of problems in many fields. Going through the process of solving 

my own problem, lead to the conclusion that GAs are useful, easy to implement and good for 

solving optimization problems but not ideal for every scenario: they can optimize the keyboard 

to a fair extent. [278 words] 

 

   

 



 
 

 Metaheuristic Algorithms 
 

Metaheuristic algorithms are efficient in solving optimization problems in a reasonable 

amount of time using a form of trial and error. In mathematics and computer science, an 

optimization problem is one in which ​the ​best​ ​or optimal solution must be found in a finite or 

infinite set of solutions (Korošec). ​ Optimization problems in which the search space is unfeasibly 

large could potentially take years to solve with brute force methods (methods in which each 

element of a potential solution set is evaluated one after another). As such, metaheuristic 

algorithms offer a better approach to finding acceptable solutions by making approximations 

(soft-computing) rather than hard-computing with predetermined algorithms. The solutions to 

metaheuristic algorithms, however, are usually not guaranteed optimal: in fact, there is no way of 

knowing whether a metaheuristic algorithm produces the best solution, or even whether it will 

work and why if it does work -- naturally raising skepticism. Nonetheless, solutions will be ​good 

(Gandomi). 

Common nature-inspired algorithms include artificial neural networks, machine learning, 

fuzzy logic, swarm-intelligence-based algorithms, and more importantly for this paper, GAs 

(Gandomi). GAs find applications in many fields, especially in biomedicine and engineering: 

they are useful for designing ​things. ​Say you wanted to make a turbine blade. One method is to 

hire an engineer who provides exact blueprints based on mathematical analysis to come up with 

a solution: this would be comparable to implementing a specific, known algorithm. However, in 

design problems with too many variables (width, height, radius, shape, etc.) it is hard for the 

engineer to come to a definite analytical solution reliably. Instead, using a GA, evolution can 

find a blade design that dominates the rest by simulating every variable and letting it find the 

fittest over many generations. The algorithm does not require knowledge of ​how​ the optimal 

blade is obtained, it just produces it after many generations of evolution, starting from randomly 

simulated blades and ending at near-optimal ones. In this paper, the main ideas of GAs will be 

examined and will be demonstrated with an interesting, everyday optimization problem: finding 

the fastest keyboard layout.  

 

 

 



 
 

 Genetic Algorithms 
 

Nature is surprisingly smart: by creating organisms based on their DNA, letting the fittest 

organisms reproduce to create new DNA, and by providing means of genetic exchange and 

mutation, evolution over generations becomes one of the forerunners in metaheuristic 

optimization problem-solving algorithms (Malhotra). As such, there is a branch of computer 

science dedicated to the study and development of Evolutionary Algorithms (EAs) -- algorithms 

inspired by evolution to solve optimization problems. One popular variant of EAs is the GA 

which is useful for effectively traversing a large search space and finding a good answer to a 

complex problem. In general, GAs work by modeling a population of species, where each 

organism has its own genome, and by letting the population evolve through the principles of 

natural selection, reproduction, and mutation (these concepts will be explained in more detail 

later).  

In GAs, a genome is usually modeled by an array of bits, words, or objects. Based on its 

genome, the individual’s fitness can be calculated and represented in some way (Levin). For 

example, the fitness of an individual who is supposed to model a ‘goal’ sequence of letters 

“HELLO,” may have a genome sequence “HKLRO”. In this case, a good fitness function would 

count the letters of the genome that correspond to the letters of the goal sequence, so an 

individual above would have a fitness of 2 since the letters ‘H’ and ‘O’ are in the right place. 

Upon evaluating the fitness for each individual in the population, the algorithm ‘kills’ the least 

fittest individuals and replaces them with ‘offspring’ of the fittest individuals, so that traits of the 

fittest individuals get passed on, slowly populating new generations, and ultimately finding an 

optimal or near-optimal solution (Levin). 

 

   

 



 
 

 The Keyboard Optimization Problem 
 

One may think the keyboard layout we use every day is efficient. Surprisingly though, the 

standard US QWERTY keyboard is not an optimal layout for speed typing. In fact, it is very 

sub-optimal, since frequently typed letters are placed on opposite ends to slow down typists and 

historically, keep typewriters from jamming (​Hempstalk). So naturally, the question arises: how 

can we find layouts that are faster than QWERTY? 

This paper focuses on finding the fastest, theoretical keyboard layout in the set of all 

possible layouts, so it is an optimization problem. Popular statistically derived solutions (based 

on English letter frequency) include speed typing keyboards such as the Dvorak and the Colemak 

layout which were developed by researchers to maximize speed (Hempstalk).  

 

 

 

 

 

Fig. 1. ​​Colemak Layout 

 

Fig. 2. ​​Dvorak Layout 

Instead of mathematical analysis, this paper aims to find optimal solutions that may 

compete with Dvorak and Colemak keyboards using a GA. This method is more abstract as it 

relies on a simulation of nature rather than mathematics. However, it is also where the benefits of 

soft-computing shine: a program can optimize a problem without relying on the programmer’s 

knowledge. It finds a near-optimal solution without needing the exact steps to derive a solution.   

 



 
 

 Evaluating Fitness  
 

Now that the problem is familiar we must consider the first step to solving an 

optimization problem: representing a general solution. In the case of the keyboard problem, a 

keyboard layout (that represents the main three key-rows) can be represented by a 

33-dimensional vector, where each component represents a letter of the keyboard. This vector is 

visualized as follows.  

 

Fig. 3. ​​General keyboard layout. The numbers correspond to the components of the vector and 

each color corresponds to a finger (light-yellow: left-pinky, light-green: left-ring, etc). This 

keyboard object is ​List​ of 33 ​‘Key’​ objects in Java.  

 

The second step is to construct an ​objective ​ (also known as a ​cost​ function), that maps a 

vector to a scalar output, representing the cost of that specific vector. In the context of GAs, this 

function is referred to as the ​fitness function ​ and determines how fit an individual is (Levin). The 

fitness function finds the efficiency of a given keyboard layout vector by finding the theoretical 

time it takes to type a given text.  

Inspired by Malas et al. ​Toward optimal Arabic keyboard layout using genetic algorithm ​, 
the fitness can be expressed as the sum of the time it takes the user’s fingers to execute certain 

movements. The paper was written 2002 by formidable researches and was a valuable source 

because it gave me an idea on how to find a fitness function; however, I, of course did copy his 

paper. Some limitations were that a lot of incompressible references to Arabic layouts and 

symbols were made and that the technology used was somewhat outdated. Still, his paper gave 

me the idea of classifying common finger movements into a set of events.  

   

 



 
 

Using motion events, I created a system to measure the execution time of typing on a 

keyboard. In this paper, moving any finger from one key to a key horizontally adjacent to that 

key is referred to as a ‘side-tap’ and has a relative execution time (or execution weight) of the 

Euclidean distance the finger travels. This distance is proportional to the pixel distance, so the 

distance between keys in pixels was used for giving each motion event its weight. This was a 

reasonable idea, since the time it takes to move a finger is largely dependent on the distance it 

has to move. For the keyboard optimization problem, 8 distinct motion events, each with their 

own execution time, were used to calculate the fitness of a keyboard.  

Event Name  Relative weight  
(pixel distance) 

tap  0 

hop-tap  137 

leap-tap  284 

near-dtap  165 

far-dtap  239 

leap-dtap  345 

side-tap  133 

pinky-tap  268 

 

Fig. 4. ​​Visualization of motion events on a general keyboard with a table of pixel distances. 

 

   

 



 
 

As an example, typing the word H-E-L-L-O on a QWERTY keyboard will induce the 

following motions (fingers are initially positioned in their base-position before typing the world, 

e.g. left index is on ‘F,’ right index is on ‘J’).  

 

Motion Event  Key movement (on QWERTY)   Event Time 

side-tap  J -> H   133 

hop-tap  D -> E  137 

tap  L -> L  0 

tap   L -> L  0 

hop-tap  L -> O  137 

 

Fig. 5. ​​Table of motion events induced by typing “HELLO” on a QWERTY keyboard.  

 

Thus, typing HELLO is encoded with the motion pattern: 

side-tap, hop-tap, tap, tap, hop-tap 

Therefore, the fitness of this individual is 

133 + 137 + 0 + 0 + 137 = 407 

So in general, the fitness for a keyboard object, ​k​, given a text ​T​ that consists of ​n(T) 

characters and ​T​i  ​is the ​i ​th​ character, is  

 

Where ​eventTime(k, c1, c2) ​is the function that returns the time (or weight) it takes to 

move a finger from character ​c1​ to character ​c2​ on the keyboard layout ​k. ​Now that a 

representation of a general solution and a fitness function have been established, the optimization 

process can begin. The goal is to find an individual ​i​ that ​minimizes ​the function, ​f(i, T)​, for some 

text, ​T.​ It is important to emphasize that we are trying to find a global ​minimum ​(minimum time 

to type a text)​, ​so a lower fitness value corresponds to a better keyboard layout. For computing 

the fitness function, over 10mb (10 million characters) of English short stories, books, poetry, 

and political documents from Project Gutenberg were used.  

 



 
 

 The Approach 
 

Focusing on optimizing the three main rows of keys -- a total of 33 keys -- yields 33 

factorial layout combinations, or 8.7x10​36​ layouts! Thus, testing all solutions (using brute force) 

is entirely infeasible. Since evaluating the fitness of one keyboard layout takes around 2 seconds, 

the total time it would take to brute force the best solution would be 2 ⋅ 8.7x10​36 ​ = 1.7x10 ​37 

seconds, or 5.5x10​29​ years -- 4.0x10​19​ times the age of our universe! Instead, a GA is used to 

effectively traverse this large search space in a negligibly small fraction of time -- approximately 

two hours. The illustration below outlines the algorithm used. The steps of the algorithm are 

examined in detail afterward. 

 

Fig. 6. ​​Flowchart outlining the Genetic Algorithm used. The implementation of the above 

algorithm and relevant code for each step is located in the appendix. 

 

 

 

 

 



 
 

Initialization     

N ​ organisms are created to populate an initial generation, similar to the initial population 

of bacteria on prehistoric Earth (to relate GAs with Darwin’s Evolution). The number of 

organisms in a generation determines the execution time of the algorithm: too large populations 

may take too long to evaluate, and too small populations may result in pre-converging, 

sub-optimal solutions (Levin). Finding the best population size depends on the specific scenario. 

In the initialization step, ​N​ randomly generated solutions are created and placed in the initial 

generation: all subsequent solutions will arise from these initial genes (Levin). After multiple 

trials, I found that a good population size that balances time and fitness for the keyboard problem 

ranges from 700 - 1000. 

 

Selection    

In the selection phase, solutions compete based on their fitness to reproduce and pass 

their traits to the next generation. Ensuring that the algorithm continues to move in the right 

direction, the​ S ​fittest solutions are copied directly to the next generation. This guarantees that 

the ​S​ fittest individuals in the next generation are at least as fit as the fittest individual in the 

previous generation, e.g. that there is no chance for degradation in fitness (Alabsi). The 

unconditional copying is called elitist selection, or elitism. The downside of elitism is that if ​S​ is 

too large, premature convergence might occur due to a lack of genetic variety. Therefore, ​S 

should be kept below 30% of the population size according to Alabsi. In the case of the 

Keyboard Problem, I found that 10% is enough, otherwise the algorithm pre-converges. 

To populate the remaining ​(N - S)​ solutions of the next generation solutions are selected 

to reproduce and put their offspring into the next generation. There are multiple ways to ​select 

‘parents’, the most prominent one being fitness proportionate selection, also known as Roulette 

Wheel Selection (Alabsi). In Roulette Wheel Selection (RWS), the probability of an individual 

being chosen for reproduction is directly proportional to its fitness, e.g., the fitter the solution, 

the higher the probability for it being selected for reproduction.  

 

 



 
 

Essentially, the probability, ​P(i) ​, ​ ​of an individual, ​i​, being selected from a population o​f ​N 

individuals is the fitness of ​i ​divided by the total (cumulative) fitness of the population, or  

 

where ​f(k) ​returns the fitness of the keyboard vector, ​k​. This method can be visualized as 

a roulette wheel, where fitter solutions occupy greater portions (have larger slivers) on the wheel. 

With it, the GA models the biological principle of ‘survival of the fittest.’  

However, using RWS based purely on the fitness of an individual introduces some 

drawbacks, as it can quickly kill genetic diversity since it introduces bias for individuals with 

abnormally high fitness values. For example, consider the case in which there are a few 

individuals with high fitnesses compared to the rest of the population. These high fitness values 

completely dominate the roulette wheel; if one individual has a probability of perhaps 70% and 

the rest of the solutions only get a 1-2% chance, the next population will consist mainly of the 

genome that had a 70% selection chance. In a matter of a few generations, that single genome 

will dominate the population, preventing the GA from effectively searching the entire solution 

space. The event of a few solutions dominating a population is called premature convergence on 

sub-optimal solutions and occurs if there is too little genetic diversity in the gene pool, resulting 

in parents not being able to create genetically superior children (Levin).  

To make premature convergence less likely, I implemented Rank Selection (RS). The 

idea of RS is not to consider an individual’s absolute numerical fitness, but rather, its fitness 

relative to other individuals in the population (Arabsi). In RS, the population (of size ​N ​) is sorted 

according to fitness and every individual is given a rank. In my program, I let the ​most​ fittest 

solution have a rank of 0, the second fittest a rank of 1, and so on, until the​ least ​fittest has a rank 

of ​N. ​From there, RWS is used to come up with the probability of being selected, e.g. an 

individual's sliver of the roulette wheel now depends on the rank (instead of the fitness). 

Therefore, in a population of size ​N​, the selection probability is the sliver of the individual with 

rank R, over the sum of all slivers, which can be written as 

 

 



 
 

The below diagram visualizes the differences in probability between Fitness 

Proportionate Selection and Rank Selection by applying the above formulas to simple cases 

where N=4 and fitnesses are 80, 15, 3, and 2.  

 

Fig. 7.​​ Roulette Wheel before ranking (probability is directly proportional to fitnesses). Notice 

how a few individuals dominate the generation.  

 

Fig. 8. ​​Roulette Wheel after ranking (probability is proportional to the rank of an individual). 

Notice how weaker individuals are given a greater chance to pass their genes, ensuring genetic 

diversity. 

 

See Appendix 2.1 for Implementation of Selection. 

 

 



 
 

Levin’s paper on the “Design and Implementation of Genetic Algorithms for Solving 

Problems in the Biomedical Sciences” proved a valuable source for understanding different 

selection methods and GAs. A student at Harvard, Levin writes about GAs and then applies one 

to a specific biomedical case. He walks the reader through the process of constructing a GA, 

providing detailed explanations throughout. However, the case he applies it to is rather obscure 

and complex, and his being a student detracts slightly from the paper’s authority. Nonetheless, its 

formal use of vocabulary and ideas greatly helped me design my GA. 

 

Crossover 

Crossover is the next vital step in the GA, as it mimics the concept of nature’s 

reproduction. In crossover, genetic material from one ‘parent’ is combined, or ​crossed over ​, with 

the genetic material of another ‘parent’ to create offspring. This ‘child’ produced by the parent is 

genetically similar to both parents. An example of a “mother” and “father” keyboard crossing 

over is shown below: 

 

 

 

 

 

 

 

Fig. 9. ​​Crossover simulation. Note the similarities between the offspring and parents. 

 

 



 
 

The above is an example of permutation encoding crossover, where genes are exchanged 

between parents randomly, yet still ensuring that all genes are available in the created child, so 

that no keyboard keys are duplicated or deleted (Malhotra). Another method of crossover which 

can be applied to a larger set of problems is ‘value encoding crossover,’ where one point is 

chosen as the crossover point and the child receives one section of DNA from its mother and the 

other section from its father (Malhotra). However, this does not make a large difference in the 

greater context of GAs. The implementation of crossover generally does not affect the 

performance of the algorithm, as long as it mixes the genes of parents in some fashion​. ​ This is a 

recurring theme in GAs -- small changes in a procedure do not greatly change the outcome of the 

algorithm as long as the procedure still accomplishes what is needed to some extent. Essentially, 

no pre-defined implementation rules or exactness must be followed for the algorithm to work. 

Refer to Appendix 2.2 for my implementation of crossover. 

 

Mutation 

Mutation is the final genetic operation performed on a generation. Mutation introduces 

randomness into the gene pool so that the algorithm has a chance to traverse the solution space 

and avoid local minima (Levin). A common approach to implement mutation -- and the approach 

used in this paper -- is permutation encoding mutation, where two elements of a vector are 

swapped at random. For the Keyboard Problem, two keys are chosen randomly and swapped.  

Just like in crossover, multiple methods lead to the same result: the introduction of 

inherent randomness in the generation to increase diversity among solutions. However, one must 

be wary about the frequency of mutation. The probability of mutation of a gene in a given 

individual is called the Mutation Rate. If the mutation rate is too big, chances are the offspring 

will be too random, essentially annulling the work of the GA. According to Malhotra, a mutation 

rate of 1% - 2% is ideal in most scenarios. To further minimize the risk of creating solutions with 

too much randomness, not all individuals undergo mutation -- each individual is given a chance 

of mutation, dictated by the Mutation Probability. 

   

 



 
 

Now that the algorithm is has been explained, here is a summary:  

 

I. Initialize random population of size ​N  

II. Allocate a nextGen List 

III. Copy the ​S​ Elite individuals from pastGen into nextGen 

IV. For the remaining ​(N-S) ​ individuals,  

A. Rank each individual and conduct Rank Selection to select two Parents 

B. Crossover Parents to create Child 

C. Child has ​P ​% chance of mutating 

1. If mutating, each key has ​M​% chance of being swapped with another key 

2. If not mutating, continue 

D. Place Child into nextGen 

E. Repeat step IV. until the size of nextGen equals ​N 

V. Plot fittest individuals in nextGen 

VI. Set pastGen equal to nextGen.  

VII. Go to step II until it has been repeated ​G​ times. 

 

Variable  Definition  Example 

N  Population Size  800 

S  Elitist Survival Size  80 

P  Mutation Probability  10% 

M  Mutation Rate  2% 

G  Number of 
Generations 

60 

 

Implementation in the Appendix.  

 

 

   

 



 
 

 Results 
 

Running algorithm with a population of size 800, a 10% Elitist Survival Size, a 2% 

chance for mutation and a 10% chance for each key to be swapped yielded a generation vs. 

fitness graph that looks this: 

 

Fig. 10. ​​Trial run with small mutation probability. 

 

and a corresponding keyboard layout with fitness 470,000. Recall that the lower the 

fitness value, the better the keyboard is. The QWERTY layout has a fitness of 930,000; Dvorak, 

a fitness of 530,000. So the solution produced is theoretically faster. This is how the keyboard 

looks like:  

 

 

Fig. 11.​​ Run 1 keyboard solution visualized. 

   

 



 
 

Now another run shows how solutions with similar fitnesses are not unique. The below 

was run with a larger elitist selection rate (30% instead of 10%); the results look different. 

 

 

Fig. 12. ​​Graph and corresponding solution of Run 2 with large Elitist Survival Size. 

 

In both trials, the average fitness converges with the minimum fitness over time; 

however, the speed at which they converge is different because of the different Elitist Survival 

Sizes and Mutation Probabilities. Using a larger elitist selection produced a slightly better 

fitnesses, demonstrating that different parameters create different solutions. Comparing these 

fitnesses to each other, the table on the next page outlines the quality of the best keyboards 

produced. Other trial runs that created less fit solutions are located in the Appendix. 

 

 

 

   

 



 
 

 

Layout  Fitness  % Relative Effectiveness 

QWERTY  932642  0% 

Dvorak  527406  43% 

Run 1 (small mutation)  470406  50% 

Run 2 (large elite)  458271  51% 

 

Fig. 13. ​​Table with fitnesses relative to QWERTY (better solutions have lower fitness). 

 

The GA ran for about 130 minutes per run on a 3.4Ghz quad-core laptop and yielded 

solutions that are theoretically over 50% faster than the QWERTY layout and around 8% faster 

than the Dvorak layout. The data on the graphs show an apparent decrease in the fitness of the 

keyboards over generations, emphasizing how the solutions at first quickly but then slowly 

evolve to a near optimum. Interestingly, the average fitness of the population converges with the 

minimum fitness as the genetic diversity of the population decreases over time. When they fully 

converge, it means that a close-to-optimal solution has been found and that the algorithm cannot 

progress any further.  

Looking at the above results, however, emphasizes that solutions are not unique, nor 

guaranteed to be optimal. The produced keyboards look quite different; however, the still have 

some similar features. Frequently used keys are clumped on the middle row (as one might 

expect). Depending on the initial conditions of the algorithm though, e.g. Population Size, Elitist 

Survival Size, Mutation Probability, Mutation Rate, and Number of Generations, the end result 

will vary. Thus, these trials demonstrate how GAs are useful for finding ​good ​solutions to 

large-scale optimization problems, but they are not useful for finding a single best solution. In 

the appendix, are more trial runs with different parameters, showing the effects of different 

parameters.  

 

   

 



 
 

 Conclusions 
 

Some may argue that metaheuristics lack theory and mathematical support and point out 

disadvantages of Evolutionary Algorithms. It is true that from the data it is evident that 

randomness plays a large role in the ultimate solution to a problem: generating the initial 

population seems to introduce a large bias in the outcome of the fittest solution. Furthermore, the 

initial parameters strongly dictate the final solution, so finding which parameters yield the best 

solution is a problem in itself. Should a large elitist size be matched with a small mutation 

probability? Or perhaps a larger population size altogether? Finding an answer to these questions 

would be an interesting area to study further -- could maybe a second GA be developed to 

optimize the parameters of the first?  

In any case, it stands that one cannot know with certainty whether the optimal solution 

has been found. Solutions can only be compared relative to other solutions (comparing the fittest 

solution to the fitness of QWERTY for example), making it difficult to evaluate the success of 

the research method in real life. For instance, the fitness function did not take into account 

human error and relied on the Euclidean distance between keys to weigh the cost of motion 

events. These are some limitations to consider. Given the scenario, however, the GA was 

successful since layouts faster than Dvorak were produced in the simulation universe. Possible 

ways to improve the fitness function could be to gather data experimentally through human 

typists to analyze typing behavior and to test different weights for motion events to see how that 

might change the quality of solutions. 

Returning to the research question, GAs can optimize the keyboard layout for speed to a 

fair extent. The research conducted and the experimental results support that more efficient 

keyboard layouts can be found using a metaheuristic approach with GAs instead of a more 

historical, mathematical method. Despite the GA’s success, there is a large uncertainty when 

evaluating the fitness of a keyboard through simulation.  

GAs and metaheuristics still prove very helpful in approaching problems with unknown 

analytical solution methods, or problems that become unfeasibly large quickly like the Keyboard 

Problem. Essentially, all one needs to account for is a cost/objective/fitness function to optimize 

any problem. And, if given enough time, a good, perhaps even optimal solution can be found. In 

 



 
 

that sense, GAs are useful but not ideal. If a more direct or analytical approach can be used, it 

should be preferred, as it can in almost all cases produce a solution in less time. For complex 

problems where analytical solutions are infeasible though, GAs prove to be forerunners in 

metaheuristic optimization techniques.  
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 Appendix 
 

 Trial Runs with varying parameters.  

 

1.0. ​​Small Mutation Probability Run 

 

 

1.1. ​​Large Mutation Probability Run 

 

   

 



 
 

1.2. ​​Small Population Size Run 

 

1.3. ​​Large Elitist Selection Size Run 

 

1.4. ​​ ​​Small Elitist Selection Size Run 

 

 

 

   

 



 
 

Selected pieces of code central to the Genetic Algorithm.  
 

 

2.0. ​​Initialization 

// GA parameters 

public​ ​class​ ​EvolutionParams​ { 
    ​public​ ​int​ POP_SIZE = 750;     ​// number of keyboard in a population (P) 
  

    ​public​ ​int​ SURVIVAL_SIZE = 75;     ​// default: 30% of P. determines how many 
          ​// unaltered species make it to next gen. (S) 
    ​public​ ​double​ CROSSOVER_PROB = 0.5; 
    ​public​ ​double​ MUTATION_PROB = 0.02; ​// likelihood of invoking the mutation 
operator 

    ​public​ ​double​ MUTATION_RATE = 0.1; ​// likelihood of a gene changing 
    ​public​ ​int​ GENERATIONS = 40; 
    ​public​ String BOOK_STRING = ​"res/books/short.txt"​; 
} 

 

// ... // 

 

// INITIALIZATION -- create next generation 

LinkedHashMap<Keyboard, Double> nextGen = ​new​ LinkedHashMap<>(evoParams.POP_SIZE + 
1); 

 

2.1. ​​ ​​Implementation of Rank Selection & Elitism 

// Below loop: start Rank selection and do Elitism 

double​ inc = 1 / (​double​)evoParams.POP_SIZE; 
double​ sum = 0.0; 
 

// pastGen is the list of individuals in current population with their fitnesses 

Iterator<Map.Entry<Keyboard, Double>> it = pastGen.entrySet().iterator(); 

   

// loop through population from fittest to least fittest 

for​ (​int​ i = 0; i < it.hasNext(); i++) { 
Map.Entry<Keyboard, Double> entry = it.next(); 

   

// ELITISM 

// if individual is within the top elitists, copy it directly to next gen 

if​ (i < evoParams.SURVIVAL_SIZE) 
nextGen.put( 

entry.getKey(),  

(​double​)entry.getKey().getFitness(textManager) 
); 

   

 



 
 

// RANK SELECTION -- ASSIGNING SLIVER SIZES 

// rank individual and assign it probability of selection based on its rank 

// biggest sliver size of the roulette wheel corresponds to biggest prob 

// of being selected. Max sliver = 1, min sliver = 1 / POP_SIZE 

double​ sliverSize = 1 - (i * inc); 
 sum += sliverSize; 

 entry.setValue(sliverSize); 

} 

 

// fill remaining N - S population with new solutions (offspring) 

while​ (nextGen.size() < evoParams.POP_SIZE) { 
 Keyboard mother = ​null​, father = ​null​, son = ​null​; 
   

 // ROULETTE WHEEL SELECTION 

 // randFather and randMother are random positions on the roulette wheel 

 double​ randFather = Math.random() * sum; ​// [0, 1) 
 double​ randMother = Math.random() * sum; ​// [0, 1) 
   

 double​ cumuSum = 0.0; ​// cumulative sum. Keeps track of where on the wheel 
we are 

  

 // loop through the wheel until we reach randMother and randFather 

 for​ (Map.Entry<Keyboard, Double> entry : pastGen.entrySet()) { 
   

  if​ (cumuSum > randMother && mother == ​null​) 
   mother = entry.getKey(); 

   

 if​ (cumuSum > randFather && father == ​null​) 
 father = entry.getKey(); 

   

 if​ (mother != ​null​ && father != ​null​) 
 break​; 
   

 cumuSum += entry.getValue();     ​// add fitness to cumusum 
 } 

 

      ​// genetically cross father and mother 
 son = reproduce(father, mother); 

   

 // child has random chance to be mutated 

 if​ (Math.random() <= evoParams.MUTATION_PROB) 
 mutate(son); 

   

 // put son into next gen 

 nextGen.put(son, (​double​)son.getFitness(textManager)); 
} 

 



 
 

2.2. ​​Implementation of Crossover 

// Implementation of crossover 

public​ Keyboard ​reproduce​(Keyboard dad, Keyboard mom) { 
  ​if​ (dad == mom) 
  System.out.println(​"Warning: Incest has occurred!"​); 
   

  ​// father and mother will exchange genetic material with each other, 
  ​// so don't edit original 
  Keyboard father = dad.clone(); 

  Keyboard mother = mom.clone(); 

 

  ​// copy a random amount of this keyboard to the child, 
  ​// then copy a random amount of the mother's keyboard 
  ​// into this child. 
  ​for​ (​int​ i = 0; i < Keyboard.NUM_ABCKEYS; i++) { 
  ​if​ (Math.random() < evoParams.CROSSOVER_PROB) { 
   

  ​// get key objects at index i 
  Key fatherKey = father.getKey(i); 

  Key motherKey = mother.getKey(i); 

   

  ​// get key indexes of where to switch keys to 
  ​int​ fatherKeyIndex =  

father.asciiToIndex(motherKey.getMainChar()); 

  ​int​ motherKeyIndex =  
mother.asciiToIndex(fatherKey.getMainChar()); 

 

  ​// update first set of keys 
  father.setKey(i, motherKey); 

  mother.setKey(i, fatherKey); 

   

  ​// update other set of keys 
  father.setKey(fatherKeyIndex, fatherKey); 

  mother.setKey(motherKeyIndex, motherKey); 

   

  ​// re-calculate key indexes for asciiToIndex() 
  father.populateAbcToIndex(); 

  mother.populateAbcToIndex(); 

  } 

  } 

  ​// return one child 
  ​return​ father; 
    } 

 

 

 



 
 

2.3. ​​ ​​Implementation of Mutation 

public​ ​void​ ​mutate​(Keyboard board) { 
for​ (​int​ i = 0; i < Keyboard.NUM_ABCKEYS; i++) { 
// if mutation rate met, mutate gene by switching it with a random gene 

 if​ (Math.random() < evoParams.MUTATION_RATE) { 
 Key boardKey = board.getKey(i); 

 Key otherKey = board.getKey((​int​)Math.round(Math.random() * 
(Keyboard.NUM_ABCKEYS -1))); 

 int​ otherKeyIdx = board.asciiToIndex(otherKey.getMainChar()); 
   

 board.setKey(otherKeyIdx, boardKey); 

 board.setKey(i, otherKey); 

 

 // re-index keys 

 board.populateAbcToIndex(); 

  } 

  } 

} 

 

 
 

 

   

 


