
Computer Science Extended Essay

TOPIC

Investigating the Performance of Different Selection Strategies of

Genetic Algorithm

RESEARCH QUESTION

To what extent is the performance of tournament selection strategy better than

that of roulette wheel selection in solving the Knapsack Problem in terms of

convergence rate and quality of the solution with different configurations?

Word count: 3989 words

CS EE World
https://cseeworld.wixsite.com/home
27/34 (A)
May 2022

Donator Info:
Name: Lam Ho
Accepted into: Dual Degree between Tel Aviv University and 
Columbia University
"Feel free to contact me at lamho [dot] ghis [at] gmail [dot] com for 
any questions regarding the IB in general or the CS EE specifically, 
I would be more than happy to help (if I could)!"



TABLE OF CONTENT

1. Introduction………………………………………………………………………….2

2. Theory………………………………………………………………………………..4

2.1. Genetic algorithm…………………………………………………………….4

Exploitation and Exploration

Crossover

Mutation

Premature convergence

Elitism

Termination condition

2.2. Selection strategies……………………………………………………………9

2.3. The Knapsack Problem……………………………………………………….11

3. Hypothesis…………………………………………………………………………...13

4. Methodology…………………………………………………..…………………….14

4.1. The experimental procedure………………………………………………… 14

4.2. Independent variables………………………………………………………...15

Dataset

Other parameters

4.3. Dependent variables……………………………………………………….…16

4.4. Controlled variables………………………………………………………….17

4.5. Efficiency measure…………………………………………………………...18

5. Experiment Results and Analysis………………………………………………….19

6. Conclusion…………………………………………………………………………...23

7. Bibliography………………………………………………………………………...25

8. Appendix…………………………………………………………………………….28

1



1. Introduction

The field of science has witnessed many great inventions inspired by bionics, i.e the

application of biological principles to the study and design of human systems (Yu et al.,

2013). The submarine, for example, is an invention that mimics fish. Similarly, evolutionary

algorithms (EAs) are algorithms that utilize evolutionary principles (survival of the fittest) to

build adaptive systems in order to solve complex optimization problems that normally cannot

be solved by deterministic algorithms (Yu et al., 2013).

Genetic algorithm, a metaheuristic pioneered by John Holland in the 1970s, is perhaps the

most well-known among different types of evolutionary algorithms such as evolutionary

programming, evolution strategies and genetic programming (Dasgupta & Michalewicz,

1997). It has been applied in various fields such as pattern recognition, robotics, artificial life,

experts system, electronic and electrical field, cellular automata, etc (Dasgupta &

Michalewicz, 1997). As a part of the larger class of evolutionary algorithms, the genetic

algorithm also mimics the process of natural selection to solve optimization and search

problems based on biological operators such as crossover, mutation and selection. A typical

genetic algorithm consists of the following steps: initialization, evaluation, selection,

crossover and mutation. Depending on the problems, there are several approaches that can be

used for each step of the algorithm.

The Knapsack problem was pioneered by Dantzig in the late 1950s, opening a great number

of extensive and intensive research later on in this field (Badiru, 1970). The problem

exemplifies a real-life situation where we have to assign a set of items into a knapsack or a

number of knapsacks in which each item has different sizes and values while the knapsack

has a limited capacity. Our goal is to maximize the total value of the items without exceeding

2



the capacity(s) of the knapsack(s). The knapsack problem is classified as an NP-hard problem

whose solutions cannot be obtained by the application of polynomial-time algorithms

(Badiru, 1970). However, thanks to years of research done by scientists have presented

several approaches that can be used to easily solve this problem such as dynamic

programming, recursive approach, greedy algorithm, and genetic algorithm.

This paper aims to investigate the application of the genetic algorithm to the knapsack

problem, specifically evaluating the performance of the two different selection strategies

used: roulette wheel selection and tournament selection with different parameters. The paper

will also carry out experiments with and without elitism - an algorithm that preserves the best

individuals to the next generations to observe whether this factor would affect the

performance of the algorithm in proposing the optimal solution or not.

This research could be proved helpful in presenting a more optimal approach when utilizing

the genetic algorithm to solve the knapsack problem. The problem has a plethora of real-life

applications that require computer processing allocations in distributed systems such as

financial modelling, production and inventory management systems, design of queuing

network models in manufacturing and last but not least, control of traffic overload in

telecommunication systems (Badiru, 1970). With a faster performance in solving the problem

of traffic overload, for example, it will help to prioritize different data that need to be

transferred in the network with a scarcely available bandwidth; hence, improving productivity

and saving lots of money in various fields.

To evaluate the performance of the two selection strategies used, an experiment would be

carried out to calculate how many generations it takes for each strategy to find out the

3



optimal solution and how close it is compared to the best solution, given that the termination

condition is the same. The essay would also consider the impact of the crossover rate,

mutation rate and elitism to see to what extent these variables influence the performance of

each strategy.

2. Theory

2.1. Genetic algorithm

Genetic algorithm is a heuristic algorithm that is used to solve optimization problems in

computational mathematics (Pan & Zhang, 2018). The algorithm applies “Darwinian

principles of survival” to its operation, also known as “the survival of the fittest”. The fitter

individuals will have a higher chance to adapt to the environment and therefore survive and

reproduce new generations that are more endurable to nature. Similarly, using this principle,

the genetic algorithm consists of three genetic operations: selection, crossover and mutation

(Zhong et al., 2006). The process is illustrated by the flowchart below:

4



Figure 1: Genetic algorithm flowchart

5



2.1.1. Exploitation and Exploration

Exploitation (also called intensification) characterizes the extent to which the algorithm

preserves the properties of the fittest solutions in the population. An algorithm with a high

rate of exploitation will move towards the most promising areas of the search space around

the best solutions found so far (Hao & Solnon, 2019). In figure 2, the population fitness will

gradually gather in one of the peaks. However, as illustrated in the same figure, there are

various peaks that can exist in one search space. The tallest peak (both positively and

negatively) is called the global optima while the lower ones are local optima. Due to this

factor, high exploitation might lead the population to be stuck in one of the local optima;

thus, the result found will not be the best solution possible.

Figure 2: Illustration of a search space (source: Zachary Kaplan)

Contrastingly, exploration (also called diversification) highlights the diversity of the

population. It aims at expanding the search space to discover new areas that may have better

solutions. By doing this, the algorithm will avoid being stuck in the local optima and hence,

6



have a higher chance of reaching the global optima. However, a high rate of exploration

would lead to a scattered population that cannot converge, which is also not a desired

outcome that we want to achieve.

In short, exploitation and exploration play a crucial role in every search algorithm. A

successful search algorithm requires a good ratio between exploration and exploitation

(Črepinšek et al., 2013). This is achieved by modifying the parameters of the algorithm such

as crossover rate, mutation rate, population size, etc, which will be investigated in the

experimenting process.

2.1.2. Crossover

Crossover is the process of mixing bits of two chromosomes to create an offspring that has

the genotype of both parents for the next generation. Firstly, it randomly chooses a locus on

the chromosome, then it exchanges the subsequences before and after that locus to create the

offspring (Hristakeva & Shrestha, 2022). Crossover increases the diversity of the population,

therefore increasing the exploration rate of the algorithm.

P1:

P2:

Offspring 1:

Offspring 2:

Figure 3: Illustration for crossover between two chromosomes

In figure 3, for example, the locus chosen to be crossed over is gene number. After crossover,

the offspring now has the genes of both parent 1 and parent 2.

7



2.1.3. Mutation

Mutation is a genetic operator that helps to expand the search space, thereby preventing the

GAs from being stuck in local optima. The mutation of GA in the knapsack problem is a bit

string mutation in which it flips the bit at random positions of the chromosomes. For

example, a chromosome with a composition of 1 0 1 0 after mutation at the second bit will be

1 1 1 0.

2.1.4. Premature convergence

Premature convergence causes loss of diversity, which is a problem that many Evolution

Computation systems face (Črepinšek et al., 2013). This phenomenon happens when a few fit

individuals in the initial population dominate the whole population, preventing the population

from exploring potentially better individuals (Andre et al., 2000). Since it is very difficult for

the population to move towards a better solution once converged, the population will be stuck

in the local optima. Therefore, it is prerequisite that the population needs to be diverse for

more exploration to avoid this phenomenon.

2.1.5. Elitism

Elitism is an algorithm that preserves the first best individuals or the few best individuals (the

elites) in the generation to the new population (Sharma et al., 2014). This method ensures that

good solutions are not lost during the breeding process so that the fitness value of the

upcoming generations will increase. In some cases, elitism can improve the performance of

the program significantly as it generates a very fit population (Sharma et al., 2014). However,

one thing to consider when applying elitism in GA is that elitism makes the algorithm

8



become much more exploitative. It thus causes premature convergence to happen (Kutubi et

al., 2018).

2.1.6. Termination condition

The algorithm is terminated when either one of these conditions is met: two consecutive

generations have the same mean fitness value or the limit number of generations is reached.

2.2. Selection strategies

There are several selection strategies such as truncation selection, rank-based selection,

deterministic sampling, roulette wheel and tournament selection. Each selection has different

characteristics. This paper is investigating the roulette wheel and tournament selection since

they are one of the most well-known selection strategies being used for the genetic algorithm.

2.2.1. Roulette Wheel Selection

Roulette wheel selection is the most frequently used selection strategy (Zhong et al., 2006).

As suggested by the name, this strategy is influenced by the proportional selecting principle

of the physical roulette wheel. The wheel is divided into sections that correspond to the

amount of the value of winning, i.e the larger the winning is, the smaller the sector on the

spin will be. Therefore, when the wheel is spun, the winning probability will be lower.

Similarly, the roulette wheel selection strategy used in the GA also applies this principle but

conversely, the higher the fitness, the larger the sector divided on the wheel will be and vice

versa.

9



Figure 4: Illustration of the roulette wheel

The probability of an individual i to be selected in the roulette wheel selection can be

calculated by the formula below, in which is the fitness of i and l is the number of𝑓
𝑖 

individuals in the population:

𝑝
𝑖

=
𝑓

𝑖

𝑛 = 1

𝑙

∑ 𝑓
𝑖

For example, given a population of 4 individuals with the consecutive fitness scores of 10,

20, 30, 40. The probability that the individual number 4 is selected is

𝑝
4

= 40
10+20+30+40 = 0. 4

Due to its characteristic, roulette wheel selection always gives a chance for all of the

individuals in the population, even the weaker ones to be selected. Thus, this trait helps to

expand the search space, making this selection more explorative.

10



2.2.2. Tournament Selection

Tournament selection chooses the individuals merely based on their fitness value. As the

name suggests, the algorithm will first randomly choose a certain number of individuals from

the population, then it will compare the fitness value between them and finally, choose the

one with the highest fitness values to breed and reproduce the next generation. Unlike

roulette wheel selection, there is no arithmetical computation based on the fitness value in

tournament selection (Zhong et al., 2006). The number of individuals chosen for the

tournament is called tournament size.

Although all of the individuals in the population have the same chance to be selected. Since

the tournament is merely based on comparing the fitness of the individuals, the individuals

with higher fitness value will have a much higher chance to be selected for the next

generation, which makes the algorithm become more exploitative.

2.3. The Knapsack Problem

The Knapsack Problem is a typical combinatorial optimization problem with more than 40

years of research (Pan & Zhang, 2018). This problem can be described mathematically as

follows: given that you have a knapsack of capacity W, which is the maximum weight that

your knapsack can hold. You have a list of n items, each with a weight of and a value of𝑤
𝑖

𝑣
𝑖
.

Our goal is to maximize the value of items that we can bring without exceeding the knapsack

capacity (Jaszkiewicz, 2002),

maximise
𝑖 = 1

𝑛

∑ 𝑣
𝑖
. 𝑥

𝑖

subject to and
𝑖 = 1

𝑛

∑ 𝑤
𝑖
. 𝑥

𝑖
 ≤  𝑊 𝑥

𝑖
 ϵ 0; 1{ }

11



is the number of instances of item i to include in the knapsack. The range of can only be𝑥
𝑖

𝑥
𝑖

either 0 or 1 because the item can only be left behind or taken. Hence, this is why the

knapsack problem is also known as the 0/1 knapsack problem.

Figure 5: An illustration of the knapsack problem (source: Wikipedia)

The knapsack problem is an NP-C (Non-deterministic Polynomial Completeness) problem.

Since there are n items, each with two binary options 0/1, there are possible combinations2𝑛

of items, making its computation complexity O( ) (Kellerer et al., 2004). This problem can2𝑛

be solved by the classical Brute Force algorithm by trying out all possible solutions; however,

due to the exponential complexity, this algorithm is only applicable with a small value of n

(Pan & Zhang, 2018). That is the reason why other non-deterministic algorithms such as

dynamic programming and genetic algorithm are more effective in solving this problem.

Figure 6: Binary code for the Knapsack problem with 5 items

12



Figure 5 exemplifies a solution for the Knapsack problem with 5 items consecutively marked

from 1 to 5. The binary option 1 means that the item will be taken and 0 means the item will

be left out. So in the example of figure 5, 3 items will be taken: item 1, 4 and 5.

3. Hypothesis

Prior to my research, there has been numerous research about the performance of the genetic

algorithm. A research paper done by Jinghui Zhong and the others has found out that

tournament selection is more effective in convergence than roulette wheel in solving different

functions (Zhong et al., 2006). This case might also be true to my investigation.

Given that tournament selection has the time complexity of O (n), while for roulette wheel is

O( ) (Sharma et al., 2014), it is certain that the tournament selection is more efficient than𝑛2

the roulette wheel selection in terms of time complexity. Combining this feature with the

higher rate of exploitation, I hypothesize that tournament selection will outperform the

roulette wheel in terms of convergence rate. However, due to its higher exploitation rate, it is

likely that the tournament selection might face premature convergence, especially with

elitism. In that case, the fast pace of converging might compensate for the quality of the

output solution of the tournament selection. A higher mutation rate and crossover rate might

increase the diversity of the population, thus improving the quality of the solution.

Meanwhile, unlike tournament selection, the roulette wheel has a better balance of

exploration and exploitation. Since it is more explorative, a diverse search space would lead

to a higher chance of finding the best solution compared to that of tournament selection so the

output quality of the roulette wheel selection would be better than that of the tournament.

13



Nevertheless, due to the process of calculating the fitness proportion, this selection will take a

longer time to converge and more computational energy than tournament selection.

4. Methodology

In this paper, besides literature research, I also used an empirical approach to compare the

two strategies. This section features the detailed experimental procedures and the variables

used to determine the results, with reference to the Java code. In order

4.1. The experimental procedures

The GA is run several times with three sets of data and several parameter combinations, i.e

different crossover rates, mutation rates and with/without elitism. For each test, the statistics

of the GA performance, as well as the graph of the mean fitness by generations are recorded

for later analysis.

The detailed procedure is as follow:

● Find and set up the suitable dataset for the Knapsack Problem.

● Set up the program to insert the data fetched from the given dataset including the

values and weight of each item in the list, the crossover rate, the mutation rate and the

strategy used. Because the original code I used only had a general selection strategy

so I went on to write an implementing code for tournament selection and roulette

wheel selection.

● Run the program several times using different inputs of the population size.

● Record the total generations the process takes, the fitness score and the generation in

which the individual with the best fitness occurs.

● Synthesize the taken data into tables and graphs.

14



4.2. Independent variables

a. Dataset used

The experiment was conducted using a dataset directory created by Donald Kreher, Douglas

Simpson and Silvano Martello, Paolo Toth. The given knapsack has a weight capacity of 750.

The item list contains 15 objects with different weights and values. As long as the total

weight of items does not exceed the knapsack’s capacity, the subset of the objects is

considered qualified. The dataset is also given with the most optimal profit and the most

optimal selection so that we can compare it with the solutions given by the algorithm to

analyze the efficiency of the algorithm (which is further explained in 4.5)

Figure 7: Dataset for the Knapsack Problem

b. Other parameters

Mutation rate 0.01 and 0.03

Crossover rate 0.85 and 0.95

15



Population size 100, 200, 300, 400, 500, 750, 1000

Tournament size 5

Elitism 2 chromosomes with the highest fitness value in the
population is chosen to be in the next generation.

Maximum generation 5000

4.3. Dependent variables

The dependent variable measured in this experiment is the number of generations the

algorithm takes to find the most optimal solution, the generation in which the best solution

occurs and the fitness of the best individual in the population at the end of the process when

the most optimized solution is found or the algorithm reaches its limit population. These

variables will then be taken to evaluate the optimization speed (measured by the number of

generations including the initial generation) and the optimization reliability (measured by the

fitness of the best individual).

4.4. Controlled variables

Variable Description Specifications

Computer and

operating

system used

MacBook Pro with

macOS Big Sur

Version: 11.5.2

Processor: 1,4 GHz Quad-Core Intel Core i5

Memory: 8GB 2133 MHz LPDDR3

Serial Number: FVFD240PP3Y1

16



Integrated

Development

Environment

(IDE) used

The IDE that the

program is running

on

IDE: IntelliJ IDEA CE 2021.3

Build #IC-213.5744.223

Runtime version: 11.0.13+7-b1751.19 x86_64

Java Runtime Environment:

Java Virtual Machine: OpenJDK 64-Bit

Server VM by JetBrains s.r.o.

macOS 11.5.2

GC: G1 Young Generation, G1 Old

Generation

Memory: 1024M

Cores: 8

Algorithm used The algorithm used

in the experiment is

in Appendix A

Functions used Most of the functions

in the program will

be the same except

from the selecting

function

4.5. Efficiency measure

The efficiency of the performance of two selection strategies is measured based on two

factors: convergence rate (speed) and solution reliability (quality). The variables used to

17



measure both of these factors are given in 4.2 Dependent variables. The convergence speed is

measured by the number of generations it takes to find the most optimized solution. The

smaller the number of generations is, the more quickly the algorithm converges. Meanwhile,

its reliability is measured by the difference between the fitness of the solution found with the

most optimized solution that is already known beforehand in the dataset (given in 4.2.a).

5. Experiment Results and Analysis

5.1. Experiment 1

● Crossover rate: 0.85

● Mutation rate: 0.01

● Without elitism

Since this is the first experiment, not much conclusion can be withdrawn from it. However,

we can see that tournament selection converges faster since it takes fewer generations to

converge (as shown in the “No. of generations” column) compared to roulette wheel, except

for the last run with the population size of 1000. This might be due to the big size of the

population but in most other cases, it is certain that the tournament selection is faster in terms

18



of converging rate. Regarding the fitness score, since GA is non-deterministic, the fitness

score varies differently for each run and it is not certain to conclude the difference between

the two strategies.

5.2. Experiment 2

● Crossover rate: 0.85

● Mutation rate: 0.01

● With elitism

Compared to the first experiment, there is a clear difference in both strategies when elitism is

added. Starting with roulette wheel, the converging rate has significantly improved as it takes

much fewer generations to converge. It seems like without elitism, roulette wheel usually

misses the potential best solution as it is not guaranteed to be selected for the next

generations. Therefore, it takes a longer time to converge although the best solution is usually

found in the early generations. For tournament selection, the best solution is mostly found

within the first generation (generation 0) while the fitness score of the solution found is not

the best one (we already know the best solution has the fitness value of 1458) regardless of

19



the population size. Therefore, it is likely that premature has happened to tournament

selection as elitism makes the algorithm become much more exploitative.

5.3. Experiment 3

● Crossover rate: 0.95

● Mutation rate: 0.01

● Without elitism

For experiments 3 and 4, the crossover rate is increased to see its impact. For roulette wheel

selection, the probability that the algorithm found the most optimized solution increased

significantly, especially with the big population size. An expansion of the search space might

explain this result due to the increased crossover rate, however, the population seems to never

converge but rather scatter around as the algorithm only stopped when it reaches the

maximum generations. For tournament, similar to the first two experiments, it still takes less

time to converge than roulette wheel.

20



5.4. Experiment 4

● Crossover rate: 0.95

● Mutation rate: 0.01

● With elitism

When adding in elitism, once again premature occurs in the tournament selection. Hence, the

increased crossover rate does not seem to have any influence on tournament in this case.

However, this phenomenon surprisingly has also occurred with roulette wheel. Compared to

experiment 2 where elitism was also applied, in this experiment, roulette wheel also takes

significantly less generation to converge, the only difference is that the probability that it

reaches the global maximum is much less than that of experiment 2.

21



5.5. Experiment 5

● Crossover rate: 0.85

● Mutation rate: 0.03

● Without elitism

In experiment 5 and 6, the mutation rate is increased. This experiment interestingly witnessed

a significant increase in the quality of the solutions found in both selection strategies.

Especially in tournament selection, from the population size of 400 to 1000, the best fitness

score is always found. Despite the similar quality of the solution found, tournament selection

still surpasses the roulette wheel in terms of converging rate with a lower number of

generations (less run time).

22



5.6. Experiment 6

● Crossover rate: 0.85

● Mutation rate: 0.03

● With elitism

This experiment has the highest exploitation rate as mutation rate is increased and elitism is

applied. Both selection strategies found their best solution in only the first three generations

and none of them found the best optimal score. Therefore, it can be concluded that premature

has appeared in both selection strategies, making both of them stuck at the local maxima.

6. Conclusion

The experiment has shown that the tournament selection converges much faster as it takes

fewer generations to output the solution. It is also more exploitative than roulette wheel

selection since the best solutions are usually found in early generations. Moreover, my

hypothesis is proven to be correct: due to its high rate of exploitation, premature convergence

has occurred when elitism is applied in tournament selection.

23



On the other hand, experiment 5 shows that an increase in the exploration rate can

significantly improve the output of tournament selection. It means that with a balance of

exploration and exploitation, tournament selection has a better performance with a fast

converging rate and higher quality of solutions found. Meanwhile, the roulette wheel except

for experiments 2 and 6 where premature convergence occurred, in most other cases, roulette

wheel gives better solutions than tournament. The only problem with the roulette wheel is

that it takes a longer time to converge without elitism.

In short, the convergence rate of tournament selection is better than roulette wheel in most

cases regardless of the configurations. The quality of the solution is not always assured and is

varied with different configurations. However, an increase in mutation rate could fix this

problem and improve the performance of the tournament selection. With that being said,

tournament selection can be much more effective compared to roulette wheel, specifically

with bigger optimization problems.

24



Bibliography

Andre, J., Siarry, P., & Dognon, T. (2000, November 30). An improvement of the

standard genetic algorithm fighting premature convergence in continuous optimization.

Advances in Engineering Software. Retrieved March 12, 2022, from

https://www.sciencedirect.com/science/article/abs/pii/S0965997800000703

Badiru, K. (1970, January 1). Knapsack problems; methods, models and applications.

Knapsack Problems; Methods, Models and Applications. Retrieved March 12, 2022,

from https://shareok.org/handle/11244/320340

Dasgupta, D., & Michalewicz, Z. (1997). 3.1 Genetic Algorithms. In Evolutionary

algorithms in engineering applications. essay, Springer-Verlag.

Hao, J.-K., & Solnon, C. (2019, April 10). Meta-heuristics and Artificial Intelligence.

HAL Open Science. Retrieved March 12, 2022, from

https://hal.archives-ouvertes.fr/hal-02094881

Hristakeva, M., & Shrestha, D. (n.d.). Solving the 0-1 knapsack problem with Genetic

Algorithms. Retrieved March 12, 2022, from

http://www.sc.ehu.es/ccwbayes/docencia/kzmm/files/AG-knapsack.pdf

Hristakeva, M., & Shrestha, D. (n.d.). Solving the 0-1 knapsack problem with Genetic

Algorithms. Retrieved March 12, 2022, from

http://www.sc.ehu.es/ccwbayes/docencia/kzmm/files/AG-knapsack.pdf

Jaszkiewicz, A. (2002, November 7). On the performance of multiple-objective genetic

local search on the 0/1 Knapsack Problem - A Comparative Experiment. IEEE Xplore.

Retrieved March 12, 2022, from https://ieeexplore.ieee.org/document/1027751

25



Kaplan, Z. (2018, November 30). File: Non-Convex Objective Function.gif. Wikimedia

Commons. Retrieved March 10, 2022, from

https://commons.wikimedia.org/wiki/User:OgreBot/Uploads_by_new_users/2018_Nov

ember_30_00:00

Kellerer, H., Pferschy, U., & Pisinger, D. (2004, January 1). Introduction to

NP-completeness of Knapsack problems: Semantic scholar. Research Gate. Retrieved

March 12, 2022, from

https://www.semanticscholar.org/paper/Introduction-to-NP-Completeness-of-Knapsack-

Kellerer-Pferschy/851cd34a917af34c96874ebd026fad0426fed0c4

Kreher, D., Simpson, D., Martello, S., & Toth, P. (2014, August 17). Knapsack_01 data

for the 01 knapsack problem. KNAPSACK_01 - Data for the 01 Knapsack Problem.

Retrieved March 10, 2022, from

https://people.math.sc.edu/Burkardt/datasets/knapsack_01/knapsack_01.html

Kutubi, A. A. R., Hong, M.-G., & Kim, C. (2018, February 28). Evaluating the

Performance of Four Selections in Genetic Algorithms-Based Multispectral Pixel

Clustering. Korea Science. Retrieved March 12, 2022, from

https://koreascience.or.kr/article/JAKO201807356123567.pdf

Mayo, M. (2014, June 25). Knapsack-problem-ga-java/knapsackproblem.java at master

· MMMAYO13/Knapsack-problem-ga-java. GitHub. Retrieved March 12, 2022, from

https://github.com/mmmayo13/knapsack-problem-ga-java/blob/master/knapsack/Knaps

ackProblem.java

Mustafa, W., Science, D. of C., R. Plant, S. M. and, N. Zlatareva, M. Rousset, A. L.

and, A. Cheng, B. Z. and, W. Mustafa, M. Kamel, A. L. and, L. Forgy, C., W. Mettrey,

26

https://koreascience.or.kr/article/JAKO201807356123567.pdf


Al., E., T. Ishida, D. Moldovan, S. K. and, Hassanat, A., Minutolo, A., Arman, N., &

Zhong, J. (2003). Optimization of production systems using genetic algorithms.

International Journal of Computational Intelligence and Applications. Retrieved March

12, 2022, from https://www.worldscientific.com/doi/abs/10.1142/S1469026803000987

Pan, X., & Zhang, T. (2018, August 1). Comparison and Analysis of Algorithms for the

0/1 Knapsack Problem. Journal of Physics: Conference Series. Retrieved March 12,

2022, from https://iopscience.iop.org/article/10.1088/1742-6596/1069/1/012024

Razali, N. M., & Geraghty, J. (2011, July 8). Genetic Algorithm Performance with

Different Selection Strategies in Solving TSP. http://iaeng.org/. Retrieved March 12,

2022, from http://www.iaeng.org/publication/WCE2011/WCE2011_pp1134-1139.pdf

Sharma, P., Wadhwa, A., & Komal. (2014, May). Analysis of selection schemes for

solving an optimization ... Research Gate. Retrieved March 12, 2022, from

https://www.researchgate.net/publication/271156981_Analysis_of_Selection_Schemes_

for_Solving_an_Optimization_Problem_in_Genetic_Algorithm

Yu, X., & Gen, M. (2013). 1.2 What Are Evolutionary Algorithms? In Introduction to

evolutionary algorithms. essay, Springer London.

Zhong, J., Hu, X., Zhang, J., & Gu, M. (2006, May 22). Comparison of performance

between different selection strategies on simple genetic algorithms. IEEE Xplore.

Retrieved March 12, 2022, from https://ieeexplore.ieee.org/abstract/document/1631619

Črepinšek, M., Liu, S.-hsi, & Mernik, M. (2013, June). Exploration and exploitation in

evolutionary algorithms: A Survey. ResearchGate. Retrieved March 12, 2022, from

https://www.researchgate.net/publication/243055445_Exploration_and_Exploitation_in

_Evolutionary_Algorithms_A_Survey

27



Appendices

Appendix A - Genetic Algorithm for Knapsack Problem

A.1: KnapsackProblem.java (Matthew Mayo, with modification from the student)

/**

* @filename: KnapsackProblem.java

* @author: Matthew Mayo

* @modified: 2014-04-08

* @description: Creates a KnapsackProblem object based on user input,

* attempts to solve using a genetic algorithm; outputs

* algorithm data step-by-step, generates list of optimal

* items for problem, graphs mean fitness by generation;

* optional command line argument output_filename will

* redirect all algorithm details output to output_filename

* in current directory, will overwrite output_filename

* contents if file exists

* @usage: java KnapsackProblem <output_filename>

*/

import java.io.Console;

import java.io.File;

import java.io.FileOutputStream;

import java.io.FileNotFoundException;

import java.io.PrintStream;

import java.lang.StringBuilder;

import java.util.*;

public class KnapsackProblem {

private boolean verbose = false;

28



private boolean mutation = false;

private int selectionOper = 0;

private int crossover_count = 0;

private int clone_count = 0;

private int number_of_items = 0;

private int elitismOper = 0;

private int population_size = 0;

private int maximum_generations = 0;

//private int generation_counter = 1;

private int tournament_size = 0;

private double knapsack_capacity = 0;

private double prob_crossover = 0;

private double prob_mutation = 0;

private double total_fitness_of_generation = 0;

//private ArrayList<Double> tournament = new ArrayList<Double>();

private ArrayList<Double> value_of_items = new ArrayList<Double>();

private ArrayList<Double> weight_of_items = new ArrayList<Double>();

private ArrayList<Double> fitness = new ArrayList<Double>();

private ArrayList<Double> total_weight_of_solution= new

ArrayList<Double>();

private ArrayList<Double> best_fitness_of_generation = new

ArrayList<Double>();

private ArrayList<Double> second_best_fitness_of_generation = new

ArrayList<Double>();

private ArrayList<Double> mean_fitness_of_generation = new

ArrayList<Double>();

private ArrayList<String> population = new ArrayList<String>();

private ArrayList<String> breed_population = new ArrayList<String>();

private ArrayList<String> best_solution_of_generation = new

ArrayList<String>();

29



private ArrayList<String> second_best_solution_of_generation = new

ArrayList<String>();

/**

* Main method

*/

public static void main(String[] args) {

// Check for command line argument output_filename

// If filename present, redirect all System.out to file

try {

File file_name = new File(args[0]);

if (file_name.exists()) {

file_name.delete();

}

FileOutputStream fos = new FileOutputStream(file_name, true);

PrintStream ps = new PrintStream(fos);

System.setOut(ps);

} catch (FileNotFoundException e) {

System.out.println("Problem with output file");

}

{

// Construct KnapsackProblem instance and pass control

KnapsackProblem knap = new KnapsackProblem();

// Construct graph of mean fitness by generation

SimpleGraph graph = new

SimpleGraph(knap.mean_fitness_of_generation,

30



"Mean Fitness by Generation");

}

}

/**

* Default constructor

*/

public KnapsackProblem() {

// Get user input

this.getInput();

// Make first generation

this.buildKnapsackProblem();

// Output summary

this.showOptimalList();

}

/**

* Controls knapsack problem logic and creates first generation

*/

public void buildKnapsackProblem() {

// Generate initial random population (first generation)

this.makePopulation();

// Start printing out summary

System.out.println("\nInitial Generation:");

System.out.println("===================");

31



System.out.println("Population:");

for (int i = 0; i < this.population_size; i++) {

System.out.println((i + 1) + " - " + this.population.get(i));

}

// Evaluate fitness of initial population members

this.evalPopulation();

// Output fitness summary

System.out.println("\nFitness:");

for (int i = 0; i < this.population_size; i++) {

System.out.println((i + 1) + " - " + this.fitness.get(i));

}

// Find best solution of generation

this.best_solution_of_generation.add(this.population.get(this.getBestS

olution()));

// Find second best solution of generation

this.second_best_solution_of_generation.add(this.population.get(this.g

etSecondBestSolution()));

// Output best solution of generation

System.out.println("\nBest solution of initial generation: " +

this.best_solution_of_generation.get(0));

// Find mean solution of generation

this.mean_fitness_of_generation.add(this.getMeanFitness());

32



// Output mean solution of generation

System.out.println("Mean fitness of initial generation: " +

this.mean_fitness_of_generation.get(0));

// Compute fitness of best solution of generation

this.best_fitness_of_generation.add(this.evalGene(this.population.get(this.ge

tBestSolution())));

// Compute fitness of second best solution of generation

this.second_best_fitness_of_generation.add(this.evalGene(this.population.get(

this.getSecondBestSolution())));

// Output best fitness of generation

System.out.println("Fitness score of best solution of initial

generation: " + this.best_fitness_of_generation.get(0));

// If maximum_generations > 1, breed further generations

if (this.maximum_generations > 1) {

makeFurtherGenerations();

}

}

/**

* Makes further generations beyond first, if necessary

*/

private void makeFurtherGenerations() {

// Breeding loops maximum_generation number of times at most

33



for (int i = 1; i < this.maximum_generations; i++) {

// Check for stopping criterion

if ((this.maximum_generations > 3) && (i > 4)) {

// Previous 2 generational fitness values

double a = this.mean_fitness_of_generation.get(i - 1);

double b = this.mean_fitness_of_generation.get(i - 2);

double c = this.mean_fitness_of_generation.get(i - 3);

// If both 3 are equal, stop

if (a == b && b == c) {

System.out.println("\nStop criterion met");

maximum_generations = i;

break;

}

/**The threshold is met

if (this.total_weight_of_solution.get(i) ==

knapsack_capacity && this.fitness.get(i) >

this.best_fitness_of_generation.get(i))

{

System.out.println("\nStop criterion met");

maximum_generations = i;

break;

}

*/

}

// Reset some counters

34



this.crossover_count = 0;

this.clone_count = 0;

this.mutation = false;

// Breed population

if(elitismOper == 0) {

for(int j = 0; j < this.population_size / 2; j++) {

this.breedPopulation(i);

}

} else if(elitismOper == 1) {

for(int j = 0; j < ((this.population_size / 2) - 1); j++) {

this.breedPopulation(i);

}

}

// Clear fitness values of previous generation

this.fitness.clear();

// Evaluate fitness of breed population members

this.evalBreedPopulation();

// Copy breed_population to population

for (int k = 0; k < this.population_size; k++) {

this.population.set(k, this.breed_population.get(k));

}

// Output population

System.out.println("\nGeneration " + (i + 1) + ":");

if ((i + 1) < 10) {

System.out.println("=============");

}

35



if ((i + 1) >= 10) {

System.out.println("==============");

}

if ((i + 1) >= 100) {

System.out.println("===============");

}

System.out.println("Population:");

for (int l = 0; l < this.population_size; l++) {

System.out.println((l + 1) + " - " + this.population.get(l));

}

// Output fitness summary

System.out.println("\nFitness:");

for (int m = 0; m < this.population_size; m++) {

System.out.println((m + 1) + " - " + this.fitness.get(m));

}

// Clear breed_population

this.breed_population.clear();

// Find best solution of generation

this.best_solution_of_generation.add(this.population.get(this.getBestSolution

()));

// Find second best solution of generation

this.second_best_solution_of_generation.add(this.population.get(this.getSecon

dBestSolution()));

// Output best solution of generation

36



System.out.println("\nBest solution of generation " + (i + 1) + ":

" + this.best_solution_of_generation.get(i));

// Find mean solution of generation

this.mean_fitness_of_generation.add(this.getMeanFitness());

// Output mean solution of generation

System.out.println("Mean fitness of generation: " +

this.mean_fitness_of_generation.get(i));

// Compute fitness of best solution of generation

this.best_fitness_of_generation.add(this.evalGene(this.population.get(this.ge

tBestSolution())));

// Compute fitness of second best solution of generation

this.second_best_fitness_of_generation.add(this.evalGene(this.population.get(

this.getSecondBestSolution())));

// Output best fitness of generation

System.out.println("Fitness score of best solution of generation "

+ (i + 1) + ": " + this.best_fitness_of_generation.get(i));

// Output crossover/cloning summary

System.out.println("Crossover occurred " + this.crossover_count +

" times");

System.out.println("Cloning occurred " + this.clone_count + "

times");

if (this.mutation == false) {

System.out.println("Mutation did not occur");

37



}

if (this.mutation == true) {

System.out.println("Mutation did occur");

}

}

}

private void stopCriterion() {

SimpleGraph graph = new SimpleGraph(mean_fitness_of_generation,

"Mean Fitness by Generation");

}

/**

* Output KnapsackProblem summary

*/

private void showOptimalList() {

// Output optimal list of items

System.out.println("\nOptimal list of items to include in knapsack:

");

double best_fitness = 0;

int best_gen = 0;

// First, find best solution out of generational bests

for (int z = 0; z < this.maximum_generations - 1; z++) {

if (this.best_fitness_of_generation.get(z) > best_fitness) {

best_fitness = this.best_fitness_of_generation.get(z);

best_gen = z;

38



}

}

System.out.println("Best generation is " + best_gen);

System.out.println("Best fitness is " + best_fitness);

// Then, go through that's generation's best solution and output items

String optimal_list = this.best_solution_of_generation.get(best_gen);

for (int y = 0; y < this.number_of_items; y++) {

if (optimal_list.substring(y, y + 1).equals("1")) {

System.out.print((y + 1) + " ");

}

}

System.out.println();

for (int i = 0; i < maximum_generations - 1 ; i++) {

System.out.println("Generation:" + "\t" + i + "\t" + "Fitness:" +

"\t" + this.best_fitness_of_generation.get(i));

}

}

/**

* Breeds current population to create a new generation's population

*/

private void breedPopulation(int i) {

// 2 genes for breeding

int[] genes;

39



// If population_size is odd #, use elitism to clone best solution of

previous generation

if (elitismOper == 1) {

breed_population.add(best_solution_of_generation.get(i-1));

breed_population.add(second_best_solution_of_generation.get(i-1));

}

// Increase generation_counter

//generation_counter = generation_counter + 1;

// Get positions of pair of genes for breeding

genes = select();

// Crossover or cloning

crossoverGenes(genes[0], genes[1]);

}

public int[] select() {

int[] gene = new int[2];

if (selectionOper == 1) {

gene[0] = selectGeneTournament();

gene[1] = selectGeneTournament();

} else {

gene[0] = selectGeneRouletteWheel();

gene[1] = selectGeneRouletteWheel();

}

return gene;

}

40



/**

* Performs mutation, if necessary

*/

private void mutateGene() {

// Decide if mutation is to be used

double rand_mutation = Math.random();

if (rand_mutation <= prob_mutation) {

// If so, perform mutation

mutation = true;

String mut_gene;

String new_mut_gene;

Random generator = new Random();

int mut_point = 0;

double which_gene = Math.random() * 100;

// Mutate gene

if (which_gene <= 50) {

mut_gene = breed_population.get(breed_population.size() - 1);

mut_point = generator.nextInt(number_of_items);

if (mut_gene.substring(mut_point, mut_point + 1).equals("1"))

{

new_mut_gene = mut_gene.substring(0, mut_point) + "0" +

mut_gene.substring(mut_point);

breed_population.set(breed_population.size() - 1,

new_mut_gene);

}

41



if (mut_gene.substring(mut_point, mut_point + 1).equals("0"))

{

new_mut_gene = mut_gene.substring(0, mut_point) + "1" +

mut_gene.substring(mut_point);

breed_population.set(breed_population.size() - 1,

new_mut_gene);

}

}

if (which_gene > 50) {

mut_gene = breed_population.get(breed_population.size() - 2);

mut_point = generator.nextInt(number_of_items);

if (mut_gene.substring(mut_point, mut_point + 1).equals("1"))

{

new_mut_gene = mut_gene.substring(0, mut_point) + "0" +

mut_gene.substring(mut_point);

breed_population.set(breed_population.size() - 1,

new_mut_gene);

}

if (mut_gene.substring(mut_point, mut_point + 1).equals("0"))

{

new_mut_gene = mut_gene.substring(0, mut_point) + "1" +

mut_gene.substring(mut_point);

breed_population.set(breed_population.size() - 2,

new_mut_gene);

}

}

}

}

/**

42



* Selects a gene for breeding

*

* @return int - position of gene in population ArrayList to use for

breeding

*/

private int selectGeneRouletteWheel() {

// Generate random number between 0 and total_fitness_of_generation

double rand = Math.random() * total_fitness_of_generation;

// Use random number to select gene based on fitness level

for (int i = 0; i < population_size; i++) {

if (rand <= fitness.get(i)) {

return i;

}

rand = rand - fitness.get(i);

}

// Not reachable; default return value

return 0;

}

/**

* Tournament selection

* Written by the student

* @return

*/

private int selectGeneTournament() {

43



//Array of genes selected for the tournament

double[][] tournament = new double[tournament_size][2];

for (int j = 0; j < tournament_size; j++) {

// Generate random position within the range of 0-population size

Random r = new Random();

int rand = r.nextInt(population_size);

tournament[j][0] = rand;

}

// fill in the tournament array with the position and the fitness

value

for (int i = 0; i < tournament_size; i++) {

// Select random genes from the population

tournament[i][1] = fitness.get((int) tournament[i][0]);

}

//Select the best individual

double temp = tournament[0][1];

int gene_position = 0;

for (int n = 0; n < tournament_size; n++) {

if (temp <= tournament[n][1]) {

temp = tournament[n][1];

gene_position = (int) tournament[n][0];

}

}

return gene_position;

}

44



/**

* Performs either crossover or cloning

*/

private void crossoverGenes(int gene_1, int gene_2) {

// Strings to hold new genes

String new_gene_1;

String new_gene_2;

// Decide if crossover is to be used

double rand_crossover = Math.random();

if (rand_crossover <= prob_crossover) {

// Perform crossover

crossover_count = crossover_count + 1;

Random generator = new Random();

int cross_point = generator.nextInt(number_of_items) + 1;

// Cross genes at random spot in strings

new_gene_1 = population.get(gene_1).substring(0, cross_point) +

population.get(gene_2).substring(cross_point);

new_gene_2 = population.get(gene_2).substring(0, cross_point) +

population.get(gene_1).substring(cross_point);

// Add new genes to breed_population

breed_population.add(new_gene_1);

breed_population.add(new_gene_2);

} else {

// Otherwise, perform cloning

clone_count = clone_count + 1;

breed_population.add(population.get(gene_1));

breed_population.add(population.get(gene_2));

45



}

// Check if mutation is to be performed

mutateGene();

}

/**

* Gets best solution in population

*

* @return int - position of best solution in population

*/

private int getBestSolution() {

int best_position = 0;

double this_fitness = 0;

double best_fitness = 0;

for (int i = 0; i < population_size; i++) {

this_fitness = evalGene(population.get(i));

if (this_fitness > best_fitness) {

best_fitness = this_fitness;

best_position = i;

}

}

return best_position;

}

/**

* Gets second best solution in population

*

* @return int - position of second best solution in population

*/

46



private int getSecondBestSolution() {

int second_best_position = 0;

int best_position = 0;

double this_fitness = 0;

double best_fitness = evalGene(population.get(0));

double second_best_fitness = evalGene(population.get(0));

for(int i = 1; i < population_size;i++)

{

this_fitness = evalGene(population.get(i));

if (this_fitness > best_fitness) {

second_best_fitness = best_fitness;

second_best_position = best_position;

best_fitness = this_fitness;

best_position = i;

}

if (this_fitness > second_best_fitness && this_fitness !=

best_fitness) {

second_best_fitness = this_fitness;

second_best_position = i;

}

}

return second_best_position;

}

/**

* Gets mean fitness of generation

*/

private double getMeanFitness() {

double total_fitness = 0;

47



double mean_fitness = 0;

for (int i = 0; i < population_size; i++) {

total_fitness = total_fitness + fitness.get(i);

}

mean_fitness = total_fitness / population_size;

return mean_fitness;

}

/**

* Evaluates entire population's fitness, by filling fitness ArrayList

* with fitness value of each corresponding population member gene

*/

private void evalPopulation() {

total_fitness_of_generation = 0;

for (int i = 0; i < population_size; i++) {

double temp_fitness = evalGene(population.get(i));

fitness.add(temp_fitness);

total_fitness_of_generation = total_fitness_of_generation +

temp_fitness;

}

}

/**

* Evaluates entire breed_population's fitness, by filling breed_fitness

ArrayList

* with fitness value of each corresponding breed_population member gene

*/

private void evalBreedPopulation() {

total_fitness_of_generation = 0;

48



for (int i = 0; i < population_size; i++) {

double temp_fitness = evalGene(breed_population.get(i));

fitness.add(temp_fitness);

total_fitness_of_generation = total_fitness_of_generation +

temp_fitness;

}

}

/**

* Evaluates a single gene's fitness, by calculating the total_weight

* of items selected by the gene

*

* @return double - gene's total fitness value

*/

private double evalGene(String gene) {

double total_weight = 0;

double total_value = 0;

double fitness_value = 0;

double difference = 0;

char c = '0';

// Get total_weight associated with items selected by this gene

for (int j = 0; j < number_of_items; j++) {

c = gene.charAt(j);

// If chromosome is a '1', add corresponding item position's

// weight to total weight

if (c == '1') {

total_weight = total_weight + weight_of_items.get(j);

total_value = total_value + value_of_items.get(j);

}

49



}

// Check if gene's total weight is less than knapsack capacity

difference = knapsack_capacity - total_weight;

if (difference >= 0) {

// This is acceptable; calculate a fitness_value

// Otherwise, fitness_value remains 0 (default), since knapsack

// cannot hold all items selected by gene

// Fitness value is simply total value of acceptable permutation,

// and for unacceptable permutation is set to '0'

fitness_value = total_value;

this.total_weight_of_solution.add(total_weight);

}

// Return fitness value

return fitness_value;

}

/**

* Makes a population by filling population ArrayList with strings of

* length number_of_items, each element a gene of randomly generated

* chromosomes (1s and 0s)

*/

private void makePopulation() {

for (int i = 0; i < population_size; i++) {

// Calls makeGene() once for each element position

population.add(makeGene());

}

}

50



/**

* Generates a single gene, a random String of 1s and 0s

*

* @return String - a randomly generated gene

*/

private String makeGene() {

// Stringbuilder builds gene, one chromosome (1 or 0) at a time

StringBuilder gene = new StringBuilder(number_of_items);

// Each chromosome

char c;

// Loop creating gene

for (int i = 0; i < number_of_items; i++) {

c = '0';

double rnd = Math.random();

// If random number is greater than 0.5, chromosome is '1'

// If random number is less than 0.5, chromosome is '0'

if (rnd > 0.5) {

c = '1';

}

// Append chromosome to gene

gene.append(c);

}

// Stringbuilder object to string; return

return gene.toString();

}

/**

51



* Collects user to be used as parameters for knapsack problem

*/

private void getInput() {

try {

File myObj = new File("dataset.txt");

Scanner s = new Scanner(myObj);

while (s.hasNext()) {

/**

* // Population size

*                 population_size = s.nextInt();

*/

//Selection Strategy

selectionOper = s.nextInt();

//Elitism

elitismOper = s.nextInt();

// Tournament size

tournament_size = s.nextInt();

// Maximum number of generations

maximum_generations = s.nextInt();

// Crossover probability

prob_crossover = s.nextDouble();

// Mutation rate

prob_mutation = s.nextDouble();

52



// Number of items

number_of_items = s.nextInt();

// Value of each item

for (int i = 0; i < number_of_items; i++) {

value_of_items.add(s.nextDouble());

}

// Weight of each item

for (int i = 0; i < number_of_items; i++) {

weight_of_items.add(s.nextDouble());

}

// Capacity of knapsack

knapsack_capacity = s.nextInt();

}

s.close();

// Hold user input, line by line

String input;

// Initialize console for user input

Console c = System.console();

if (c == null) {

System.err.println("No console.");

System.exit(1);

}

// Population size

input = c.readLine("Enter the population size: ");

if (isInteger(input)) {

53



population_size = Integer.parseInt(input);

} else {

System.out.println("Not a number. Please try again.");

System.exit(1);

}

} catch (FileNotFoundException e) {

System.out.println("An error occurred.");

e.printStackTrace();

}

}

/**

* Determines if input string can be converted to integer

*

* @param String - string to be checked

* @return boolean - whether or not string can be converted

*/

public static boolean isInteger(String str) {

try {

Integer.parseInt(str);

} catch (NumberFormatException e) {

return false;

}

return true;

}

/**

54



* Determines if input string can be converted to double

*

* @param String - string to be checked

* @return boolean - whether or not string can be converted

*/

public static boolean isDouble(String str) {

try {

Double.parseDouble(str);

} catch (NumberFormatException e) {

return false;

}

return true;

}

} // KnapsackProblem

Roulette Wheel Selection (written by the student)

private int selectGeneRouletteWheel() {

// Generate random number between 0 and total_fitness_of_generation

double rand = Math.random() * total_fitness_of_generation;

// Use random number to select gene based on fitness level

for (int i = 0; i < population_size; i++) {

if (rand <= fitness.get(i)) {

return i;

}

rand = rand - fitness.get(i);

}

// Not reachable; default return value

return 0;

55



}

Tournament Selection (written by the student)

private int selectGeneTournament() {

//Array of genes selected for the tournament

double[][] tournament = new double[tournament_size][2];

for (int j = 0; j < tournament_size; j++) {

// Generate random position within the range of 0-population size

Random r = new Random();

int rand = r.nextInt(population_size);

tournament[j][0] = rand;

}

// fill in the tournament array with the position and the fitness value

for (int i = 0; i < tournament_size; i++) {

// Select random genes from the population

tournament[i][1] = fitness.get((int) tournament[i][0]);

}

//Select the best individual

double temp = tournament[0][1];

int gene_position = 0;

for (int n = 0; n < tournament_size; n++) {

if (temp <= tournament[n][1]) {

temp = tournament[n][1];

gene_position = (int) tournament[n][0];

}

}

return gene_position;

}

56



A.2: SimpleGraph.java

/**

* @filename: SimpleGraph.java

* @author: Matthew Mayo

* @modified: 2014-04-08

* @description: Creates a SimpleGraph object based on supplied ArrayList

*                  of data points; draws graph, adds points, lines,

appropriate

*                  hatch marks; must supply ArrayList of data points to

plot

*                  and title of graph to display

* @usage: java SimpleGraph <data_points> <graph_title>

* @note: Inspiration for, and adapted code, comes from:

*

http://stackoverflow.com/questions/8693342/drawing-a-simple-line-graph-in-j

ava

*/

import java.awt.BasicStroke;

import java.awt.Color;

import java.awt.Dimension;

import java.awt.FontMetrics;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.Point;

import java.awt.RenderingHints;

import java.awt.Stroke;

import java.util.ArrayList;

import javax.swing.JFrame;

import javax.swing.JPanel;

57



public class SimpleGraph extends JPanel {

private int width = 800;

private int heigth = 400;

private int padding = 25;

private int label_padding = 25;

private int point_width = 6;

private int number_y_divisions = 0;

private Color line_color = new Color(44, 102, 230, 180);

private Color point_color = Color.BLACK;

private Color grid_color = new Color(200, 200, 200, 200);

private static final Stroke GRAPH_STROKE = new BasicStroke(2f);

private String graph_title = "";

private ArrayList<Double> data_points;

/**

* Main method (for testing directly from this class)

*/

public static void main(String[] args) {

// Create an ArrayList<Double> of data_points

ArrayList<Double> test_data = new ArrayList<Double>();

// Add points to data_points

test_data.add(1.0);

test_data.add(9.2);

test_data.add(5.7);

test_data.add(7.9);

58



test_data.add(2.4);

test_data.add(11.5);

// Set a graph title

String test_title = "Graph title goes here";

// Pass data_points and graph_title to SimpleGraph constructor

SimpleGraph test = new SimpleGraph(test_data, test_title);

}

/**

* Default constructor

*/

public SimpleGraph(ArrayList<Double> data_points, String graph_title) {

// Set data points data set and graph title

this.data_points = data_points;

this.graph_title = graph_title;

// Set number of y divisions by fidning difference between

// max and min data points

number_y_divisions = getMaxDataPoint() - getMinDataPoint();

// Set preferred size of panel

this.setPreferredSize(new Dimension(800, 600));

// Create content frame, add to panel

JFrame frame = new JFrame(graph_title);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

59



frame.getContentPane().add(this);

frame.pack();

frame.setLocationRelativeTo(null);

frame.setVisible(true);

}

/**

* Creates and draws graph to specification

* @param Graphics - What to be drawn

*/

@Override

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2 = (Graphics2D)g;

g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);

// Set scales

double xScale = ((double) getWidth() - (2 * padding) - label_padding)

/ (data_points.size() - 1);

double yScale = ((double) getHeight() - 2 * padding - label_padding)

/ (getMaxDataPoint() - getMinDataPoint());

// Create array of Point objects from passed in array of Doubles

ArrayList<Point> graphPoints = new ArrayList<>();

for (int i = 0; i < data_points.size(); i++) {

int x1 = (int) (i * xScale + padding + label_padding);

int y1 = (int) ((getMaxDataPoint() - data_points.get(i)) * yScale

60



+ padding);

graphPoints.add(new Point(x1, y1));

}

// Draw white background

g2.setColor(Color.WHITE);

g2.fillRect(padding + label_padding, padding, getWidth() - (2 *

padding)

- label_padding, getHeight() - 2 * padding - label_padding);

g2.setColor(Color.BLACK);

// Create hatch marks and grid lines for y axis

for (int i = 0; i < number_y_divisions + 1; i++) {

if(number_y_divisions == 0) {

number_y_divisions = number_y_divisions + 1;

}

int x0 = padding + label_padding;

int x1 = point_width + padding + label_padding;

int y0 = getHeight() - ((i * (getHeight() - padding * 2

- label_padding)) / number_y_divisions + padding +

label_padding);

int y1 = y0;

if (data_points.size() > 0) {

g2.setColor(grid_color);

g2.drawLine(padding + label_padding + 1 + point_width, y0,

getWidth() - padding, y1);

g2.setColor(Color.BLACK);

String yLabel = ((int) (getMinDataPoint() + (getMaxDataPoint()

- getMinDataPoint()) *

((i * 1.0) / number_y_divisions))) + "   ";

FontMetrics metrics = g2.getFontMetrics();

61



int labelWidth = metrics.stringWidth(yLabel);

g2.drawString(yLabel, x0 - labelWidth - 5, y0

+ (metrics.getHeight() / 2) - 3);

}

g2.drawLine(x0, y0, x1, y1);

}

// Create hatch marks and grid lines for x axis

for (int i = 0; i < data_points.size(); i++) {

if (data_points.size() > 1) {

int x0 = i * (getWidth() - padding * 2 - label_padding)

/ (data_points.size() - 1) + padding + label_padding;

int x1 = x0;

int y0 = getHeight() - padding - label_padding;

int y1 = y0 - point_width;

if ((i % ((int) ((data_points.size() / 20.0)) + 1)) == 0) {

g2.setColor(grid_color);

g2.drawLine(x0, getHeight() - padding - label_padding - 1

- point_width, x1, padding);

g2.setColor(Color.BLACK);

String xLabel = (i + 1) + "";

FontMetrics metrics = g2.getFontMetrics();

int labelWidth = metrics.stringWidth(xLabel);

g2.drawString(xLabel, x0 - labelWidth / 2, y0

+ metrics.getHeight() + 3);

}

g2.drawLine(x0, y0, x1, y1);

}

}

// Create x and y axes

62



g2.drawLine(padding + label_padding, getHeight() - padding -

label_padding,

padding + label_padding, padding);

g2.drawLine(padding + label_padding, getHeight() - padding -

label_padding,

getWidth() - padding, getHeight() - padding - label_padding);

// Draw lines

Stroke oldStroke = g2.getStroke();

g2.setColor(line_color);

g2.setStroke(GRAPH_STROKE);

for (int i = 0; i < graphPoints.size() - 1; i++) {

int x1 = graphPoints.get(i).x;

int y1 = graphPoints.get(i).y;

int x2 = graphPoints.get(i + 1).x;

int y2 = graphPoints.get(i + 1).y;

g2.drawLine(x1, y1, x2, y2);

}

// Draw points

g2.setStroke(oldStroke);

g2.setColor(point_color);

for (int i = 0; i < graphPoints.size(); i++) {

int x = graphPoints.get(i).x - point_width / 2;

int y = graphPoints.get(i).y - point_width / 2;

int ovalW = point_width;

int ovalH = point_width;

g2.fillOval(x, y, ovalW, ovalH);

}

}

63



/**

* Returns minimum data point in data_points set

* @return int - Minimum data point in set

*/

private int getMinDataPoint() {

int min_data_point = Integer.MAX_VALUE;

Integer dp_conv = 0;

for (Double data_point : data_points) {

dp_conv = (int) data_point.doubleValue();

min_data_point = Math.min(min_data_point, dp_conv);

}

return min_data_point;

}

/**

* Returns maximum data point in data_points set

* @return int - Maximum data point in set

*/

private int getMaxDataPoint() {

int max_data_point = Integer.MIN_VALUE;

Integer dp_conv = 0;

for (Double data_point : data_points) {

dp_conv = (int) data_point.doubleValue() + 1;

max_data_point = Math.max(max_data_point, dp_conv);

}

return max_data_point;

}

64



} // SimpleGraph

Appendix B - Sample of Input text

Appendix C - License to use the code

​https://github.com/mmmayo13/knapsack-problem-ga-java/blob/master/LICENSE

The MIT License
(MIT)

Copyright (c) 2014 Matthew Mayo

Permission is hereby granted, free of charge, to any person

obtaining a copy

of this software and associated documentation files (the

"Software"), to deal

in the Software without restriction, including without

limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell

copies of the Software, and to permit persons to whom the

Software is

65



furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall

be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO

EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES

OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE

SOFTWARE.

66


