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1. Introduction

One of the worst symptoms of aging are brain related disorders. Although | have never
met my great-grandmother, I've heard stories about her dementia, primary memory loss
in her final years. It transformed her into a completely different person, someone who
wouldn’t even recognise her relatives. This showed me how important is our brain health

and how any problems with it could be life changing.

In search for more answers about the brain, | visited the Champalimaud Foundation in
Lisbon, more specifically the Nuclear Medicine department. They were working on
detecting brain related disorders such as Parkinson’s disease, Alzheimer’s disease, etc.
Most interestingly, they showed the possibility of implementing machine learning for
detecting those specific diseases. Through my great-grandmother’s story and my visit to
Champalimaud, | decided to write an investigation into detection of brain related

disorders with the help of machine learning.

In the department | was lucky to be shared with a refined dataset which contained
dimensional features of striatum for patients with and without Parkinson’s Disease (PD).
As they explained, there is strong correlation between these features and whether a
patient has PD, therefore making it suitable for a machine learning model. This dataset

was used for conducting the experiment in this essay.

According to National Institute on Aging [1], PD is primarily developed in people older
than 60 years old. PD main symptoms include unintended and uncontrolled movements
like shaking. Dopamine transporter (DaT) loss in the brain is a key feature of PD which
results in the symptoms [2]. A scan completed with a combination of SPECT and

DaTSCAN scanners is a common way to evaluate DaT levels in the brain [3].

Figure 1 shows an example of such scan: the left scan shows a healthy subject, the

right scan shows a PD patient. The bright yellow-red-blue regions represent the healthy



cells containing DaT. As one can see the PD patient has a clear decrease in healthy
cells with DaT. Those regions also represent the size of striatum - region of the brain
which controls the movement, as such in PD patients the striatum dimensions become
smaller. This explains the correlation of striatum dimensional features to PD diagnosis

(the dataset).

DaTscan of normal patient. DaTscan of patient with
Parkinsonian syndrome.

Figure 1 - DatSCAN for normal vs PD patients [3]

Visual examination of the dimensions of the striatum is not new, it is frequently used for
the final diagnosis of possible PD patients. As seen in Figure 2 - width, length and
thickness of the striatum can be extracted from a 3D scan. However, for medical staff, it
can be time consuming and in some certain cases be hard to give an objective decision
on whether the striatum dimensions are abnormal. Different quantification methods to
help medical staff have been developed for more objective assessments, including

machine learning.

thickness

Figure 2 - Width, Length and Thickness of segmented Striatum



Use of machine learning increases the accuracy of automated diagnosis. Machine
learning algorithms can consider many features at the same time making them
multidimensional, which helps achieve high accuracy. An accurate machine learning
model helps detect dopamine transporter loss early on and, therefore, assist a clinical
decision for the diagnosis of PD. Spotting the disease early is important, because

treatments such as levodopa/carbidopa will be more effective [4].

This work aims to compare two machine learning-based algorithms: k-nearest neighbour
(k-NN) and Naive Bayes (NB). More specifically, “How does “k-nearest neighbour
algorithm” compare to “Naive Bayes” algorithm in diagnosing Parkinson’s Disease,
when using striatum dimensional features as input data?”. These algorithms were
chosen due to their simplicity and quick implementability, as such they require little
computational power allowing me to use my personal computer for the experiment. The
algorithms are relatively basic, the experiment would demonstrate whether there is
potential using these specific algorithms for PD diagnosis, and if so, which algorithm out
of the two is the better one. Three features related to the dimensions of the striatum
were considered: length, width, and thickness. The algorithms were trained and tested
using 10-fold cross validation, the results were stored in a confusion matrix, and then
were used to calculate various metrics to evaluate and compare the models in more
detail. All human data studies in this work have been performed in accordance with the

ethical standards laid out by IB.



2. Theoretical Background

A. Machine Learning

Machine learning is a branch of computer science and artificial intelligence (Al) which
focuses on imitating the way humans learn, that way gradually improving accuracy over
time. This process of learning is also referred to as training the algorithm. To create a
machine learning model, a combination of data and algorithms is used [5]. By “data” | refer
to inputs that the algorithms process to achieve “output”. Different “algorithms” differ in the
way they process the “data”, both in training and testing. The terms of “algorithm” and
“‘model” will be used interchangeably in this work. The final “output” depends on whether

the algorithm used is a supervised or unsupervised learner.

Neural Deep
networks learning

Figure 3 - Machine Learning

B. Training and testing

Training is an important procedure in machine learning, the algorithm in the model adapts in
such a way that it can perform some certain tasks as successfully as possible. Usually, a

model performs one kind of task, for example in this work: diagnosing a subject.

After the model is “trained”, it is “tested” to see how well it performs. That is done by giving

the trained model data it has not previously seen, for example if the models in this work are
6



trained on subjects 1-400, we could test them on subject 401 and see whether they

correctly classify the subject.

C. Machine learning categories

Machine learning algorithms are split into two categories based on their training method:
supervised and unsupervised learning. The output of a supervised learning model is a
prediction based on the input data, for example if an email is a spam or not a spam. The
“input data” in such model could be the features of the email: number of words, types of
words, etc. However, to train a supervised algorithm it requires experts that can “label” the
data properly during the training stage [6]. A “label” is a correct tag to the data, using the

email example, the “label" is a tag that classifies the email as spam or not spam.

On the other hand, unsupervised algorithms are used to get some new insights from large
amounts of input data. As such often, there is no specified output for unsupervised learning

algorithms.

The data | am using is already properly labelled by experts, which means every subject
already has a label stating whether he/she has PD. The model needs to predict whether a
subject has PD. As such for the purposes of this essay, supervised machine learning will be

used, which is explained in more detail below.

D. Supervised machine learning

What defines supervised learning is its use of labelled datasets to train the model. The
model is trained to do a certain task such as identify a disease. According to javatpoint.com
“The aim of a supervised learning algorithm is to find a mapping function to map the input

variable (x) with the output variable (y).” [7]
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Figure 4 - Working of a Supervised Learning Algorithm [7]

Looking at figure 4, this supervised learning algorithm is trained to identify the 3 types of
shapes: Hexagon, Triangle and Square. When training, the model receives the data x (the
shape image) and the label y (“square” / “triangle” / “hexagon”). The model will look for
patterns to be able to classify each shape. For instance, the “square” has 4 equal sides, the
“triangle” has 3 sides, and so on. After the training process is complete, we can test the

model with test data (similar but previously unseen) and find how well it performs.

Supervised learning can be further split into two subcategories: Regression and

Classification.

Regression algorithms are used to find relationship between dependent and independent
values. For example, it could be used to make projections such as sales revenue for a
given business. As such, it is the task of producing a continuous quantity [8]. Common

examples of regression algorithms are linear regression and polynomial regression [9].

Classification algorithms accurately assign data to specific categories. The previously
mentioned ‘shape identifier model would be a good example; it puts each shape into a
specific category. Classification is the task of predicting a discrete class label [8]. Support
Vector Machine (SVM), k-nearest neighbour (K-NN), random forest are popular

classification algorithms.



For the purposes of this work, supervised classification algorithms are the best choice
since we want to classify the subjects into two categories: positive for PD or negative for

PD. | will refer to the classification algorithms as: classifiers and algorithm interchangeably.

E. K-Nearest Neighbour Algorithm

The k-NN algorithm is a non-parametric (doesn’t make assumptions about underlying data),
supervised learning classifier that uses proximity to make classifications about the grouping
of data points. It is also a lazy learner algorithm, which means it doesn’t directly learn from
the training data, instead it stores it, and at the time of classification it uses it to compare it

to new data.

Imagine a model is built to identify dogs and cats, and the only two variables we have are:
length of ears (X) and sharpness of claws (Y). Figure 5 below shows what this would look

like.
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Figure 5 - Dog and Cat classifier algorithm [10]

As you can see the “Cat” class has sharper claws and shorter ears. Whereas the “Dog”
class is longer eared, but the claws are less sharp. This is essentially a k-NN model after
the “training” is complete. The input data is plotted, and the model also labels each data
point as a dog or a cat. Next, imagine we have a query point (red dot) which we want to
classify as a dog or a cat, based on these two features. Because the data point has more
dog neighbours, it will be classified as a dog. This concept is also visualised in Figure 6

below.
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Figure 6 — k-NN clustering [11]

To recap, the goal of a k-NN algorithm is to identify the nearest neighbours of a query point,

so that to assign it to the nearest class. To do that the algorithm has two requirements:

choosing the k-value and choosing a distance metric. The k-value specifies the number of

neighbours that will be checked to give a classification to the query point [12]. Figure 7

demonstrates the importance of the k-value, when the k-value is set. An imaginary circle

can be visualised that captures k nearest neighbours. When k=3, there is two Class B

neighbours and one Class A, hence the query point will be labelled as Class B as there is a

Class B majority. But if k=7, the majority is Class A, hence the query point will be labelled

as Class A.

10
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Figure 7 - Example of k-NN classification [10]

This demonstrates how choosing the value of k can be an act of balancing, as different
values may lead to different classification. The choice of the best k-value can largely

depend upon the size of the inputs. The value of k is recommended to be a whole odd

To classify the query points to a certain class, the distance between the query point and
other data points needs to be calculated. The distance measured helps to identify the

neighbours which in turn help classify the query points.

There are many ways of measuring the distance between points, for the purposes of this
work, Euclidian distance will be used since it is the most used distance metric. Using the

formula below a straight line between the query point and the other point is measured.

d(x,y) =

11



F. Naive Bayes

Naive Bayes algorithms are a set of supervised learning algorithms based on applying
Bayes’ theorem with the “naive” assumption of conditional independence between every

pair of features given the value of the class variable. [13]

Consider a dataset that describes the conditions to play golf (Figure 8). Where the output is
“Yes” or “No” for playing golf. The deciding features or X variables for playing golf are

“Outlook”, “Temperature”, “Humidity” and “Windy”.

Outlook Temperature Humidity Play Golf
0 Rainy Hot High False No
1 Rainy Hot High True No
2 Overcast Hot High False Yes
3 Sunny Mild High False  Yes
4 Sunny Cool Normal False Yes
5 Sunny Cool Normal True No
6 Overcast Cool Normal True Yes

Figure 8 - Fictional golf dataset

The fundamental Naive Bayes assumption is that each X variable makes an independent
and equal contribution to the output. In relation to our dataset this can be understood as no
X variable is dependent on the other. For example, “Hot” temperature has nothing to do
with the humidity. Secondly, since all features contribute equally, knowing only outlook and
temperature alone can’t give accurate prediction. Even though these assumptions are

generally not correct in real life situations, the algorithm often works well in practice.

12



The specific algorithm used in this experiment was the Gaussian NB classifier, in which the
likelihood of the features is assumed to be Gaussian, hence, the conditional probability is

given by:

Ty — y2
P(a |y) = ——exp (—%)

2
2o 20y

2

Figure 9 - Gaussian conditional probability [14]

3. Evaluating machine learning algorithms
A. Confusion matrix
A detailed evaluation technique used for ML algorithms is a confusion matrix. It is a table
which helps get insight into the type of errors the model is making and allows to

calculate other more specific metrics.

As seen in Figure 10 below the matrix has two axis “predicted” (horizontal axis) and
“actual” (vertical axis). 0 stands for HC and 1 for PD subject. True Negative (TN) holds
number of correctly predicted negatives. True Positive (TP) holds number correctly
predicted positives. False Negative (FN) holds incorrectly predicted negatives. And
False Positive (FP) holds incorrectly predicted positives. Generally, you want to
minimise both FP and FN. However, in some scenarios minimising one over another is
more important. For example, a possible metal detector would want to have no False
Negatives, since not detecting a gun may cost lives of many. On the contrary a spam
detector would want to decrease False Positives, since it would be very annoying for the

user to have to search an important email in spam.

For my scenario it would be best to have a low number of False Negatives, since like
stated earlier, if the disease is spotted early on, medication can be administered to

decrease the total damage of the disease. However, having a low number of false

13



positives is also important, since it removes the possible cost of administering

medication which is not required.

0 1
0 TN FP
1 FN TP

Figure 10 - Confusion Matrix example

B. Evaluation metrics

Firstly, the most basic evaluation metric is the classification accuracy. As the name
suggests it is just a fraction of right predictions out of total number of predictions. And is

defined by simple formula below.

correct predictions

classification accuracy = —
total predictions

However, this metric is very basic and doesn’t tell us much information about what

errors the model is making.

Sensitivity is the probability of testing positive for diseased patients. It will be used to

determine whether the models are sufficiently sensitive to pick up the disease.

L TP
Sensitivity = TP+ FN

Specificity refers to probability of testing negative for non-diseased patients i.e., it

represents the proportion of patients without disease who have negative test result.

14



TN

Specificity = FP+—TN

Finally, the Mathews Correlation Coefficient will be included. Some might argue that the
F1 score should be included since it is one of the most used metrics used to evaluate
classification models. However, research shows it is not as accurate as MCC and will
not be included in this work [15].

TP X TN — FP X FN

MCC =
J (TP + FP)(TP + FN)(TN + FP)(TN + FN)

In the MCC formula we can see a balanced consideration of all boxes of the confusion

matrix, unlike sensitivity or specificity which consider only two boxes.

C. K-fold cross validation
Finally, the models will be evaluated on their ability to generalise — ensuring that the
models perform well with different training data. This will be done by performing k-fold

cross validation, more specifically 10-fold cross validation which is explained below.

First the dataset is randomly shuffled to reduce bias, and then is split into 10 folds like

seen in Figure 11.

‘ Dataset |

Figure 11 - 10-fold cross-validation

Initially, 9 folds are used to train the models and 1 to test the models. The predictions
are obtained from the models produced. Then, the procedure is repeated until all folds

have been used for testing (Figure 12).

15
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Figure 12 - 10-fold cross validation

4. Hypothesis

| hypothesise that the k-NN algorithm will perform the best. | base the hypothesis
primarily due the Naive Bayes’ assumption of independence between all the features
which in this case is not true. The dimensional features of striatum must be closely
related to each other. For example, as width decreases, thickness and length may also
decrease, this is because the striatum does not decrease in size one dimensionally but

instead three dimensionally.

5. Methodology

A. Dataset

The dataset (Figure 13) used in the experiment was obtained with the help of Olivera et
al. [16]. Who in turn extracted all the features from images obtained from a Parkinson’s
Progression Markers Initiative database [17]. The dataset contains 652 subjects, for the
groups: control female (73), control male (136), PD female (157) and PD male (286).
Overall, the healthy control (HC) subjects’ age was 61.8 £ 11.3 years old, and the PD

subjects’ age was 61.7 + 9.7 years old.
16



Each row holds the data for a different subject. The Y values are in the first column of
the figure 13, it stores the real diagnosis of the subject, where 0 is for HC and 1 is for
PD. The X values in columns 2-4 store the dimensional features of the striatum for each

subject. They are the Width, Length, and the Thickness of the striatum, same as in

figure 2.

1 Diagnosis|Width Length Thickness

2 0 23.98 39.16 27.38
3 0 28.69 34.83 28.27
4 0 23.23 36.40 24.73
5 0 23.17 35.96 29.15
6 0 27.93 35.24 28.27
7 0 23.14 35.61 25.62
8 0 19.25 31.60 22.08
9 0 30.22 33.42 29.15
10 0 20.82 29.63 23.85
11 0 30.16 38.12 28.27
12 0 19.97 33.17 22.08
13 0 23.01 33.29 24.73
14 0 18.59 26.52 23.85
15 0 25.46 33.64 27.38
16 0 20.78 30.88 22.08
17 0 22.38 33.26 23.85
18 0 27.09 33.70 25.62
19 0 25.58 36.93 22.08
20 0 23.04 33.26 26.50
21 0 26.99 34.52 25.62

Figure 13 — Snapshot of Dataset
B. Experimental Procedure
1. Use Python to extract the X and Y values from the dataset.
2. Experiment with different values of k to find the one that gives the best accuracy.
3. Create the k-NN and NB models using the sklearn library.

4. Perform 10-fold cross-validation on each model and store all the outputs of each

model in two separate confusion matrices.

5. Store the metrics of accuracy of each fold in both models in an array.

6. Find the average value of accuracy, specificity, sensitivity and MCC for each
model.

7. Show all the metrics in tables for easier visual comparison. The percentages
range from 0 to 100%. While MCC ranges from -1, to +1, with extreme values of

-1 and +1 reached in case of perfect misclassification or perfect classification.
17



6. Results and Analysis

Confusion Matrix of KNN

Confusion Matrix of Naive Bayes

400
400

350

True Neg False Pos 350 True Neg False Pos
False - 199 10 False 194 15 200
30.52% 1.53% 300 29.75% 2.30%

250
250

True label
True label

| 500 - 200

L 150 - 150

False Neg True Pos False Neg True Pos

True 9 434 100 True 1 42 401 100
1.38% 66.56% B 6.44% 61.50%

50 50

T T
False True False True
Predicted label Predicted label

Figure 14 - k-NN and Naive Bayes confusion matrices

To begin with, the confusion matrices in figure 14 provide us with the most direct illustration
of the models’ performances by indicating the number of true and false prediction in each
class. I will be referring to positive as a subject with PD and vice versa. The left confusion

matrix has outputs from all 10 folds for k-NN, so does the right but for NB.

Both models have a very high number of True Positives and False Negatives. k-NN has
66.56% of true positives and 30.52% true negatives, and if summed we get the accuracy of
97.08%. This is a high score; it shows how most patients were predicted/diagnosed
correctly. Similarly, the Naive Bayes also has a high number of true positives being 61.50%
and true negatives being 29.75%, with accuracy of 91.25%. But overall, Naive Bayes
performed slightly worse, given that its true positives value is less by 5.06% compared to k-
NN. This is because it classified lots of false negatives (6.44%), and this is bad as the goal

of testing is to classify the disease and give medication as early as possible to the patients.

Looking at the accuracy scores for each fold in Table 1 we can see how most folds of k-NN
were much more accurate than those of NB. In fact, in the first and ninth folds of k-NN were
able to achieve 100% accuracy. The accuracy of k-NN ranges from 95%-100% therefore

demonstrating its excellent generalisation ability. NB on the other hand performed

18



considerably worse in terms of generalisation, even though the highest accuracy was

96.9% the lowest was 84.6%. This shows how NB can’t perform as well on previously

unseen data as k-NN.

Fold k-NN accuracy (%) Naive Bayes accuracy (%)
1 100.0 96.9
2 95.5 84.8
3 96.9 90.8
4 96.9 95.5
5 96.9 90.8
6 954 89.2
7 95.4 89.2
8 96.9 84.6
9 100.0 95.4
10 96.9 954
Average accuracy |97.1 91.3

Table 1 - Accuracy for each fold and the average

Table 2 has the summary of main metrics evaluated. Firstly, k-NN has an average accuracy

of 97%. The average sensitivity value of 98% demonstrates how k-NN is very successful at

identifying sick patients and misses out a very small number. The average specificity is

slightly lower being at 95.2% shows how the model is slightly worse at identifying healthy

patients, which could although not as bad as not spotting sick patients can still be

problematic. The achieved MCC of k-NN is 0.933.

Naive Bayes on the other hand had an average accuracy of 91%. The specificity being at

90.5% is considerably worse than k-NN’s. Interestingly, Naive Bayes was more successful

at identifying healthy patients than sick, with specificity at 92.8%. Finally, NB achieved MCC

of 0.809.
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k-NN Naive Bayes
Average Accuracy (%) 97 91
Average Sensitivity (%) | 98.0 90.5
Average Specificity (%) | 95.2 92.8
Average MCC 0.933 0.809

Table 2 - Average of metrics

Overall, it is fair to say that both algorithms achieved relatively high scores in terms of
predicting PD in patients. However, k-NN was by far the better classifier, outscoring NB in

all the metrics considered in this experiment.

. Evaluation of experiment

This experiment had strong positive aspects of it. Most importantly the data used for
training the algorithms was properly labelled by experts which enabled the possibility of
using supervised learning in this experiment. Additionally, the x values used in experiment
(striatum dimensions), are commonly used by medical staff to give clinical diagnose. As
such, the data used was already previously highly relevant for the diagnose, and this is

confirmed by very high scores.

However, the experiment had limitations. Firstly, there was uneven distribution of male and
female as well as of PD and HC subjects. As seen in Figure 15, almost three quarters of

patients were male.

20



Female HC: 73

@

Female PD: 157

Male HC: 136 ——

_— Male PD: 286

Figure 15 - Pie Chart representing Males and Females in the database

Same can be said for the distribution of healthy controls and sick patients. There are 443
PD patients and only 209 HC. For possible improvements it would be beneficial to also look
at how the accuracies differed when taking the dimensional based features individually and

not together.

Finally, the accuracies of male and female subjects were not compared separately. In future
it would be interesting to see whether male and female subjects had any notable

differences in the classification accuracy.

As such for improvements a dataset with the same number of PD and HCs should be used,

and perhaps the male and female subjects should be compared separately.

. Conclusion

In conclusion, the combination of supervised machine learning algorithms and striatum
dimensional features undoubtedly performed positively. Though there are some
inaccuracies present in the algorithms, overall, the experiment shows how these algorithms
can be used for assisting the clinical decision of diagnosing Parkinson’s disease. In terms
of comparing Naive Bayes and k-NN, it can be safely said that k-NN is the better algorithm,

which was confirmed by higher classification accuracy and all the other metrics used. As
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such, k-NN shows strong potential to be used in a real-life scenario of diagnosing

Parkinson’s Disease.

. Further research

Whilst this essay demonstrated that k-NN is the better algorithm for identifying Parkinson’s
disease when using striatum dimensional features as input, it leaves many more possible
guestions to be answered. It would be interesting to see how other supervised machine
learning algorithms like neural networks or random forest would perform on the same task.
This would help identify which algorithm out of the supervised learning family has the most
potential. If possible, it would be interesting to compare how the accuracy changes if
instead of the dimension values, a real scan image of the striatum is used as input, such as
in Figure 1. In addition, it would also be interesting using an unsupervised learning

algorithm, and see whether it can spot patterns in this data that a human might not.

Parkinson’s disease is known to be more present in males than females [18]. It would be
interesting to see if there are any possible correlations between the gender and the
degeneration of striatum. Perhaps there could be found a relationship between the
dimensional features of the striatum and the gender of the patient with Parkinson’s disease.
Whether such relationship exists or not can also be investigated using supervised machine

learning algorithms.

22



10. Bibliography

[1] "Parkinsons disease," National Institute of Health, [Online]. Available:
https://www.nia.nih.gov/health/parkinsons-disease. [Accessed 20 October 2022].

[2] "Datscan," [Online]. Available: https://parkinsonsnewstoday.com/parkinsons-disease-tests-diagnosis/datscan/.
[Accessed 19 October 2022].

[3] "Image: DaTSCAN, normal vs abnormal," [Online]. Available: https://www.cedars-sinai.org/programs/imaging-
center/exams/nuclear-medicine/datscan/information.html.

[4] "Parkinson’s Disease: Causes, Symptoms, and Treatments," National Institute on Health, [Online]. Available:
https://www.nia.nih.gov/health/parkinsons-disease. [Accessed 12 September 2022].

[5] IBM, "Machine Learning," International Business Machines Corporation, [Online]. Available:
https://www.ibm.com/cloud/learn/machine-learning. [Accessed 11 August 2022].

[6] IBM, "Supervised vs. Unsupervised Learning: What’s the Difference?," International Business Machines
Corporation, [Online]. Available: https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning.
[Accessed 12 August 2022].

[7]1 javatpoint, "Supervised machine learning - javatpoint,” [Online]. Available:
https://www.javatpoint.com/supervised-machine-learning. [Accessed 11 August 2022].

[8] "Cassification versus regression in machine learning," [Online]. Available:
https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/. [Accessed 11
September 2022].

[9] IBM, "What is supervised learning?," International Business Machines Corporation, [Online]. Available:
https://www.ibm.com/cloud/learn/supervised-learning. [Accessed 11 August 2022].

[10] Simplilearn, "KNN Algorithm In Machine Learning," [Online]. Available:
https://www.youtube.com/watch?v=4HKgjENg90U. [Accessed 11 September 2022].

[11] javatpoint, "k-nearest-neighbor algorithm for machine learning," [Online]. Available:
https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning. [Accessed 11 September
2022].

[12] IBM, "K-Nearest Neighbors Algorithm," International Business Machines Corporation, [Online]. Available:
https://www.ibm.com/topics/knn. [Accessed 11 September 2022].

[13] "Naive Bayes Classifiers," [Online]. Available: https://www.geeksforgeeks.org/naive-bayes-classifiers/.
[Accessed 14 November 2022].

[14] "Naive Bayes, Scikitlearn," [Online]. Available: https://scikit-learn.org/stable/modules/naive_bayes.html.
[Accessed 21 November 2022].

[15] D. Chicco and G. Jurman, "The advantages of the MCC over F1 score and accuracy in binary classification
evaluation," [Online]. Available: https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6413-
7. [Accessed 27 November 2022].

23



[16] F. P. Oliveira, M. Castelo-Branco, D. B. Faria and D. C. Costa, "“Extraction, selection and comparison of features
for an effective automated computer-aided diagnosis of parkinson’s disease based on [123i]fp-CIT SPECT

”n

images,”," European Journal of Nuclear Medicine and Molecular Imaging, vol. 45, no. 6, 2017.
[17] [Online]. Available: www.ppmiinfo.org/data. [Accessed 13 November 2022].

[18] "Parkinsons in men vs women," [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700650/.
[Accessed 20 October 2022].

[19] U. o. York, "What is Machine Learning," 06 September 2021. [Online]. Available:
https://online.york.ac.uk/what-is-machine-learning/. [Accessed 11 August 2022].

[20] "Laws of Proximity and Similarity," [Online]. Available:
https://isle.hanover.edu/Ch050bject/Ch05ProxSim_evt.html. [Accessed 11 September 2022].

[21] "k optimal value," [Online]. Available: https://towardsdatascience.com/how-to-find-the-optimal-value-of-k-in-
knn-35d936e554eb#:~:text=The%200ptimal%20K%20value%20usually,be%20aware%200f%20the%200outliers..
[Accessed 11 September 2022].

[22] "Early symptoms signs of PD," [Online]. Available: https://parkinsonsdisease.net/diagnosis/early-symptoms-
signs.

11. Appendix
Code Used

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sklearn.model selection import train_test split
sklearn.preprocessing import StandardScaler
sklearn.neighbors import KNeighborsClassifier
sklearn.naive bayes import GaussianNB
sklearn.metrics import confusion matrix
sklearn.metrics import f1 score
sklearn.metrics import accuracy_score
sklearn.metrics import ConfusionMatrixDisplay
sklearn.model selection import cross_val score
sklearn.model selection import cross_val predict

import sklearn.metrics

data = pd.read_csv('C:/Users/vssl19/EE_Parkinsons/Datset_ParkinsonVsControl PPMI.csv')
data.iloc[:, 8:11]
data.iloc[:, 9]

_train, X test, y train, y test = train_test split(X, y, random state=0, test size=0.2)
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classifier KNN = KNeighborsClassifier(n_neighbors=11, p=2, metric='euclidean")
classifier NB = GaussianNB()

classifier NB.fit(X_ train, y train)

classifier KNN.fit(X_ train, y train)

scores = cross_val_score(classifier_KNN, X, y, cv=10)
print(scores)

print(" accuracy of KNN with a standard deviation of
scores.std()))

print()

scoresl = cross_val_score(classifier_NB, X, y, cv=10)
print(scoresl)

print(" accuracy of NB with a standard deviation of
scoresl.std()))

print()

% (scores.mean(),

% (scoresl.mean(),

y _pred KNN = cross val predict(classifier KNN, X, y, cv=10)

cm_KNN_CV = confusion_matrix(y, y_pred_KNN)

cm_display KNN_CV = ConfusionMatrixDisplay(confusion_matrix = cm_KNN_CV, display labels =
[ P D

cm_display KNN_CV.plot(cmap = plt.cm.Blues)

plt.title("Confusion Matrix of KNN")

plt.show()

y pred NB = cross val predict(classifier NB, X, y, cv=10)

cm_NB _CV = confusion matrix(y, y pred NB)

cm_display NB CV = ConfusionMatrixDisplay(confusion _matrix = cm NB_CV, display labels =
[ P 1

cm_display NB CV.plot(cmap = plt.cm.Blues)

plt.title("Confusion Matrix of Naive Bayes")

plt.show()
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