
1

Machine Learning for Parkinson’s Disease

diagnosis

How does “k-nearest neighbour algorithm” compare to “Naïve

Bayes algorithm” in diagnosing Parkinson’s Disease, when using

striatum dimensional features as input data?

Computer Science

Word Count: 3997

CS EE World
https://cseeworld.wixsite.com/home
May 2023
25/34
B

Submitter info:
https://docs.google.com/document/d/1YHvPDOzqVQ2hCGN2epyAEzCuTa-b4plV88EUglv426w/edit

2

Contents

1. Introduction ... 3

2. Theoretical Background ... 6

3. Evaluating machine learning algorithms ... 13

4. Hypothesis .. 16

5. Methodology.. 16

6. Results and Analysis .. 18

7. Evaluation of experiment ... 20

8. Conclusion .. 21

9. Further research ... 22

10. Bibliography .. 23

11. Appendix ... 24

3

1. Introduction

One of the worst symptoms of aging are brain related disorders. Although I have never

met my great-grandmother, I’ve heard stories about her dementia, primary memory loss

in her final years. It transformed her into a completely different person, someone who

wouldn’t even recognise her relatives. This showed me how important is our brain health

and how any problems with it could be life changing.

In search for more answers about the brain, I visited the Champalimaud Foundation in

Lisbon, more specifically the Nuclear Medicine department. They were working on

detecting brain related disorders such as Parkinson’s disease, Alzheimer’s disease, etc.

Most interestingly, they showed the possibility of implementing machine learning for

detecting those specific diseases. Through my great-grandmother’s story and my visit to

Champalimaud, I decided to write an investigation into detection of brain related

disorders with the help of machine learning.

In the department I was lucky to be shared with a refined dataset which contained

dimensional features of striatum for patients with and without Parkinson’s Disease (PD).

As they explained, there is strong correlation between these features and whether a

patient has PD, therefore making it suitable for a machine learning model. This dataset

was used for conducting the experiment in this essay.

According to National Institute on Aging [1], PD is primarily developed in people older

than 60 years old. PD main symptoms include unintended and uncontrolled movements

like shaking. Dopamine transporter (DaT) loss in the brain is a key feature of PD which

results in the symptoms [2]. A scan completed with a combination of SPECT and

DaTSCAN scanners is a common way to evaluate DaT levels in the brain [3].

Figure 1 shows an example of such scan: the left scan shows a healthy subject, the

right scan shows a PD patient. The bright yellow-red-blue regions represent the healthy

4

cells containing DaT. As one can see the PD patient has a clear decrease in healthy

cells with DaT. Those regions also represent the size of striatum - region of the brain

which controls the movement, as such in PD patients the striatum dimensions become

smaller. This explains the correlation of striatum dimensional features to PD diagnosis

(the dataset).

Figure 1 - DatSCAN for normal vs PD patients [3]

Visual examination of the dimensions of the striatum is not new, it is frequently used for

the final diagnosis of possible PD patients. As seen in Figure 2 - width, length and

thickness of the striatum can be extracted from a 3D scan. However, for medical staff, it

can be time consuming and in some certain cases be hard to give an objective decision

on whether the striatum dimensions are abnormal. Different quantification methods to

help medical staff have been developed for more objective assessments, including

machine learning.

Figure 2 - Width, Length and Thickness of segmented Striatum

5

Use of machine learning increases the accuracy of automated diagnosis. Machine

learning algorithms can consider many features at the same time making them

multidimensional, which helps achieve high accuracy. An accurate machine learning

model helps detect dopamine transporter loss early on and, therefore, assist a clinical

decision for the diagnosis of PD. Spotting the disease early is important, because

treatments such as levodopa/carbidopa will be more effective [4].

This work aims to compare two machine learning-based algorithms: k-nearest neighbour

(k-NN) and Naïve Bayes (NB). More specifically, “How does “k-nearest neighbour

algorithm” compare to “Naïve Bayes” algorithm in diagnosing Parkinson’s Disease,

when using striatum dimensional features as input data?”. These algorithms were

chosen due to their simplicity and quick implementability, as such they require little

computational power allowing me to use my personal computer for the experiment. The

algorithms are relatively basic, the experiment would demonstrate whether there is

potential using these specific algorithms for PD diagnosis, and if so, which algorithm out

of the two is the better one. Three features related to the dimensions of the striatum

were considered: length, width, and thickness. The algorithms were trained and tested

using 10-fold cross validation, the results were stored in a confusion matrix, and then

were used to calculate various metrics to evaluate and compare the models in more

detail. All human data studies in this work have been performed in accordance with the

ethical standards laid out by IB.

6

2. Theoretical Background

A. Machine Learning

Machine learning is a branch of computer science and artificial intelligence (AI) which

focuses on imitating the way humans learn, that way gradually improving accuracy over

time. This process of learning is also referred to as training the algorithm. To create a

machine learning model, a combination of data and algorithms is used [5]. By “data” I refer

to inputs that the algorithms process to achieve “output”. Different “algorithms” differ in the

way they process the “data”, both in training and testing. The terms of “algorithm” and

“model” will be used interchangeably in this work. The final “output” depends on whether

the algorithm used is a supervised or unsupervised learner.

Figure 3 - Machine Learning

B. Training and testing

Training is an important procedure in machine learning, the algorithm in the model adapts in

such a way that it can perform some certain tasks as successfully as possible. Usually, a

model performs one kind of task, for example in this work: diagnosing a subject.

After the model is “trained”, it is “tested” to see how well it performs. That is done by giving

the trained model data it has not previously seen, for example if the models in this work are

7

trained on subjects 1-400, we could test them on subject 401 and see whether they

correctly classify the subject.

C. Machine learning categories

Machine learning algorithms are split into two categories based on their training method:

supervised and unsupervised learning. The output of a supervised learning model is a

prediction based on the input data, for example if an email is a spam or not a spam. The

“input data” in such model could be the features of the email: number of words, types of

words, etc. However, to train a supervised algorithm it requires experts that can “label” the

data properly during the training stage [6]. A “label” is a correct tag to the data, using the

email example, the “label" is a tag that classifies the email as spam or not spam.

On the other hand, unsupervised algorithms are used to get some new insights from large

amounts of input data. As such often, there is no specified output for unsupervised learning

algorithms.

The data I am using is already properly labelled by experts, which means every subject

already has a label stating whether he/she has PD. The model needs to predict whether a

subject has PD. As such for the purposes of this essay, supervised machine learning will be

used, which is explained in more detail below.

D. Supervised machine learning

What defines supervised learning is its use of labelled datasets to train the model. The

model is trained to do a certain task such as identify a disease. According to javatpoint.com

“The aim of a supervised learning algorithm is to find a mapping function to map the input

variable (x) with the output variable (y).” [7]

8

Figure 4 - Working of a Supervised Learning Algorithm [7]

Looking at figure 4, this supervised learning algorithm is trained to identify the 3 types of

shapes: Hexagon, Triangle and Square. When training, the model receives the data x (the

shape image) and the label y (“square” / “triangle” / “hexagon”). The model will look for

patterns to be able to classify each shape. For instance, the “square” has 4 equal sides, the

“triangle” has 3 sides, and so on. After the training process is complete, we can test the

model with test data (similar but previously unseen) and find how well it performs.

Supervised learning can be further split into two subcategories: Regression and

Classification.

Regression algorithms are used to find relationship between dependent and independent

values. For example, it could be used to make projections such as sales revenue for a

given business. As such, it is the task of producing a continuous quantity [8]. Common

examples of regression algorithms are linear regression and polynomial regression [9].

Classification algorithms accurately assign data to specific categories. The previously

mentioned ‘shape identifier’ model would be a good example; it puts each shape into a

specific category. Classification is the task of predicting a discrete class label [8]. Support

Vector Machine (SVM), k-nearest neighbour (K-NN), random forest are popular

classification algorithms.

9

For the purposes of this work, supervised classification algorithms are the best choice

since we want to classify the subjects into two categories: positive for PD or negative for

PD. I will refer to the classification algorithms as: classifiers and algorithm interchangeably.

E. K-Nearest Neighbour Algorithm

The k-NN algorithm is a non-parametric (doesn’t make assumptions about underlying data),

supervised learning classifier that uses proximity to make classifications about the grouping

of data points. It is also a lazy learner algorithm, which means it doesn’t directly learn from

the training data, instead it stores it, and at the time of classification it uses it to compare it

to new data.

Imagine a model is built to identify dogs and cats, and the only two variables we have are:

length of ears (X) and sharpness of claws (Y). Figure 5 below shows what this would look

like.

Figure 5 - Dog and Cat classifier algorithm [10]

As you can see the “Cat” class has sharper claws and shorter ears. Whereas the “Dog”

class is longer eared, but the claws are less sharp. This is essentially a k-NN model after

the “training” is complete. The input data is plotted, and the model also labels each data

point as a dog or a cat. Next, imagine we have a query point (red dot) which we want to

classify as a dog or a cat, based on these two features. Because the data point has more

dog neighbours, it will be classified as a dog. This concept is also visualised in Figure 6

below.

10

Figure 6 – k-NN clustering [11]

To recap, the goal of a k-NN algorithm is to identify the nearest neighbours of a query point,

so that to assign it to the nearest class. To do that the algorithm has two requirements:

choosing the k-value and choosing a distance metric. The k-value specifies the number of

neighbours that will be checked to give a classification to the query point [12]. Figure 7

demonstrates the importance of the k-value, when the k-value is set. An imaginary circle

can be visualised that captures k nearest neighbours. When k=3, there is two Class B

neighbours and one Class A, hence the query point will be labelled as Class B as there is a

Class B majority. But if k=7, the majority is Class A, hence the query point will be labelled

as Class A.

11

Figure 7 - Example of k-NN classification [10]

This demonstrates how choosing the value of k can be an act of balancing, as different

values may lead to different classification. The choice of the best k-value can largely

depend upon the size of the inputs. The value of k is recommended to be a whole odd

number, so that to avoid ties.

To classify the query points to a certain class, the distance between the query point and

other data points needs to be calculated. The distance measured helps to identify the

neighbours which in turn help classify the query points.

There are many ways of measuring the distance between points, for the purposes of this

work, Euclidian distance will be used since it is the most used distance metric. Using the

formula below a straight line between the query point and the other point is measured.

𝑑(𝑥, 𝑦) = √∑(𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

12

F. Naïve Bayes

Naive Bayes algorithms are a set of supervised learning algorithms based on applying

Bayes’ theorem with the “naive” assumption of conditional independence between every

pair of features given the value of the class variable. [13]

Consider a dataset that describes the conditions to play golf (Figure 8). Where the output is

“Yes” or “No” for playing golf. The deciding features or X variables for playing golf are

“Outlook”, “Temperature”, “Humidity” and “Windy”.

Figure 8 - Fictional golf dataset

The fundamental Naïve Bayes assumption is that each X variable makes an independent

and equal contribution to the output. In relation to our dataset this can be understood as no

X variable is dependent on the other. For example, “Hot” temperature has nothing to do

with the humidity. Secondly, since all features contribute equally, knowing only outlook and

temperature alone can’t give accurate prediction. Even though these assumptions are

generally not correct in real life situations, the algorithm often works well in practice.

13

The specific algorithm used in this experiment was the Gaussian NB classifier, in which the

likelihood of the features is assumed to be Gaussian, hence, the conditional probability is

given by:

Figure 9 - Gaussian conditional probability [14]

3. Evaluating machine learning algorithms

A. Confusion matrix

A detailed evaluation technique used for ML algorithms is a confusion matrix. It is a table

which helps get insight into the type of errors the model is making and allows to

calculate other more specific metrics.

As seen in Figure 10 below the matrix has two axis “predicted” (horizontal axis) and

“actual” (vertical axis). 0 stands for HC and 1 for PD subject. True Negative (TN) holds

number of correctly predicted negatives. True Positive (TP) holds number correctly

predicted positives. False Negative (FN) holds incorrectly predicted negatives. And

False Positive (FP) holds incorrectly predicted positives. Generally, you want to

minimise both FP and FN. However, in some scenarios minimising one over another is

more important. For example, a possible metal detector would want to have no False

Negatives, since not detecting a gun may cost lives of many. On the contrary a spam

detector would want to decrease False Positives, since it would be very annoying for the

user to have to search an important email in spam.

For my scenario it would be best to have a low number of False Negatives, since like

stated earlier, if the disease is spotted early on, medication can be administered to

decrease the total damage of the disease. However, having a low number of false

14

positives is also important, since it removes the possible cost of administering

medication which is not required.

Figure 10 - Confusion Matrix example

B. Evaluation metrics

Firstly, the most basic evaluation metric is the classification accuracy. As the name

suggests it is just a fraction of right predictions out of total number of predictions. And is

defined by simple formula below.

classification accuracy =
correct predictions

total predictions

However, this metric is very basic and doesn’t tell us much information about what

errors the model is making.

Sensitivity is the probability of testing positive for diseased patients. It will be used to

determine whether the models are sufficiently sensitive to pick up the disease.

Sensitivity =
TP

TP + FN

Specificity refers to probability of testing negative for non-diseased patients i.e., it

represents the proportion of patients without disease who have negative test result.

15

Specificity =
TN

FP + TN

Finally, the Mathews Correlation Coefficient will be included. Some might argue that the

F1 score should be included since it is one of the most used metrics used to evaluate

classification models. However, research shows it is not as accurate as MCC and will

not be included in this work [15].

MCC =
TP × TN − FP × FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)

In the MCC formula we can see a balanced consideration of all boxes of the confusion

matrix, unlike sensitivity or specificity which consider only two boxes.

C. K-fold cross validation

Finally, the models will be evaluated on their ability to generalise – ensuring that the

models perform well with different training data. This will be done by performing k-fold

cross validation, more specifically 10-fold cross validation which is explained below.

First the dataset is randomly shuffled to reduce bias, and then is split into 10 folds like

seen in Figure 11.

Figure 11 - 10-fold cross-validation

Initially, 9 folds are used to train the models and 1 to test the models. The predictions

are obtained from the models produced. Then, the procedure is repeated until all folds

have been used for testing (Figure 12).

16

Figure 12 - 10-fold cross validation

4. Hypothesis

I hypothesise that the k-NN algorithm will perform the best. I base the hypothesis

primarily due the Naïve Bayes’ assumption of independence between all the features

which in this case is not true. The dimensional features of striatum must be closely

related to each other. For example, as width decreases, thickness and length may also

decrease, this is because the striatum does not decrease in size one dimensionally but

instead three dimensionally.

5. Methodology

A. Dataset

The dataset (Figure 13) used in the experiment was obtained with the help of Olivera et

al. [16]. Who in turn extracted all the features from images obtained from a Parkinson’s

Progression Markers Initiative database [17]. The dataset contains 652 subjects, for the

groups: control female (73), control male (136), PD female (157) and PD male (286).

Overall, the healthy control (HC) subjects’ age was 61.8 ± 11.3 years old, and the PD

subjects’ age was 61.7 ± 9.7 years old.

17

Each row holds the data for a different subject. The Y values are in the first column of

the figure 13, it stores the real diagnosis of the subject, where 0 is for HC and 1 is for

PD. The X values in columns 2-4 store the dimensional features of the striatum for each

subject. They are the Width, Length, and the Thickness of the striatum, same as in

figure 2.

Figure 13 – Snapshot of Dataset

B. Experimental Procedure

1. Use Python to extract the X and Y values from the dataset.

2. Experiment with different values of k to find the one that gives the best accuracy.

3. Create the k-NN and NB models using the sklearn library.

4. Perform 10-fold cross-validation on each model and store all the outputs of each

model in two separate confusion matrices.

5. Store the metrics of accuracy of each fold in both models in an array.

6. Find the average value of accuracy, specificity, sensitivity and MCC for each

model.

7. Show all the metrics in tables for easier visual comparison. The percentages

range from 0 to 100%. While MCC ranges from -1, to +1, with extreme values of

-1 and +1 reached in case of perfect misclassification or perfect classification.

18

6. Results and Analysis

Figure 14 - k-NN and Naïve Bayes confusion matrices

To begin with, the confusion matrices in figure 14 provide us with the most direct illustration

of the models’ performances by indicating the number of true and false prediction in each

class. I will be referring to positive as a subject with PD and vice versa. The left confusion

matrix has outputs from all 10 folds for k-NN, so does the right but for NB.

Both models have a very high number of True Positives and False Negatives. k-NN has

66.56% of true positives and 30.52% true negatives, and if summed we get the accuracy of

97.08%. This is a high score; it shows how most patients were predicted/diagnosed

correctly. Similarly, the Naïve Bayes also has a high number of true positives being 61.50%

and true negatives being 29.75%, with accuracy of 91.25%. But overall, Naïve Bayes

performed slightly worse, given that its true positives value is less by 5.06% compared to k-

NN. This is because it classified lots of false negatives (6.44%), and this is bad as the goal

of testing is to classify the disease and give medication as early as possible to the patients.

Looking at the accuracy scores for each fold in Table 1 we can see how most folds of k-NN

were much more accurate than those of NB. In fact, in the first and ninth folds of k-NN were

able to achieve 100% accuracy. The accuracy of k-NN ranges from 95%-100% therefore

demonstrating its excellent generalisation ability. NB on the other hand performed

19

considerably worse in terms of generalisation, even though the highest accuracy was

96.9% the lowest was 84.6%. This shows how NB can’t perform as well on previously

unseen data as k-NN.

Fold k-NN accuracy (%) Naïve Bayes accuracy (%)

1 100.0 96.9

2 95.5 84.8

3 96.9 90.8

4 96.9 95.5

5 96.9 90.8

6 95.4 89.2

7 95.4 89.2

8 96.9 84.6

9 100.0 95.4

10 96.9 95.4

Average accuracy 97.1 91.3

Table 1 - Accuracy for each fold and the average

Table 2 has the summary of main metrics evaluated. Firstly, k-NN has an average accuracy

of 97%. The average sensitivity value of 98% demonstrates how k-NN is very successful at

identifying sick patients and misses out a very small number. The average specificity is

slightly lower being at 95.2% shows how the model is slightly worse at identifying healthy

patients, which could although not as bad as not spotting sick patients can still be

problematic. The achieved MCC of k-NN is 0.933.

Naïve Bayes on the other hand had an average accuracy of 91%. The specificity being at

90.5% is considerably worse than k-NN’s. Interestingly, Naïve Bayes was more successful

at identifying healthy patients than sick, with specificity at 92.8%. Finally, NB achieved MCC

of 0.809.

20

 k-NN Naïve Bayes

Average Accuracy (%) 97 91

Average Sensitivity (%) 98.0 90.5

Average Specificity (%) 95.2 92.8

Average MCC 0.933 0.809

Table 2 - Average of metrics

Overall, it is fair to say that both algorithms achieved relatively high scores in terms of

predicting PD in patients. However, k-NN was by far the better classifier, outscoring NB in

all the metrics considered in this experiment.

7. Evaluation of experiment

This experiment had strong positive aspects of it. Most importantly the data used for

training the algorithms was properly labelled by experts which enabled the possibility of

using supervised learning in this experiment. Additionally, the x values used in experiment

(striatum dimensions), are commonly used by medical staff to give clinical diagnose. As

such, the data used was already previously highly relevant for the diagnose, and this is

confirmed by very high scores.

However, the experiment had limitations. Firstly, there was uneven distribution of male and

female as well as of PD and HC subjects. As seen in Figure 15, almost three quarters of

patients were male.

21

Figure 15 - Pie Chart representing Males and Females in the database

Same can be said for the distribution of healthy controls and sick patients. There are 443

PD patients and only 209 HC. For possible improvements it would be beneficial to also look

at how the accuracies differed when taking the dimensional based features individually and

not together.

Finally, the accuracies of male and female subjects were not compared separately. In future

it would be interesting to see whether male and female subjects had any notable

differences in the classification accuracy.

As such for improvements a dataset with the same number of PD and HCs should be used,

and perhaps the male and female subjects should be compared separately.

8. Conclusion

In conclusion, the combination of supervised machine learning algorithms and striatum

dimensional features undoubtedly performed positively. Though there are some

inaccuracies present in the algorithms, overall, the experiment shows how these algorithms

can be used for assisting the clinical decision of diagnosing Parkinson’s disease. In terms

of comparing Naïve Bayes and k-NN, it can be safely said that k-NN is the better algorithm,

which was confirmed by higher classification accuracy and all the other metrics used. As

22

such, k-NN shows strong potential to be used in a real-life scenario of diagnosing

Parkinson’s Disease.

9. Further research

Whilst this essay demonstrated that k-NN is the better algorithm for identifying Parkinson’s

disease when using striatum dimensional features as input, it leaves many more possible

questions to be answered. It would be interesting to see how other supervised machine

learning algorithms like neural networks or random forest would perform on the same task.

This would help identify which algorithm out of the supervised learning family has the most

potential. If possible, it would be interesting to compare how the accuracy changes if

instead of the dimension values, a real scan image of the striatum is used as input, such as

in Figure 1. In addition, it would also be interesting using an unsupervised learning

algorithm, and see whether it can spot patterns in this data that a human might not.

Parkinson’s disease is known to be more present in males than females [18]. It would be

interesting to see if there are any possible correlations between the gender and the

degeneration of striatum. Perhaps there could be found a relationship between the

dimensional features of the striatum and the gender of the patient with Parkinson’s disease.

Whether such relationship exists or not can also be investigated using supervised machine

learning algorithms.

23

10. Bibliography

[1] "Parkinsons disease," National Institute of Health, [Online]. Available:

https://www.nia.nih.gov/health/parkinsons-disease. [Accessed 20 October 2022].

[2] "Datscan," [Online]. Available: https://parkinsonsnewstoday.com/parkinsons-disease-tests-diagnosis/datscan/.

[Accessed 19 October 2022].

[3] "Image: DaTSCAN, normal vs abnormal," [Online]. Available: https://www.cedars-sinai.org/programs/imaging-

center/exams/nuclear-medicine/datscan/information.html.

[4] "Parkinson’s Disease: Causes, Symptoms, and Treatments," National Institute on Health, [Online]. Available:

https://www.nia.nih.gov/health/parkinsons-disease. [Accessed 12 September 2022].

[5] IBM, "Machine Learning," International Business Machines Corporation, [Online]. Available:

https://www.ibm.com/cloud/learn/machine-learning. [Accessed 11 August 2022].

[6] IBM, "Supervised vs. Unsupervised Learning: What’s the Difference?," International Business Machines

Corporation, [Online]. Available: https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning.

[Accessed 12 August 2022].

[7] javatpoint, "Supervised machine learning - javatpoint," [Online]. Available:

https://www.javatpoint.com/supervised-machine-learning. [Accessed 11 August 2022].

[8] "Cassification versus regression in machine learning," [Online]. Available:

https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/. [Accessed 11

September 2022].

[9] IBM, "What is supervised learning?," International Business Machines Corporation, [Online]. Available:

https://www.ibm.com/cloud/learn/supervised-learning. [Accessed 11 August 2022].

[10] Simplilearn, "KNN Algorithm In Machine Learning," [Online]. Available:

https://www.youtube.com/watch?v=4HKqjENq9OU. [Accessed 11 September 2022].

[11] javatpoint, "k-nearest-neighbor algorithm for machine learning," [Online]. Available:

https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning. [Accessed 11 September

2022].

[12] IBM, "K-Nearest Neighbors Algorithm," International Business Machines Corporation, [Online]. Available:

https://www.ibm.com/topics/knn. [Accessed 11 September 2022].

[13] "Naive Bayes Classifiers," [Online]. Available: https://www.geeksforgeeks.org/naive-bayes-classifiers/.

[Accessed 14 November 2022].

[14] "Naive Bayes, Scikitlearn," [Online]. Available: https://scikit-learn.org/stable/modules/naive_bayes.html.

[Accessed 21 November 2022].

[15] D. Chicco and G. Jurman, "The advantages of the MCC over F1 score and accuracy in binary classification

evaluation," [Online]. Available: https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6413-

7. [Accessed 27 November 2022].

24

[16] F. P. Oliveira, M. Castelo-Branco, D. B. Faria and D. C. Costa, "“Extraction, selection and comparison of features

for an effective automated computer-aided diagnosis of parkinson’s disease based on [123i]fp-CIT SPECT

images,”," European Journal of Nuclear Medicine and Molecular Imaging, vol. 45, no. 6, 2017.

[17] [Online]. Available: www.ppmiinfo.org/data. [Accessed 13 November 2022].

[18] "Parkinsons in men vs women," [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700650/.

[Accessed 20 October 2022].

[19] U. o. York, "What is Machine Learning," 06 September 2021. [Online]. Available:

https://online.york.ac.uk/what-is-machine-learning/. [Accessed 11 August 2022].

[20] "Laws of Proximity and Similarity," [Online]. Available:

https://isle.hanover.edu/Ch05Object/Ch05ProxSim_evt.html. [Accessed 11 September 2022].

[21] "k optimal value," [Online]. Available: https://towardsdatascience.com/how-to-find-the-optimal-value-of-k-in-

knn-35d936e554eb#:~:text=The%20optimal%20K%20value%20usually,be%20aware%20of%20the%20outliers..

[Accessed 11 September 2022].

[22] "Early symptoms signs of PD," [Online]. Available: https://parkinsonsdisease.net/diagnosis/early-symptoms-

signs.

11. Appendix

Code Used

#importing necessary libraries and configurations

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.neighbors import KNeighborsClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import confusion_matrix

from sklearn.metrics import f1_score

from sklearn.metrics import accuracy_score

from sklearn.metrics import ConfusionMatrixDisplay

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import cross_val_predict

import sklearn.metrics

#reading the Parkinson's patients database and storing according X and y value

data = pd.read_csv('C:/Users/vss19/EE_Parkinsons/Datset_ParkinsonVsControl_PPMI.csv')

X = data.iloc[:, 8:11]

y = data.iloc[:, 0]

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size=0.2)

25

#creating, training and testing k-NN and Naive Bayes

classifier_KNN = KNeighborsClassifier(n_neighbors=11, p=2, metric='euclidean')

classifier_NB = GaussianNB()

classifier_NB.fit(X_train, y_train)

classifier_KNN.fit(X_train, y_train)

#performing 10 fold cross-validation and printing accuracy score from each fold and their

mean

scores = cross_val_score(classifier_KNN, X, y, cv=10)

print(scores)

print("%0.2f accuracy of KNN with a standard deviation of %0.2f" % (scores.mean(),

scores.std()))

print()

scores1 = cross_val_score(classifier_NB, X, y, cv=10)

print(scores1)

print("%0.2f accuracy of NB with a standard deviation of %0.2f" % (scores1.mean(),

scores1.std()))

print()

#Plotting all of the results in a single confusion matrix for k-NN

y_pred_KNN = cross_val_predict(classifier_KNN, X, y, cv=10)

cm_KNN_CV = confusion_matrix(y, y_pred_KNN)

cm_display_KNN_CV = ConfusionMatrixDisplay(confusion_matrix = cm_KNN_CV, display_labels =

[False, True])

cm_display_KNN_CV.plot(cmap = plt.cm.Blues)

plt.title("Confusion Matrix of KNN")

plt.show()

#Plotting all of the results in a single confusion matrix for Naive Bayes

y_pred_NB = cross_val_predict(classifier_NB, X, y, cv=10)

cm_NB_CV = confusion_matrix(y, y_pred_NB)

cm_display_NB_CV = ConfusionMatrixDisplay(confusion_matrix = cm_NB_CV, display_labels =

[False, True])

cm_display_NB_CV.plot(cmap = plt.cm.Blues)

plt.title("Confusion Matrix of Naive Bayes")

plt.show()

26

Dataset Used

