
A divide-and-conquer approach to ordinal

classification

RQ: To what extent is a divide-and-conquer algorithm applicable

to solving the problem of ordinal classification with a binary

classifier in terms of time complexity and performance?

A Computer Science Extended Essay

Word count: 3986

CS EE World
https://cseeworld.wixsite.com/home
May 2021
29/34
A
Submitter Info: Anonymous

Contents

1 Introduction 2

2 Multiclass classification algorithms 2
2.1 One-versus-rest . 2
2.2 A simple approach to ordinal classification 3
2.3 Divide-and-conquer algorithm . 4

3 Time complexities 5
3.1 Time complexities of the one-versus-rest and SAOC 6
3.2 Time complexity of the divide-and-conquer algorithm 7

4 Performance comparison 9
4.1 Methodology . 9

4.1.1 Datasets . 11
4.1.2 Performance metric . 12
4.1.3 Control Variables . 13

4.2 Experimental results . 14
4.3 Possible sources of error . 15

4.3.1 Selection bias . 15
4.3.2 Balanced and unbalanced datasets 15

5 Balance within the tree of classifiers 17

6 Conclusion 19
6.1 Implications and further research 19

7 References 21

8 Appendix - code 23

1

1 Introduction

Classification a machine learning problem concerned with choosing a class to

which an input belongs. While today’s state-of-the-art algorithms designed to

solve hard classification problems mainly incorporate neural networks, tradi-

tional machine learning algorithms can sometimes be used just as - or even

more - effectively on simpler problems: according to the “No Free Lunch The-

orem” first presented in a 1996 paper by David Wolpert[1], there isn’t a single

model that performs better than any other for every existing machine learning

problem. This makes simpler algorithms, such as logistic regression, a viable

alternative to newer and more complex algorithms.

Logistic regression is a binary classifier, meaning that it can only produce

two outputs: “true” or “false” (in fact, it outputs a score - the probability that

the input belongs to the positive class, as opposed to the negative class),

and so without any modifications it cannot be used to solve the problem of

multiclass classification, where it has to deal with more than two possible

classes. However, there are algorithms that can be used to perform multiclass

classification with only binary classifiers.

2 Multiclass classification algorithms

2.1 One-versus-rest

The one-versus-rest (or one-versus-all) algorithm uses a binary classifier to

solve multiclass classification problems in the following way: for a problem with

k possible classes: V0, V1, ..., Vk−1, it trains k classifiers, i-th of which predicts

the probability that an input belongs to class Vi, while all the other k−1 classes

are agregated into the negative class. The input is then assigned a class, which

respective classifier outputs the highest score.

2

2.2 A simple approach to ordinal classification

For some classification problems the one-versus-rest algorithm can be modified

to produce even better results. For example, in 2001, Eibe Frank and Mark Hall

wrote a paper titled “A simple approach to ordinal classification” (or SAOC for

short)[2], where they presented an algorithm for classifying ordinal variables

– variables “whose value exists on an arbitrary scale where only the relative

ordering between different values is significant” [3]. In other words, in an ordinal

classification problem classes can be ordered in such a way, that the closer two

classes are, the more “similar” they are. An example of an ordinal classification

problem is the problem of rating: if two items have similar ratings, they are more

likely to be of similar quality than two items whose ratings vary significantly.

SAOC consists of training k − 1 classifiers, where i-th classifier predicts the

probability of an input belonging to one of the classes in the range [Vi+1;Vk−1]

(the classes in the range [V0;Vi] are all considered a part of the negative class).

The probability Pr(i) that a new sample (an input that the algorithm has to

classify) belongs to class Vi is then found using the following algorithm, if Si is

the score given to the input by i-th classifier:

Pr(0) = 1− S0

Pr(i) = Si−1 − Si, 0 < i < k − 1

Pr(k − 1) = Sk−2

(1)

The class with the highest probability Pr(i) is then selected. Making use

of a dataset’s ordinal structure, this method usually outperforms the standard

one-versus-rest algorithm.

This Extended Essay aims to investigate the extent to which a different

algorithm, based on the divide-and-conquer approach can be considered an

3

alternative to both one-versus-rest and SAOC algorithms.

2.3 Divide-and-conquer algorithm

In computer science, a divide-and-conquer algorithm is an algorithm that re-

cursively breaks the problems down into smaller subproblems that are easier to

solve, solves these subproblems and then “stitches” the results to get the solu-

tion for the bigger problem[4]. This approach can be applied to the problem of

ordinal classification by building a binary search tree, every node of which

stores a classifier. The algorithm of building the tree is as follows:

1. The binary classifier in the root of the tree operates on the entire class

range, meaning that it is trained on all available samples. It considers all

classes in the range [V0;V[k−1
2]] a part of the negative class, and all classes

in the range [V[k+1
2];Vk−1] - a part of the positive class, breaking the class

range in two smaller and roughly equal ranges.

2. The tree is built recursively in such a way that each non-leaf node has

one or two children. If a parent node operates on the range [Vi;Vj],

it considers classes in the range [Vi;V[i+j
2]] a part of the negative class,

and those in the range [V[i+j
2]+1;Vj] - a part of the positive class. Its

left child then operates on all the classes its parent aggregates into the

negative class([Vi;V[i+j
2]]), and its right child operates on all the initial

classes aggregated into the positive class ([V[i+j
2]+1;Vj]). Similarly to the

parent node, the negative and positive classes are formed for each of the

child nodes and so on. Thus, the number of classifiers in each consequtive

level doubles, and the range a classifier operates on is cut in two.

3. Nodes, the classifiers in which only operate on the range of one class, are

not created, since classification with only one possible class is impossible.

4

Based on the previous condition, it can be seen that nodes that operate

on 3 classes only have a left child, and those operating on 2 classes are

leaf nodes that have no children.

An example of such tree for k = 7 can be seen on the following diagram:

Figure 1: Example tree of classifiers

Here, the ranges in the left and right parts of each node represent the class

ranges aggregated into the negative and positive classes for the the classifier in

the node.

3 Time complexities

In machine learning, time is an important parameter: some algorithms, while

giving good results, can be unusable simply because they take too long to run.

This section explains the difference in time efficiency of making predictions for

the three multiclass classification algorithms presented in the previous section.

5

Assume that each sample to be classified has n features (variables that define

the sample), and at once the algorithm needs to process m samples. This way,

the data to be processed can be represented by a matrix X with dimensions

m × n, where Xi,j equals the value of j-th feature of the i-th sample to be

classified.

3.1 Time complexities of the one-versus-rest and SAOC

In a typical one-versus-rest classifier, the results of predictions are obtained by

multiplying the matrix X and the matrix θ with dimensions n × k, where θi,j

equals the weight by which i-th feature is multiplied in the binary classifier

corresponding to the class j (the significance of the weights is not relevant to

the Extended Essay). The outcome of the multiplication is a m× k matrix Y ,

where Yi,j represents the score given to the i-th sample by the j-th classifier (in

fact, for logistic regression as well as other classification algorithms the process

is more complicated, but it is also not relevant to the Extended Essay, and the

functions omited here do not impact time complexity). The final prediction for

i-th sample can then be obtained by finding argmaxjYi,j - the index of a class

with the highest score - for each sample. The time complexity of multiplying 2

matrices with dimensions m × n and n × k is O(mnk), meaning that the time

complexity of the entire algorithm is also O(mnk), since finding the indices of

maximal scores in each row has a time complexity of O(mk).

Similarly, in the case of SAOC, θ has the dimensions n× k − 1, since there

are k − 1 classifiers, so the time complexity of acquiring Y is O(mn(k − 1))

which is the same as O(mnk). The final probabilities for each class can be

computed in one equation as [~1|Y] − [Y |~0], where [A|B] is the operation of

matrix concatenation. It can be easily seen that this operation is identical to

the one presented in Equation 1. Like in the case of the one-versus-rest classifier,

6

the predictions can be found using argmaxjPri,j , where Pr is the final matrix

of probabilities. Since both vector-matrix concatenation and matrix subtraction

can be performed in no more than O(mk) operations, the final time complexity

is, once again, O(mnk).

3.2 Time complexity of the divide-and-conquer algorithm

For the divide and conquer algorithm, however, we don’t need to use O(k)

classifiers for each sample. Predictions can be obtained by applying a classifier

in the root node of the tree to X, and dividing X into 2 matrices Xl and Xr

in such a way that all samples for which the negative class was predicted are a

part of Xl, and those for which the positive class was predicted are a part of

Xr. Xl is then passed to the left child node, and Xr - to the right child node.

The process is repeated recursively, so that each sample follows a path from the

root to one of the leaf nodes. Applying the classifier in one of the nodes of the

binary search tree to the matrix X has a time complexity of O(2mn) = O(mn),

since in this case there is a classification with only two classes: the positive and

the negative one, so k = 2.

Assume there are s nodes in a level of the binary tree, and i-th node has

to classify mi samples. Then the time complexity of one node’s prediction is

O(min). After classification in a node, the same sample can’t be passed on

to both its left and right child, meaning that on each level every sample from

the initial matrix X is classified by exactly one node, and so
∑s−1

i=0 mi = m.

The time complexity of classifying all the samples on this level is, therefore,

O(m0n + m1n + ... + ms−1n) = O(mn) . Since the structure of the tree of

classifiers is identical to a binary search tree built on an array of size k, the

height of this tree of classifiers is also O(log(k)), meaning that the overall time

complexity of the prediction algorithm isO(mnlog(k)) as opposed toO(mnk) for

7

the 2 other algorithms. This means that the divide-and-conquer algorithm scales

better with the number of classes, and with a large k it can make predictions

significantly more efficiently than both other algorithms.

The intuition behind the lower time complexity is that while one-versus-rest

and SAOC act as linear search, where each sample is evaluated on every classi-

fier, the divide-and-conquer approach can be seen as a generalization of binary

search, where, instead of using a comparator - a function used to compare

the input with an element of a collection, we use a classification algorithm to

determine whether a sample should be propagated to the left or right part of

the collection.

A big weakness of the divide-and-conquer approach, however, is its inability

to be efficiently parallelized: the classifier in any node cannot be engaged in

the prediction process before its parent node finishes making predictions, since

only then the matrices Xl and Xr used by the classifiers in the child nodes are

acquired. In the other algorithms, all binary classifiers are independent from

each other, and so can make their predictions in parallel. One solution for

overcoming this weakness of the divide-and-conquer algorithm is parallelizing

classifiers within one level of the binary tree, since they are independent of each

other and can start making predictions at once after their parent nodes have

completed their respective computations. This way, on the first level of the tree,

only one thread is engaged, since there is only one node, but then this number

growth exponentially, with 2 nodes on the second level, 4 - on the third and so

on. Considering k is large enough, after a few more levels the resources of the

system will be used efficiently.

8

4 Performance comparison

Even though time efficiency is an important parameter that determines whether

an algorithm should be applied to a given classification problem, a slower al-

gorithm that can provide accurate classification is sometimes a better solution

than a faster algorithm that often makes mistakes and misclassifies a large por-

tion of samples. This section aims to compare the performance that the three

algorithms yield when dealing with new data.

4.1 Methodology

To see how accurate the results produced by the algorithms are, it is necessary

to evaluate them on various datasets with a performance metric. A dataset

shares a similar structure with a database: it consists of a set of records, each

representing one sample, with each field storing a feature of the sample. For

example, below is a dataset storing features of abalones:

Figure 2: A dataset

The “Goal” column stores the label of each sample - its target class.

9

A performance metric is simply a function that shows how close or far the

output of the model is from the true value (the label). The algorithms can be

evaluated by selecting multiple ordinal datasets and splitting each of them into a

train set and a test set. Each of the algorithms is trained on the train set, after

which it is used to make predictions for samples in the test set without seeing the

labels. This division of data into two sets is necessary, because during training,

an algorithm learns the data it is given, so if the same data is used to evaluate

it later, it can “remember” the correct answer. Therefore, if an algorithm’s

performance is good on the train data, this doesn’t always imply that it has the

ability to generalize and produce the same results on data it hasn’t seen before -

perhaps the good performance comes simply from remembering the answers[5].

This is called the problem of overfitting.

By comparing the outputs of the algorithms on the test set to the labels

using the performance metric, it is possible to obtain one number that shows

how well the algorithm performs on the dataset. In order to decrease the prob-

ability of randomness impacting the results of the experiment, the algorithms

are evaluated using 10-fold cross-validation: the dataset is broken into 10

random parts and each classifier is trained 10 times, each time training on 9

of the parts, leaving one out and using it as a test set[10].The performances of

the algorithm during each testing are then averaged to get a final score. This

way, a situation where the selected test set is not representative of the entire

dataset - and so can’t be used for algorithm evaluation, since it doesn’t reflect

the algorithm’s ability to generalize to normal data - becomes less likely. To

increase the acuracy of evaluation even further, the process of cross-validation

is repeated 10 times, and the scores are once again averaged out. Overall, each

algorithm is trained and evaluated 100 times for each dataset.

10

4.1.1 Datasets

In the 2001 paper, Frank and Hall mention that due to the lack of benchmark

datasets for ordinal classification they had to resort to using regression datasets

for evaluating their classifier. Apparently, the problem still persists, judging by a

recent paper on the application of ordinal classification in transportation[7]. De-

spite being published in 2019, the paper still vastly relies on regression datasets

for evaluation.

In order to transform a regression dataset into an ordinal classification

dataset, the authors of both articles use equal-frequency binning. This is a

discretization technique that, when applied to a dataset with continous labels,

breaks the range of labels into k smaller non-intersecting ranges, “bins”, such

that roughly the same amount of samples are in each bin. By assigning the

index of the range in which a label falls as its new label, the regression problem

is turned into a classification problem, since now the labels are discrete. If the

indices of ranges for 2 samples are close to each other, it means that the initial

labels were also relatively close, and so the two samples are “similar”, indicating

that this is a problem of ordinal classification.

In this Extended Essay, the algorithms are be applied to the same datasets

used in the 2001 paper, but some adjustments are made: Unlike the paper, this

Extended Essay doesn’t compare the performances of the algorithms on datasets

split into a different number of bins. Namely, while in the 2001 experiment

datasets were split first into 3 bins, then 5 and only then 10, the measurements

presented in this Extended Essay are collected only using 10-bin partition. This

adjustment was made because for k = 3 or k = 5 the tree used in the divide-

and-conquer algorithm would have a very simple structure (while for k = 3 it

would only have 2 nodes in total on 2 levels, for k = 5 the structure would not

be very complex either, with 4 nodes and 3 levels). For k = 10, however, the

11

numbers of nodes and levels increases to 10 and 4 respectively, and so the “tree-

like” structure of the algorithm is more apparent. Under ideal circumstances,

the number of bins would be increased even further, but this is not possible

for many of the datasets used, since when k increases it becomes more likely

that there are simply fewer different labels than bins in the initial dataset. In

this circumstances, equal-frequency binning cannot be performed. The datasets

that cannot be broken into 10 ranges by equal-frequency binning were omitted

during the experiment.

4.1.2 Performance metric

In the 2001 paper, the algorithms are compared to each other based on their

accuracy - the fraction of samples, for which the correct class was predicted.

However, this is not a perfect performance metric for ordinal classification, since

oftentimes we care not only about how many samples are classified correctly,

but also about how close the predictions were to the true values. For example, if

the task of an algorithm is to rate an input on a scale from 1 to 10, and the true

class for a sample is 9, a classifier predicting a 10 is obviously more “correct”

than a classifier predicting a 2. In the accuracy metric, however, this degree of

“correctness” is ignored, and both classifiers receive the same penalty to their

accuracy scores.

This is why it is preferable to use special performance metrics when dealing

with ordinal classification. One of these metrics is a special type of a mean

squared error (MSE)[8]. This error relies on a confusion matrix of the test

set to evaluate a classifier. The confusion matrix is a k× k matrix C, such that

Ci,j equals the amount of samples in the test set that belong to class i but were

predicted to belong to class j by the model. For example, below is the confusion

matrix for a dataset with 6 classes:

12

Figure 3: Confusion matrix

The numbers on the main diagonal of the matrix represent the samples that

were classified correctly. The MSE equals the mean of the squared distances

between the true classes and the predicted classes for each sample in the test

set, so its equation is 1
m

∑k−1
i=0

∑k−1
j=0 Ci,j(i− j)2. It can be seen that the further

the true and predicted classes are, the higher the error, which is suitable for

ordinal classification. Thus, this error is the one used in the experiment.

4.1.3 Control Variables

In order to ensure that the MSEs of the algorithms are not affected by a change

in some parameter unrelated to the algorithms, we keep some variables constant.

Mainly, these are:

• Base classifier: one-versus-rest, SAOC and divide-and-conquer algo-

rithms all rely on a base binary classifier used to calculate the score that

a sample belongs to the positive class. Since different classification al-

gorithms can be used as base, each yielding different performance, it is

necessary to choose one base to be used. For evaluation, I decided to use

logistic regression due to its simplicity.

• Implementation of logistic regression and hyperparameters: the

implementation of logistic regression was taken from Python’s scikit-learn

library. The model has a set of hyperparameters - parameters that are

not learnt by the model but are instead selected by the programmer (e.

13

g. regularization parameter which defines how much the algorithm

is “punished” for having large weights). Similar algorithms trained with

different hyperparameters often produce different results. To prevent this

from impacting the experiment, all hyperparameters were set to default

ones provided by the scikit-learn library[6].

• Hardware: every model was trained on a laptop with a 2.6GHz Intel

Core i7 CPU. Multithreading and GPU acceleration was not used for any

algorithm. Ideally, this should have no effect on the performance, but

as faulty hardware can cause errors to occur, hardware is not changed

throughout the experiment.

• Number of classes: as explained previously, in every dataset k was set

to 10.

4.2 Experimental results

In the process of testing the algorithms on 8 datasets from the UCI Machine

Learning Repository[9] according to the chosed method, the following results

were obtained:

MSE
Dataset One-versus-

rest
SAOC Divide-and-

conquer
Abalone 4.04 3.83 4.02
Ailerons 7.17 3.18 4.03
Delta Ailerons 4.52 4.42 4.87
Elevators 10.31 7.72 9.18
2D Planes 2.23 1.63 2.02
Friedman Artifi-
cial

3.80 2.89 3.16

Kinematics of
Robot Arm

7.64 6.36 8.09

Computer Activ-
ity

10.31 6.93 8.17

14

From the table, it can be inferred that in general, the divide-and-conquer

algorithm performs better than the one-versus-rest algorithm, but worse than

SAOC (lower error indicates better performance). Out of the 8 trials, it outper-

formed the former in 6 measurements, but it never gave more accurate predic-

tions that the latter. This leads to believe that, in its current state, the divide-

and-conquer approach is not as accurate as the classical approach to ordinal

classification. However, for certain datasets (especially the Abalone dataset)

the divide-and-conquer algorithm performed almost as well as SAOC.

4.3 Possible sources of error

The validity of the results can be impacted by multiple parameters, most of

which arise because of the datasets used.

4.3.1 Selection bias

One of the possible sources of error lies in the method of selecting the datasets.

After all, these datasets were synthetically discretized, and do not represent a

real problem of ordinal classification, meaning that they may not follow the same

rules as most real-world ordinal datasets, and so the results can be unrepresen-

tative. Moreover, not all datasets could be split into 10 bins by equal-frequency

binning. Some of the datasets in the UCI repository have fewer than 10 differ-

ent labels, and so were omitted during the experiment. This could lead to a

selection bias.

4.3.2 Balanced and unbalanced datasets

The datasets that were selected are not completely homogenous either. Some

datasets are more balanced than others, meaning that for them, the samples

are more equally distributed among the classes, and approximately m
k samples

15

in the dataset belong to each class. However, this is not true for some datasets.

For example, below is the distribution diagram for labels of the Delta Ailerons

dataset before and after equal-frequency binning is applied to it (this is one of

the two datasets on which the divide-and-conquer algorithm performed worse

than the one-versus-rest algorithm):

Figure 4: Label distributions for the Delta Ailerons dataset

In the first diagram, the height of a bar represents the number of samples

in a fixed size label range. In the second diagram, the height of each bar shows

the number of samples in a class after equal-frequency binning. As the initial

distribution has most labels concentrated in the several peaks in the center, the

equal-frequency binning algorithm fails to assign a similar amount of samples

16

to each class, and the resulting dataset becomes very unbalanced, as seen from

the second distribution. This imbalance can negatively impact the performance

of classifiers[11].

5 Balance within the tree of classifiers

Imbalance in data impacts the algorithms differently. Indeed, in the case of one-

versus-rest classification, when all classes but one are considered a part of a large

negative class, the imbalance is 1 : k−1 even if the dataset is perfectly balanced,

as k − 1 classes are aggregated into one. In SAOC, the classifiers operating at

the boundaries of the class range have to deal with data unbalanced to the

same degree, but those in the center deal with an almost balanced dataset(e.

g. if k = 10, for a classifier that determines whether a sample is in the class

range [V0;V4] or [V5;V9] there is an equal number of samples in the positive and

negative class, assuming that the initial dataset is balanced). For the divide-and-

conquer algorithm, however, all nodes operate on a roughly balanced dataset,

where the number of initial classes agreggated into the negative and positive

class varies by no more than 1. It can be shown that the nodes that operate

on a range of 3 classes have to deal with the most unbalanced data with a

1 : 2 imbalance. This leads to believe that a divide-and-conquer algorithm

might perform better on balanced datasets, but when a dataset is unbalanced,

the classifiers are not guaranteed to work with roughly balanced data, and the

balancing property of the tree doesn’t come into play. Unlike the other two

algorithms, the divide-and-conquer approach caps the imbalance at 1 : 2 and

doesn’t scale it with k. Based on this, two hypotheses can be formed:

• Hypothesis 1: If the initial dataset is balanced, classifiers in the divide-

and-conquer algorithm deal with balanced data, while those in the other

two algorithms do not, meaning that the divide-and-conquer algorithm

17

benefits more if the dataset is balanced.

• Hypothesis 2: As the data balance in the divide-and-conquer algorithm

doesn’t depend on the number of classes, the algorithm’s performance

doesn’t drop as much as for one-versus-rest and SAOC algorithms with

an increase in k

These hypotheses, however, are not supported by the algorithm’s poor per-

formance on the Kinematics of Robot Arm dataset, which is almost perfectly

balanced after equal-frequency binning, as well as by the algorithm’s response

to increasing k:

Figure 5: Label distribution for the Kinematics of Robot Arm dataset after
equal-frequency binning

18

Figure 6: The relationship between k and the error for the algorithms

As k was increased from 5 to 50 in increments of 5, the algorithm reliably

outperformed a one-versus-rest classifier, but could not match the results pro-

duced by SAOC on the balanced “Friedman Artificial” dataset.

6 Conclusion

While for a problem with a large number of classes the divide-and-conquer

approach can yield results faster than the other algorithms, it - at least in its

current implementation - significantly loses to SAOC in terms of performance.

Perhaps, this tradeoff between speed and performance can be useful in situations

when k is large, predictions have to be made quickly, and a slightly higher error

can be tolerated.

6.1 Implications and further research

Outside evaluating the usability of a new classification algorithm, this Extended

Essay also shows that both algorithms for ordinal classification outperform the

19

traditional one-versus-all classifier, once again indicating that ordinal classifi-

cation is a separate problem that shouldn’t be mixed with other classification

problems (like it often is). A possible development of the topic presented in

this Extended Essay could include evaluating the divide-and-conquer algorithm

based on a binary classifier different from logistic regression, which is not as sus-

ceptible to imbalance as some other techniques[12]. It is possible that in tandem

with other classifiers the algorithm’s balancing ability improves its performance

to match that of the standard approaches to ordinal classification. Results of the

experiment can also change if another degree of freedom is introduced through

hyperparameter tuning: if the hyperparameters of a model are not fixed,

and instead tuned to find the values which maximize the model’s performance,

the error of the algorithm is lower. However, thorough search for the best set of

hyperparameters can be very time-consuming or require higher computational

power[13].

Overall, it is clear that one abstract machine learning algorithm can have

many concrete implementations differing in speed in performance, so an Ex-

tended Essay can only provide an overview of whether an algorithm is suitable

for a tase. A decision of what algorithm should be used is upon the individual

programmer, who ought to test as many hopotheses as possible to ensure the

solution they find is optimal.

20

7 References

[1] Wolpert, David H. “The Lack of A Priori Distinctions Between Learning

Algorithms.” Neural Computation 8, no. 7 (1996): 1341–90. https://doi.

org/10.1162/neco.1996.8.7.1341

[2] Eibe Frank and Mark Hall. “A Simple Approach to Ordinal Classification.”

Machine Learning: ECML 2001 Lecture Notes in Computer Science ,2001,

145–56. https://doi.org/10.1007/3-540-44795-4_13.

[3] Assagaf, Muhammad. “Simple Trick to Train an Ordinal Regression with

Any Classifier.” Medium. Towards Data Science, May 14, 2019/ Retreived

October 14, 2020 https://towardsdatascience.com/simple-trick-to-

train-an-ordinal-regression-with-any-classifier-6911183d2a3c.

[4] Skiena, S. (2008). Divide-and-Conquer. In The algorithm design manual (p.

135). New York: Springer. ISBN 978-5-9775-0560-4

[5] Tarang Shah. (2020, July 10). About train, validation and test sets in ma-

chine learning. Towards Data Science. https://towardsdatascience.com/

train-validation-and-test-sets-72cb40cba9e7

[6] sklearn.linear model.SGDClassifier — scikit-learn 0.24.1 documen-

tation. (n.d.). Retrieved March 9, 2021, from https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.

SGDClassifier.html

[7] ’Pelin Yıldırım, Ulaş K. Birant, Derya Birant, “EBOC: Ensemble-Based Or-

dinal Classification in Transportation”, Journal of Advanced Transportation

vol. 2019, Article ID 7482138, 17 pages, 2019. https://doi.org/10.1155/

2019/7482138

21

https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1007/3-540-44795-4_13
https://towardsdatascience.com/simple-trick-to-train-an-ordinal-regression-with-any-classifier-6911183d2a3c
https://towardsdatascience.com/simple-trick-to-train-an-ordinal-regression-with-any-classifier-6911183d2a3c
https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7
https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://doi.org/10.1155/2019/7482138
https://doi.org/10.1155/2019/7482138

[8] Cardoso, J. S., Sousa, R. (2011). Measuring The Performance Of Ordinal

Classification. International Journal of Pattern Recognition and Artificial

Intelligence , 25(08), 1173-1195. doi:10.1142/s0218001411009093

[9] UCI Machine Learning Repository. Accessed October 17, 2020. https://

archive.ics.uci.edu/ml/index.php.

[10] Geron, A. (2019). Better Evaluation Using Cross-Validation. In Hands-

On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts,

Tools, and Techniques to Build Intelligent Systems (pp. 76-77). O’Reilly

Media, Incorporated. ISBN 978-5-9500296-2-2

[11] Somasundaram, Akila & Reddy, U. Srinivasulu. (2016). Data Imbalance:

Effects and Solutions for Classification of Large and Highly Imbalanced

Data.

[12] Zheng, Wanwan, and Mingzhe Jin. “The Effects of Class Imbalance and

Training Data Size on Classifier Learning: An Empirical Study.” SN Com-

puter Science 1 , no. 2 (2020). https://doi.org/10.1007/s42979-020-

0074-0.

[13] Koehrsen, W. (2018, July 4). Automated machine learn-

ing hyperparameter tuning in python. Towards Data Sci-

ence. https://towardsdatascience.com/automated-machine-learning-

hyperparameter-tuning-in-python-dfda59b72f8a

22

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://doi.org/10.1007/s42979-020-0074-0
https://doi.org/10.1007/s42979-020-0074-0

8 Appendix - code

import numpy as np

import pandas as pd

from sklearn.metrics import confusion_matrix

from sklearn.metrics import make_scorer

from sklearn.model_selection import cross_val_score as cvs

from sklearn.linear_model import SGDClassifier

from sklearn.preprocessing import OneHotEncoder

from sklearn.base import BaseEstimator, ClassifierMixin

#folder and file from which to fetch the data

folderName = ’abalone’

fileName = ’abalone’

#equal-frequency binning was performed in advance using the Weka

↪→ software (https://www.cs.waikato.ac.nz/ml/weka/)

data = pd.read_csv("../datasets/{}/{}.csv".format(folderName,

↪→ fileName))

#the number of classes

k = 10

#getting labels and features from the dataset

y = np.array(data[’Goal’])

x = np.array(data.drop(’Goal’, axis=1))

#one-hot encoding was only used for the Abalone dataset, since it

↪→ had a categorical feature

ohe = OneHotEncoder()

non_numerical = x[:, 0]

x = np.delete(x, 0, axis=1)

23

https://www.cs.waikato.ac.nz/ml/weka/

x = np.append(x, ohe.fit_transform(non_numerical.reshape(-1, 1)).

↪→ toarray(), axis=1)

#the divide-and-conquer model

class DCModel(BaseEstimator, ClassifierMixin):

def __init__(self, k):

self.k = k

#4 * k + 1 elements are always enough to store the nodes

↪→ of the tree

self.nodes = [None] * (4 * k + 1)

def __fit_node_on_range(self, l, r, X, y):

#selecting samples the classes for which lie in the range

↪→ and assigning all classes to either the positive or

↪→ the negative class

ind = np.where(np.logical_and(y >= l, y <= r))

m = (l + r) // 2

x_in_range = X[ind]

y_in_range = np.where(y[ind] > m, 1, 0)

return SGDClassifier(loss=’log’).fit(x_in_range,

↪→ y_in_range)

def fit(self, X, y):

#building the tree recursively, l and r represent

#the class range on which the node number v operates

def build(v, l, r):

24

if l == r:

return

self.nodes[v] = self.__fit_node_on_range(l, r, X, y)

m = (l + r) // 2

build(2 * v, l, m)

build(2 * v + 1, m + 1, r)

build(1, 0, self.k - 1)

return self

def predict(self, X):

#recursively getting predictions for X

def run_dc(x, v, l, r):

if l == r:

return np.full(x.shape[0], l)

m = (l + r) // 2

if(x.shape[0] == 0):

return np.array([])

pred_binary = self.nodes[v].predict(x)

indices_left = pred_binary == 0

indices_right = pred_binary == 1

preds_left = run_dc(x[indices_left], 2 * v, l, m)

preds_right = run_dc(x[indices_right], 2 * v + 1, m +

↪→ 1, r)

pred = np.empty(x.shape[0])

pred[indices_left] = preds_left

pred[indices_right] = preds_right

return pred

25

return run_dc(X, 1, 0, self.k - 1)

#SAOC implementation

class SAOCModel(BaseEstimator, ClassifierMixin):

def __init__(self, k):

self.k = k

self.models = [None] * (k - 1)

def fit(self, X, y):

for i in range(self.k - 1):

y_relative = np.where(y > i, 1, 0)

self.models[i] = SGDClassifier(loss=’log’).fit(X,

↪→ y_relative)

return self

def predict(self, X):

pred = np.array([model.predict_proba(X)[:, 1] for model in

↪→ self.models]).T

#getting probabilities for each class

r = np.append(pred, np.zeros((X.shape[0], 1)), axis=1)

l = np.insert(pred, 0, np.ones(X.shape[0]), axis=1)

return np.argmax(l - r, axis=1)

#the error metric

def MSE(y, y_pred):

conf_mat = confusion_matrix(y, y_pred)

26

m = y.shape[0]

diffs = [[None] * k for _ in range(k)]

for i in range(k):

for j in range(k):

diffs[i][j] = (i - j) ** 2

return 1 / m * np.sum(np.multiply(conf_mat, np.array(diffs)))

mse = make_scorer(MSE, greater_is_better=False)

#the total error for each algorithm

MSE_ovr = 0

MSE_dc = 0

MSE_saoc = 0

for i in range(10):

print(’Starting test number {}’.format(i))

dc = DCModel(k)

saoc = SAOCModel(k)

#SGDClassifier uses one-versus-rest when dealing with more

↪→ than 2 classes by default

ovr = SGDClassifier(loss=’log’)

#performing cross-validation

MSE_ovr += cvs(ovr, x, y, scoring=mse, cv=10).mean()

MSE_dc += cvs(dc, x, y, scoring=mse, cv=10).mean()

MSE_saoc += cvs(saoc, x, y, scoring=mse, cv=10).mean()

#printing the mean error

print(-MSE_ovr / 10, -MSE_saoc / 10, -MSE_dc / 10)

27

	Introduction
	Multiclass classification algorithms
	One-versus-rest
	A simple approach to ordinal classification
	Divide-and-conquer algorithm

	Time complexities
	Time complexities of the one-versus-rest and SAOC
	Time complexity of the divide-and-conquer algorithm

	Performance comparison
	Methodology
	Datasets
	Performance metric
	Control Variables

	Experimental results
	Possible sources of error
	Selection bias
	Balanced and unbalanced datasets

	Balance within the tree of classifiers
	Conclusion
	Implications and further research

	References
	Appendix - code

