

Investigating the Effectiveness of a Neural Network to

Detect and Mitigate a Distributed Denial of Service Attack

To what extent can a Feed Forward Neural Network successfully mitigate

an HTTP-flood distributed denial-of-service attack?

Computer Science Extended Essay

——————

Personal Code: jgc887

Word Count: 3901

CS EE World
https://cseeworld.wixsite.com/home
May 2023
30/34
A

Submitter Info:
Email: dhrumangupta06 [at] gmail [dot] com

Table of Content

1. Introduction 1

1.1 Worthiness 2

1.2 Scope 3
2. Background Information 4

2.1 Machine Learning and its Types 4
2.2 Chosen Machine Learning Model 5
2.3 Feed Forward Neural Networks 5

3. Experiment Methodology 7
3.1 Generation of Data Sets 7
3.2 Processing the datasets for use 11
3.3 Dependent Variables 14

3.4 Programming of the Feed Forward Neural Network 14
3.5 Experimental Procedure 15
3.6 Hypothesis 16

4. The Experimental Results 16

4.1 Accuracy over epochs 16
4.2 Accuracy on testing data 17
4.3 Time taken for classification 18

5. Analysis 18

5.1 Analyzing Accuracy 18
5.2 Analyzing Performance 19

5.3 Making sense of the drop in accuracy 19
5.4 Computational Costs 20

6. Conclusion 20

6. Further Research Opportunities 20

6.1 Investigating a change in the preprocessing of the data 20
6.2 Utilizing different machine learning models 21
6.3 Extending to different DDoS attacks 21

Works Cited 22
Appendix 24

1: Code for simulation of DDoS 24
2: Code for pre-processing data, training network, and running tests 33

3: Screenshot of raw data 40
4: Screencast of model evaluation 40
5: List of Figures and Tables 40

Personal Code: jgc887

1

1. Introduction

Cyber-attacks can maliciously disable machines, steal data, or use an infected machine as a

point for other attacks. Distributed Denial of Service (DDoS) attacks are a type of attack that

send fake requests to a machine and flood it by overloading the system. This leads to the

machine crashing or being rendered unusable. Such attacks can cost firms large sums of money

since they lose money for every second their server malfunction.

For example, the first few months of 2022 saw an unexpected increase in the number and

duration of DDoS attacks, predominantly due to Russia’s invasion of Ukraine1. Although not

all DDoS attacks have political implications, they are a powerful tool for cyber warfare. This

type of cybercrime has become increasingly common and can be used to attain nefarious goals.

A DDoS (distributed denial-of-service) attack is one of the most dangerous attacks in which

the attacker aims to make a resource or server unavailable to its intended users. There are

multiple ways to perform this, such as queuing requests, creating unterminated sessions,

overloading packet sizes, etc. The attack is so dangerous because these requests are initiated

by compromised devices, making it harder to distinguish between genuine and malicious

requests – an IP or device rate limit does not prevent it. A recent example includes Cloudflare

– one of the largest content delivery networks responsible for delivering over 7,000,000

websites – which was the target of one of the most significant DDoS attacks in history. Matters

like this make it pressing to find ways to detect and mitigate DDoS attacks efficiently.

HTTP flooding is a common form of a DDoS attack. The compromised systems make

continuous requests to a web server, using up its resources and preventing users from accessing

1 Hacken. “How to Detect a DDoS Attack? - 5 Red Flags - Hacken.” Hacken, 8 Aug. 2022,

hacken.io/discover/how-to-detect-a-ddos-attack/. Accessed 13 Aug. 2022.

Personal Code: jgc887

2

them2. In addition, the requests are usually sent to endpoints that require many resources to

process – such as querying and processing large amounts of data from a database – to increase

each request's overall impact. These attacks are necessary to identify, as they consume large

amounts of bandwidth and computing power and deny access to them to genuine users. Hence,

it is necessary to identify them automatically.

A DDoS request is hard to identify – no definite factors can be used to define it. While they

target endpoints with a high packet size and processing time, it is hard to identify whether an

individual request is compromised or not. Instead, they must be identified from the pattern of

the incoming requests while considering various factors.

Continuous monitoring is a popular tool used for detecting DDoS attacks, since it can be used

to automatically deploy safety measures and alert the IT team when there is an anomaly in the

requests. While it may speed up the mitigation process, it also requires more manual labor and

may be ineffective if monitored too strictly3. However, since the patterns of each client can be

analyzed to know whether they are malicious, neural networks, due to their pattern recognition

ability, pose as a potent tool for detecting such attacks because they can detect patterns.

This paper seeks to investigate further the extent to which a trained feed forward neural network

can detect an HTTP flood DDoS, specifically upon receiving live data when used as a proxy.

1.1 Worthiness

The vulnerability and impact of a DDoS increases as the number of web applications increases

hourly. From small businesses that have just launched their application to large-scale

companies, this research could be fruitful. By correctly classifying the type of a request and

2 “What Is a Distributed Denial-of-Service (DDoS) Attack?” Cloudflare, 2023,

www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/. Accessed 11 July 2022.
3 Hacken. “How to Detect a DDoS Attack? - 5 Red Flags - Hacken.” Hacken, 8 Aug. 2022,

hacken.io/discover/how-to-detect-a-ddos-attack/. Accessed 13 Aug. 2022.

Personal Code: jgc887

3

recognizing a pattern, a neural network can be used as a proxy to intercept every request, verify

it, and only forward legitimate ones. This could save firms thousands of dollars and small

businesses from such attacks, too – those that can cause them to shut down. Moreover, the data

and analysis from this research could be extended to be applied to different DDoS attacks –

SYN floods, UDP floods, and ICMP floods.

This investigation also aims to record and compare the performance and timings of the neural

network against the time taken to fulfill the request to understand the impact on the neural

network on the server.

1.2 Scope

DDoS datasets, particularly for HTTP floods, usually contain sensitive data about the users and

the server in use – which are often part of the requests – and hence are often found on malicious

platforms that have to be accessed using the TOR network. This can be unethical to use for

such an investigation. Thus, to conduct this experiment, a dataset will be generated by

simulating a DDoS attack.

DDoS attacks include thousands of devices, so, they are very costly and complicated to

simulate and require extensive hardware access. Thus, an experiment simulating a small-scale

DDoS will be conducted to answer the posed research question and achieve the paper’s aim.

Firstly, large data sets will be generated consisting of DDoS emulations, including data about

the HTTP requests (user IP, endpoint, time taken, packet size, etc. After the data sets are

generated, an ANN will be trained to recognize DDoS patterns.

Since the performance and results of a neural network are heavily dependent on its

hyperparameters used, the hyperparameters used in this investigation will be selected by

analyzing and understanding the preprocessed data. Moreover, to further measure the extent to

Personal Code: jgc887

4

which a neural network can detect the attacks, the model will be trained with a different number

of hidden layers. The results of these different models with then be compared and evaluated.

2. Background Information

2.1 Machine Learning and its Types

Pattern recognition is based on machine learning, which is the study of programming

computers to do tasks they haven’t been directly programmed to do4. These networks are then

trained to recognize, analyze, and learn from data and perform complex tasks (i.e., identifying

patterns and predicting events). They can be trained via multiple strategies – unsupervised,

supervised, reinforcement, and more – and each has advantages and disadvantages. Supervised

learning allows a network to identify and create mappings between the features and data

classification5.

There are several types of machine learning algorithms as well. Still, pattern recognition

requires classification, which involves the computer learning the relations between the data and

their labels. So, for example, a machine could be given a collection of texts grouped by their

language, and the classification network would analyze the features of those texts to attempt to

relate specific visual characteristics to certain languages. This is what is referred to as

“training.” If successful, the network would eventually be able to accurately predict the

language of texts it has not seen before by identifying relations between the features of the text

to a language, which it made during training. Pattern recognition algorithms are trained

similarly with thousands of labeled entries. Since the main goal of this investigation is to

classify network requests, and because labeled data is present, supervised training will be used

for this research.

4 Ng, Andrew. “Supervised Machine Learning: Regression and Classification.” Coursera, 2022,

www.coursera.org/learn/machine-learning. Accessed 13 Aug. 2022.
5 Salian, Isha. “NVIDIA Blog: Supervised vs. Unsupervised Learning.” The Official NVIDIA Blog, 2 Aug. 2018,

blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning/. Accessed 28 Aug. 2022.

Personal Code: jgc887

5

2.2 Chosen Machine Learning Model

DDoS attacks can be detected using many different types of machine learning models. Feed

forward neural networks, support vector machines (SVM), and random forest are some of the

most common and popular methods for detecting them6.

Feed forward networks are generally applicable to most sorts of pattern detection scenarios.

Since I have briefly worked with these networks, I will be further studying them and using a

feed forward network for the sake of this investigation. The inner workings of a feed forward

network are discussed below.

2.3 Feed Forward Neural Networks

Feed forward neural networks consist of layers of neurons: the input layer, the output layer,

and the hidden layers. Each layer identifies certain patterns within the data. Inspired from how

brains function, neural networks are made up of neurons. The purpose of an artificial network

is to receive inputs, perform calculations, and give an output – and pass it onto the next layer

of neurons. The input is represented as the first layer of neurons, and they continue to activate

consecutive layers until the output layer is activated, which represents the output itself7.

Figure 1: Structure of a feed forward neural network (self-made)

6 Aytac, Tugba, et al. “Detection DDOS Attacks Using Machine Learning Methods.” Electrica, vol. 20, no. 2, 15

June 2020, pp. 159–167, https://doi.org/10.5152/electrica.2020.20049. Accessed 7 Sept. 2022.
7 Sanderson, Grant. “Neural Networks - YouTube.” YouTube, 2019,

www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi. Accessed 9 Oct. 2022.

Personal Code: jgc887

6

To receive and pass data, neurons rely on links, referred to as weights. The value of the neuron,

which it passes forward, is called its activation8. All neurons in layers after the input layer rely

on the previous layer for input, which is simply the activation of all the neurons in the layer

before multiplied by the weights of the neuron with each of the neurons. Moreover, each neuron

also has a bias, which indicates how much the neuron is activated in general (a negative bias

means the neuron usually has low activation, whereas a positive bias means the neuron usually

has a high activation). The activation for the nth neuron in the layer j with N neurons, which is

preceded by the layer i is given by:

𝐴𝑗𝑛 = 𝜎(∑(𝑤
𝑗𝑛

𝑗𝑝 × 𝐴𝑖𝑝)

𝑁

𝑝=1

+ 𝑏𝑗𝑛
)

Equation 1: Equation for the activation of a neuron in layer i, given consecutive layers j and I9

Here, 𝐴𝑖𝑛 represents the activation of the nth neuron in layer i, ∑ (𝑤
𝑖𝑛

𝑗𝑝 × 𝐴𝑗𝑝)
𝑁
𝑝=1 represents

the sum of the products of the weights and activations of the neurons in the layer before, and

𝑏𝑗𝑛 is the bias of the neuron. These biases and weights are assigned randomly using a seed

when a network is created and are changed as the model trains itself. 𝜎 represents the activation

function, which is a mathematical function that gives an output from an input and is used for

performance and efficiency reasons10.

The “output”, or result, or the network are the neuron activations in the output layer. Each

neuron represents a unique answer, and its activation represents the probability that it is

correct11. The answer with the highest probability is assumed to be the correct one. While

training, the network compares the output with the real answer, using which a “cost” is

8 Sanderson, Grant. “Neural Networks - YouTube.” YouTube, 2019,

www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi. Accessed 9 Oct. 2022.
9 IBID
10 Sanderson, Grant. “Neural Networks - YouTube.” YouTube, 2019,

www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi. Accessed 9 Oct. 2022.
11 IBID

Personal Code: jgc887

7

determined. The cost represents the error of the network (the lower, the better) and can be

calculated using a range of different methods, such as mean square error, mean absolute error,

and root mean square error12. Moreover, because the network is essentially a mathematical

function, the cost can also be represented by a function. The error function can then be

minimized to increase the accuracy of the network, effectively training the network. This is

done by calculating the gradient of the cost function at the current weights and biases and

descending downwards (to minimize it) by tweaking them. As the cost is further minimized

during training, the network becomes better at predicting the answer, given a set of features13.

Hence, neural networks can be looked at as a function which gives a certain number of outputs

given specific inputs and parameters14.

3. Experiment Methodology

Primary experimental data sets are the main sources of data for this paper. An experimental

methodology was chosen because there was limited secondary data to conclude this paper, and

this method provides freedom to train and test the model with primary data.

3.1 Generation of Data Sets

The data sets have been generated by “simulating” a DDoS. This was done by writing two

programs – a client and a server – responsible for mocking a server and a user (compromised

or genuine) (refer to appendix 1 for code). The clients were deployed in 35 different virtual

private servers over ten different geographical locations worldwide, as seen in figure 2 below.

They were deployed using Linode and DigitalOcean (computing providers).

12 Saini, Hrithik. “7 Types of Cost Functions in Machine Learning | Analytics Steps.” Www.analyticssteps.com,

www.analyticssteps.com/blogs/7-types-cost-functions-machine-learning. Accessed 18 Aug. 2022.
13 IBID
14 IBID

Personal Code: jgc887

8

Figure 2: Geographical locations of clients used in experiment15

The client is structured as shown in figure 3.1 below, exposing two endpoints – compromised

and user – giving the researcher control over the client. The same client structure is replicated

on all 35 VPSs worldwide to act as a distributed system. While there were multiple clients, the

server was kept constant.

Figure 3.1: Client-side structure and logic

15 Self-made using Google My Maps, mymaps.google.com. Accessed 19 Sept. 2022.

Personal Code: jgc887

9

Figure 3.2: Server-side structure16

The server is designed to keep the logical layer oblivious to the logging process, allowing the

codebase to remain maintainable and helping maintain strict conditions for the ANN to be

trained with (i.e., acting as middleware or firewall).

The method below was used to conduct the simulation and generate the datasets:

1) 30 out of the 35 devices initially act as “real” clients, making requests to random

endpoints every 3-5 seconds. This means five clients are to act only as compromised

devices, not making real requests.

2) 5-6 minutes later (randomly chosen), 15 out of the 35 (including the five inactive ones

mentioned in point 1) devices start simulating “compromised” clients by making

requests to random endpoints to their maximum load. This emulates the situation where

the attacker starts the DDoS, and the compromised devices flood the server with

requests. During this, the other 20 devices continue to act as “real” users, as would in

the real world.

3) After 5-7 minutes (randomly chosen), the malicious clients stop the DDoS and are

terminated by terminating the ongoing request from the researcher’s machine to the

client on its compromised endpoint.

4) The rest of the clients continue to make requests as normal users

16 Figure 2.1 and 2.2 are self-made using excalidraw. “Excalidraw.” Excalidraw, excalidraw.com/.

Personal Code: jgc887

10

5) The data logged earlier is then transferred to the researcher’s local machine in a CSV

format by using the SCP protocol

6) The process is repeated four more times, generating a total of 5 large datasets, each

emulating a unique DDoS request pattern

Since each client knows if it is acting as a malicious or real user, the request is labelled as

compromised or not when it is made itself.

Each experiment iteration was conducted automatically, using python 3.9, which controlled the

clients and their states (refer to appendix 1 for code). Table 1 showcases a few data points of

the data collected as a sample.

ip endpoint headers time packet_size time_taken compromised

139.144.44.193 /

Host: 165.232.182.157

User-Agent: python-

requests/2.28.1

Accept-Encoding: gzip,

deflate

Accept: */*

Connection: keep-alive

Content-Type:

application/json

1674598718 100 0.057705225 FALSE

170.187.139.144 /endpoint-2

Host: 165.232.182.157

User-Agent: python-

requests/2.28.1

Accept-Encoding: gzip,

deflate

Accept: */*

Connection: keep-alive

Content-Type:

application/json

1674598721 359 0.051176134 FALSE

157.245.104.1 /endpoint-4

Host: 165.232.182.157

User-Agent: python-

requests/2.28.1

Accept-Encoding: gzip,

deflate

Accept: */*

Connection: keep-alive

Content-Type:

application/json

1674599070 5347 0.161323308 TRUE

Table 1: Sample raw data. A screenshot of the entire data can be seen in Appendix 317

17 The descriptions and units for the fields can be seen in Table 2.1

Personal Code: jgc887

11

The packet size and time taken of the requests can be plotted against the time they were

received to visualize the DDoS simulation. Since there are a very large number of requests, a

random sample of 0.2% of the requests is plotted below.

 Figure 4.1: Packet Size of Each Request Figure 4.2: Time Taken for Each Request18

The compromised requests have a higher time taken per request and packet size. When looking

at the pattern as a whole, an attack can be recognized. However, it is much harder to recognize

whether an individual request is compromised just by looking at the information above.

3.2 Processing the datasets for use

The datasets generated must be preprocessed before they can be fed into the neural network as

parameters. Feature extraction is an essential process, since it allows more specific information

from the data to be found, which allows the network to find more intricate patterns. Moreover,

by eliminating variables that are not needed, the number of features is greatly reduced, which

reduces the time for the network to learn and generalize19.

Features such as average packet size and request time for the past 5 requests and requests in

the past 5 seconds by each client were calculated for each request. Moreover, data such as the

IP address and headers were removed as they do not contain information that can be used to

18 The diagrams are self-made using matplotlib and python 3.9
19 Chatterjee, Sampriti. “What Is Feature Extraction? Feature Extraction in Image Processing.” Great Learning

Blog: Free Resources What Matters to Shape Your Career!, 29 Oct. 2021,

www.mygreatlearning.com/blog/feature-extraction-in-image-processing. Accessed 13 Oct. 2022.

Personal Code: jgc887

12

recognize a DDoS. The five processed data sets were merged and then shuffled. Lastly, the

datasets were split into training and evaluation data, with a 4:1 split ratio20 – 80% of the data

was used for training, while 20% was used for evaluation). The preprocessing was done using

python 3.9 and the scikit-learn, pandas, and numpy libraries, as seen in the figure below.

Figure 5: Python library imports used for preprocessing

Table 2.1 showcases the fields of the raw data, which was collected during the simulation, and

Table 2.2 showcases the fields of the processed data, which will be used as input for the neural

network.

Table 2.1: Fields for raw data

20 Tokuç, A. Aylin. “Splitting a Dataset into Train and Test Sets | Baeldung on Computer Science.”

Www.baeldung.com, 14 Jan. 2021, www.baeldung.com/cs/train-test-datasets-ratio. Accessed 21 Oct. 2022.

Using scikit-learn to split processed data into testing and training data Using pandas

and numpy to

load csv files and

preprocess data

Personal Code: jgc887

13

Table 2.2: Fields for processed data

Since the processed data has aggregative and accumulative fields, each request contains

information about some previous requests. Hence, the processed data is effectively able to

describe the raw data. Furthermore, more relationships can be found within the data, such as

the average time taken and packet size of each request.

Figure 6.1: Average packet size vs average time taken Figure 6.2: Packet size vs average time taken21

A relationship between the time taken and packet size for requests is visually evident, as seen

in figure 6.1 and 6.2. The compromised and genuine requests form “clusters”, which can also

be used by unsupervised models22. Overall, the processed data is effectively able to resemble

21 The diagrams are self-made using matplotlib and python 3.9
22 Mishra, Sanatan. “Unsupervised Learning and Data Clustering.” Medium, Towards Data Science, 19 May 2017,

towardsdatascience.com/unsupervised-learning-and-data-clustering-eeecb78b422a. Accessed 14 Oct. 2022.

Personal Code: jgc887

14

and enhance the features of the raw data, which would benefit the network in effectively

classifying the requests.

3.3 Dependent Variables

The variable being measured in this paper is the classification success rate of the ANN – the

percentage of requests it correctly classifies as malicious or real – and the time taken to classify

the request.

Time

The time measured in this case is the time taken for the network to classify a request instead of

the time taken to train the model. Python’s time.time() method was used to calculate the

time before and after the call to the network.

Accuracy

The accuracy measured was the accuracy of the network in classifying requests correctly with

evaluation data sets. The accuracy of the network is the number of correct classifications

divided by the total number of classifications.

3.4 Programming of the Feed Forward Neural Network

The feed forward network was programmed using python and TensorFlow. It took 5 inputs, as

seen in Table 2, omitting the label, and had one output neuron, whether the request was

compromised. The structure of the network is illustrated below.

Personal Code: jgc887

15

Figure 7: The structure of the programmed feed forward neural network, where n is the number of layers23

The dimensions of the input layer are equal to the features of the dataset. As discussed before,

the model would be trained with a different number of layers. The dense input layer will be

processed by these hidden layers, and the output layer flattens the activation of the hidden

layers into a single neuron.

The models were trained using TensorFlow’s Sequential.train() function. Since the

data has a large number of features, the model becomes more prone to descending to a local

minimum instead of the global minimum. Hence, the model was trained with a low batch size

of 8, which allows it to generalize the pattern better and have higher accuracy24.

3.5 Experimental Procedure

4 networks were configured with an input layer with 5 neurons, and an output layer with 1

neuron. Each network was programmed to have a different number of hidden layers – 1, 2, 3,

and 4 respectively. They were trained upon the same training data, and their performance and

accuracy were then recorded against the testing data.

23 Self-made using excalidraw. “Excalidraw.” Excalidraw, excalidraw.com/.
24 Keskar, Nitish Shirish, et al. “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp

Minima.” ArXiv:1609.04836 [Cs, Math], 9 Feb. 2017, arxiv.org/abs/1609.04836.

Personal Code: jgc887

16

Additionally, neural networks are initialized with randomized weights and biases, so their

training results may have outliers and inconsistencies. While a low batch size was already

chosen to minimize this error, 2 models were also programmed for each configuration to ensure

that the patterns observed were not pertaining to the randomized initial state. The models were

completely identical, except their seed, which were “12345” and “98765”, and were nicknamed

“Model 1” and “Model 2”. Both seeds were chosen arbitrarily.

3.6 Hypothesis

I hypothesize that because neural networks specialize in detecting patterns the network will be

able to successfully detect a DDoS attack with high accuracy. Moreover, the accuracy would

increase as the number of hidden layers are increased, as the network would be able to find

more specific patterns.

4. The Experimental Results

4.1 Accuracy over epochs

 Figure 8.1: Accuracy vs Epochs with 1 layer Figure 8.2: Accuracy vs Epochs with 2 layers

Personal Code: jgc887

17

 Figure 8.3: Accuracy vs Epochs with 3 layers Figure 8.4: Accuracy vs Epochs with 4 layers25

The accuracy measured while training was the accuracy against the training data itself. The

models were trained for 16 epochs, however as seen in the figures above, their accuracy

remained similar after the first two epochs.

4.2 Accuracy on testing data

Figure 9: Accuracy of models on testing data for different layered networks26

The networks had astonishingly high accuracies, of over 99.98%. Both, model 1 and model 2

had a higher accuracy with two hidden layers, and the accuracy gradually reduced as more

25 Figures 8.1, 8.2, 8.3, and 8.4 were self-made using python and matplotlib
26 Self-made using python and matplotlib

Personal Code: jgc887

18

layers were introduced. This is against my hypothesis, as I predicted that the accuracy would

continue to rise.

4.3 Time taken for classification

Figure 10: Average time taken to classify request vs number of hidden layers27

The time taken to classify a request increased for every hidden layer added. The networks took

from 2 to 3.5 milliseconds to classify a request, which accounts for the TensorFlow function

call overhead.

5. Analysis

5.1 Analyzing Accuracy

As seen by the 99.99% accuracy with 2 hidden layers, the neural network is highly successful

in classifying requests, and hence, can help solve the problem of mitigating HTTP flood DDoS

attacks. While this makes it a potent tool in mitigating DDoS attacks, its high accuracy can be

accredited to factors that may make the network less effective in the real world. The dataset

created was only a simulation of a real DDoS attack. This meant that the data had a significantly

lower number of individual clients. Hence, the patterns of the requests were also inherently

27 Self-made using python and matplotlib

Personal Code: jgc887

19

limited. This may cause the data collected to be too narrow, which as a result can cause the

network to adjust only for the given dataset, and hence have high accuracy.

5.2 Analyzing Performance

In terms of performance, as discussed before, the network is highly efficient and performant.

A request is usually classified in a few milliseconds, which is extremely low when compared

to the average time taken by an HTTP request: 500ms28. Hence, the network would have a

negligible impact when implemented as a middleware for servers.

5.3 Making sense of the drop in accuracy

As was seen in figure 9 above, the network’s accuracy reduced when it was trained upon 3 or

4 hidden layers, which was against my proposed hypothesis. The larger the number of layers,

the larger the number of trainable parameters for a network that influence its output. This means

that Model 1 with 2 layers is not the same mathematical function as Model 1 with 4 layers.

Although the function with 4 layers is more complicated, it does not guarantee better results.

Each layer picks up on the layer before, and finds patterns in that, meaning, as more layers are

added, more and more details are picked up which influence the output. However, when too

many layers are added, the network overanalyzes patterns and starts considering “noise” –

meaningless data29. This leads to the model overfitting itself on the training data, and in turn,

leading to higher inaccuracy30.

28 Saunders, Orde. “How Long Does an HTTP Request Take? | Blog | Decade City.” Decadecity.net, 12 Mar.

2014, decadecity.net/blog/2012/09/15/how-long-does-an-http-request-take. Accessed 28 Nov. 2022.
29 “What Is Noise in ML.” Iguazio, www.iguazio.com/glossary/noise-in-ml. Accessed 17 Dec. 2022.
30 “What Is Overfitting? - Overfitting - AWS.” Amazon Web Services, Inc., aws.amazon.com/what-is/overfitting/.

Accessed 28 Dec. 2022.

Personal Code: jgc887

20

5.4 Computational Costs

However, there are computational costs that come along the implementation of a network.

Firstly, a machine with extensive resources, especially RAM and CPU, is required to train a

neural network. With larger datasets, the training process can take days, if not weeks, and

hence, the availability of system resources is essential. Furthermore, since the batch size is

small, the training time for the model is further increased.

Moreover, when using the network as a middleware, there are further implications for the

resources. As the network must be loaded into RAM, and the CPU would be used while

classifying the requests, the network might utilize resources that the server could otherwise

use.

6. Conclusion

This experiment sought to identify the effectiveness and extent to which a feed forward neural

network can identify and mitigate HTTP flood DDoS attacks. The feed forward network setup

by me is able to successfully identify DDoS attacks to mitigate them, while being highly

performant and having a minimal impact on the request timings. This is in line with and

validates my hypothesis.

6. Further Research Opportunities

6.1 Investigating a change in the preprocessing of the data

The feature extraction for this experiment contained several average and aggregate values. For

example, the average packet size was calculated from the past 5 requests. It is intriguing to find

the impact on the accuracy of the network when the preprocessing of the data is changed, such

as changing the calculations to account for 10 requests, and when more features are added.

Personal Code: jgc887

21

6.2 Utilizing different machine learning models

As found after preprocessing the data, visual patterns were visible, which can be utilized by

different models. Hence, different models can also be used to detect DDoS attacks, and since

they differ in the way they recognize patterns, it is compelling to investigate how well other

machine learning models can detect DDoS attacks. Moreover, as mentioned before, other

models, such as SVM and random forest could also be explored.

6.3 Extending to different DDoS attacks

This investigation only examined how HTTP flood attacks can be mitigated and did not look

at different types of DDoS attacks such as SYN and UDP floods. These attacks are executed

on different network layers, and hence have different input parameters. Hence, it would be

interesting to see how neural networks can be used to detect these types of attacks.

Personal Code: jgc887

22

Works Cited

Aytac, Tugba, et al. “Detection DDOS Attacks Using Machine Learning Methods.” Electrica,

vol. 20, no. 2, 15 June 2020, pp. 159–167,

https://doi.org/10.5152/electrica.2020.20049. Accessed 7 Sept. 2022.

Chatterjee, Sampriti. “What Is Feature Extraction? Feature Extraction in Image Processing.”

Great Learning Blog: Free Resources What Matters to Shape Your Career!, 29 Oct.

2021, www.mygreatlearning.com/blog/feature-extraction-in-image-processing.

Accessed 13 Oct. 2022.

“Excalidraw.” Excalidraw, excalidraw.com/.

Hacken. “How to Detect a DDoS Attack? - 5 Red Flags - Hacken.” Hacken, 8 Aug. 2022,

hacken.io/discover/how-to-detect-a-ddos-attack/. Accessed 13 Aug. 2022.

Keskar, Nitish Shirish, et al. “On Large-Batch Training for Deep Learning: Generalization

Gap and Sharp Minima.” ArXiv:1609.04836 [Cs, Math], 9 Feb. 2017,

arxiv.org/abs/1609.04836.

Mishra, Sanatan. “Unsupervised Learning and Data Clustering.” Medium, Towards Data

Science, 19 May 2017, towardsdatascience.com/unsupervised-learning-and-data-

clustering-eeecb78b422a. Accessed 14 Oct. 2022.

Ng, Andrew. “Supervised Machine Learning: Regression and Classification.” Coursera,

2022, www.coursera.org/learn/machine-learning. Accessed 13 Aug. 2022.

Saini, Hrithik. “7 Types of Cost Functions in Machine Learning | Analytics Steps.”

Www.analyticssteps.com, www.analyticssteps.com/blogs/7-types-cost-functions-

machine-learning. Accessed 18 Aug. 2022.

Salian, Isha. “NVIDIA Blog: Supervised vs. Unsupervised Learning.” The Official NVIDIA

Blog, 2 Aug. 2018, blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-

learning/. Accessed 28 Aug. 2022.

Personal Code: jgc887

23

Sanderson, Grant. “Neural Networks - YouTube.” YouTube, 2019,

www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi.

Accessed 9 Oct. 2022.

Saunders, Orde. “How Long Does an HTTP Request Take? | Blog | Decade City.”

Decadecity.net, 12 Mar. 2014, decadecity.net/blog/2012/09/15/how-long-does-an-

http-request-take. Accessed 28 Nov. 2022.

Tokuç, A. Aylin. “Splitting a Dataset into Train and Test Sets | Baeldung on Computer

Science.” Www.baeldung.com, 14 Jan. 2021, www.baeldung.com/cs/train-test-

datasets-ratio. Accessed 21 Oct. 2022.

“What Is a Distributed Denial-of-Service (DDoS) Attack?” Cloudflare, 2023,

www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/. Accessed 11 July 2022.

“What Is Noise in ML.” Iguazio, www.iguazio.com/glossary/noise-in-ml. Accessed 17 Dec.

2022.

“What Is Overfitting? - Overfitting - AWS.” Amazon Web Services, Inc.,

aws.amazon.com/what-is/overfitting/. Accessed 28 Dec. 2022.

Google My Maps, mymaps.google.com. Accessed 19 Sept. 2022.

Personal Code: jgc887

24

Appendix

1: Code for simulation of DDoS

The following code was used to provision multiple virtual private servers around the globe,

deploy the client code on them, and then perform the DDoS simulation. It also has the code for

the host server, which received the requests and stored them in files.

Client that acts as a malicious or compromised user:

import threading

from dotenv import load_dotenv

load_dotenv()

import os

import random

import time

from time import sleep

from flask import Flask, request

import requests

app = Flask(__name__)

user_endpoints = ['/', '/endpoint-1', '/endpoint-2', '/endpoint-3']

malicious_endpoints = ['/endpoint-3', '/endpoint-4', '/endpoint-5']

def get_url(endpoint):

 return f"http://{os.getenv('SERVER_IP_ADDRESS')}{endpoint}"

def make_request_to_endpoint(endpoint, data):

 url = get_url(endpoint)

 print(f"Making request to {url}")

 requests.post(url, json=data)

user_thread: threading.Thread = None

user_running = False

malicious_thread: threading.Thread = None

malicious_running = False

def run_user(timetorun):

 global user_running

 start = time.time()

 while start + timetorun > time.time():

 if not user_running:

 break

Personal Code: jgc887

25

 make_request_to_endpoint(random.choice(user_endpoints),

{"compromised": False})

 sleep(random.uniform(3, 5))

 user_running = False

def run_malicious(timetorun):

 global malicious_running

 start = time.time()

 while start + timetorun > time.time():

 if not malicious_running:

 break

 make_request_to_endpoint(random.choice(malicious_endpoints),

{"compromised": True})

 malicious_running = False

@app.route('/emulate-user')

def normal():

 global user_thread, user_running

 args = request.args

 timetorun = args.get("time", default=0, type=int)

 if timetorun <= 1:

 return "Invalid time"

 if user_running:

 return "User already running"

 user_running = True

 user_thread = threading.Thread(target=run_user, args=(timetorun,))

 user_thread.start()

 return 'Hello world!'

@app.route('/stop-user')

def stop_user():

 global user_thread, user_running

 if user_running:

 user_running = False

 user_thread.join()

 del user_thread

 user_thread = None

 return "User stopped"

 else:

 return "No user running"

@app.route('/emulate-malicious-user')

def malicous():

 global malicious_thread, malicious_running

 args = request.args

Personal Code: jgc887

26

 timetorun = args.get("time", default=0, type=int)

 if timetorun <= 1:

 return "Invalid time"

 if malicious_running:

 return "malicious already running"

 malicious_running = True

 malicious_thread = threading.Thread(target=run_malicious,

args=(timetorun,))

 malicious_thread.start()

 return 'Hello world!'

@app.route('/stop-malicious-user')

def stop_malicious():

 global malicious_thread, malicious_running

 if malicious_running:

 malicious_running = False

 malicious_thread.join()

 del malicious_thread

 malicious_thread = None

 return "Malicious stopped"

 else:

 return "No malicious user running"

@app.route('/')

def index():

 return 'pong'

app.run(host="0.0.0.0", port=80)

Server that receives the requests from the clients and saves them:

from datetime import datetime, timedelta

import random

import time

from flask import Flask, request

import pandas as pd

import os

from queue import Queue

app = Flask(__name__)

data_queue = Queue()

columns = ['ip', 'endpoint', 'packet_size', 'headers', 'time', 'time_taken',

'compromised']

Personal Code: jgc887

27

data = pd.DataFrame(columns=columns)

i = 0

filename = f"data_{i}.csv"

while os.path.exists(filename):

 i += 1

 filename = f"data_{i}.csv"

route_data = {

 "/": {

 "packet_size": [30, 100],

 "time_taken": [0.01, 0.1]

 },

 "/endpoint-1": {

 "packet_size": [250, 500],

 "time_taken": [0.03, 0.2]

 },

 "/endpoint-2": {

 "packet_size": [250, 500],

 "time_taken": [0.05, 0.15]

 },

 "/endpoint-3": {

 "packet_size": [500, 1000],

 "time_taken": [0.04, 0.15]

 },

 "/endpoint-4": {

 "packet_size": [3000, 6000],

 "time_taken": [0.1, 0.3]

 },

 "/endpoint-5": {

 "packet_size": [5000, 9700],

 "time_taken": [0.1, 0.37]

 },

}

@app.before_request

def log_request_info():

 if request.path not in route_data.keys():

 return

 req_data = route_data[request.path]

 compromised = request.get_json()["compromised"]

 packet_size = random.randint(req_data["packet_size"][0],

req_data["packet_size"][1])

 time_taken = random.uniform(req_data["time_taken"][0],

req_data["time_taken"][1])

Personal Code: jgc887

28

 data_queue.put([request.remote_addr, request.path, packet_size,

request.headers, time.time(), time_taken, compromised])

 if len(data) % 100 == 0:

 data.to_csv(filename, index=False)

@app.route('/', methods=['POST'])

def hello_world():

 return 'Hello world!'

@app.route('/endpoint-1', methods=['POST'])

def hello_world_1():

 return 'Hello world!'

@app.route('/endpoint-2', methods=['POST'])

def hello_world_2():

 return 'Hello world!'

@app.route('/endpoint-3', methods=['POST'])

def hello_world_3():

 return 'Hello world!'

@app.route('/endpoint-4', methods=['POST'])

def hello_world_4():

 return 'Hello world!'

@app.route('/endpoint-5', methods=['POST'])

def hello_world_5():

 return 'Hello world!'

def save_logs():

 global data

 while True:

 end = datetime.now() + timedelta(seconds=1)

 res = []

 while datetime.now() < end:

 try:

 new_data = data_queue.get(timeout=0.1)

 res.append(new_data)

 except:

 continue

 res_df = pd.DataFrame.from_records(res, columns=columns)

 if len(res_df) > 0:

 data = pd.concat([data, res_df])

 data.to_csv(filename, index=False)

Personal Code: jgc887

29

if __name__ == "__main__":

 import threading

 t = threading.Thread(target=save_logs, daemon=True)

 t.start()

 app.run(host='0.0.0.0', port=80)

Code to run the simulation:

from datetime import datetime

import random

from time import sleep

import dotenv

import linode as linode_api

import os

import pandas as pd

from sys import argv

import requests

import digital_ocean

from concurrent.futures import ThreadPoolExecutor

import concurrent.futures

csv_path = 'linodes_data.csv'

def debug(msg):

 print(f"{datetime.now().strftime('%H:%M:%S')} {msg}")

def delete():

 linodes = linode_api.get_linodes_raw()

 print(f"[INFO]: Deleting {len(linodes)} linodes")

 for linode in linodes:

 linode.delete()

 digital_ocean.delete_all()

def create():

 regions = linode_api.get_regions()

 print(f"[INFO]: Found {len(regions)} regions")

 linodes = linode_api.get_linodes()

 print(f"[INFO]: {len(linodes)} linodes are running")

 new_linodes = []

 if len(linodes) > 0:

 debug("Linodes already exist.")

 return

Personal Code: jgc887

30

 for i in range(1):

 lin, pwd = linode_api.make_linode(regions[i % len(regions)], 1059469,

{"SERVER_IP_ADDRESS": os.getenv('SERVER_IP')})

 new_linodes.append([lin.id, pwd])

 linodes = linode_api.get_linodes()

 for i in range(len(new_linodes)):

 id = new_linodes[i][0]

 for linode in linodes:

 if linode['id'] == id:

 new_linodes[i].append(linode['ip'])

 break

 do_regions = digital_ocean.get_regions()

 def run_concurrent(func, args):

 e = ThreadPoolExecutor(max_workers=15)

 final_res = []

 futures = [e.submit(func, *arg) for arg in args]

 for future in concurrent.futures.as_completed(futures):

 try:

 res = future.result()

 if res:

 final_res.append(res)

 except Exception as e:

 print(f"[ERROR] {e}")

 return final_res

 args = []

 for i in range(1):

 args.append((do_regions[i % len(do_regions)], f"Machine-{i}"))

 res = run_concurrent(digital_ocean.create, args)

 new_linodes += res

 df = pd.DataFrame(new_linodes, columns=['Id', 'Password', 'IP'])

 df.to_csv(csv_path, index=False)

def run():

 data = pd.read_csv(csv_path)

 seconds_before_attack = random.randint(5*60, 6*60) # 5-6 minutes

 attack_duration_seconds = random.randint(5*60, 7*60) # 5-7 minutes

Personal Code: jgc887

31

 print(f"http://{data.iloc[0]['IP']}/emulate-

user?time={seconds_before_attack*1000}")

 requests.get(f"http://{data.iloc[0]['IP']}/emulate-

user?time={seconds_before_attack*1000}")

 requests.get(f"http://{data.iloc[1]['IP']}/emulate-malicious-user?time=5")

 if len(data) != 35:

 debug(f"[ERROR]: Expected 35 linodes, found {len(data)}")

 return

 real_clients = []

 compromised_clients = []

 for i in range(30):

 real_clients.append(data.iloc[i]['IP'])

 for i in range(30, 35):

 compromised_clients.append(data.iloc[i]['IP'])

 debug(f"[INFO]: Real clients loaded")

 debug(f"[INFO]: Starting real client simulation, will start attack in

{seconds_before_attack} seconds")

 for ip in real_clients:

 requests.get(f"http://{ip}/emulate-

user?time={seconds_before_attack*1000}")

 debug(f"[INFO]: User requests started, waiting {seconds_before_attack}

seconds before attack")

 sleep(seconds_before_attack)

 debug(f"[INFO]: Starting attack..")

 converted = []

 for i in range(9, -1, -1):

 ip = random.choice(real_clients)

 real_clients.remove(ip)

 converted.append(ip)

 for i in converted:

 requests.get(f"http://{i}/stop-user")

 requests.get(f"http://{ip}/stop-malicious-user")

 compromised_clients.append(i)

Personal Code: jgc887

32

 for ip in compromised_clients:

 requests.get(f"http://{ip}/emulate-malicious-

user?time={attack_duration_seconds*1000}")

 debug(f"[INFO]: Attack started, waiting {attack_duration_seconds} seconds

before stopping attack")

 sleep(attack_duration_seconds)

 debug("[INFO]: Stopping attack..")

 for ip in compromised_clients:

 requests.get(f"http://{ip}/stop-malicious-user")

 requests.get(f"http://{i}/stop-user")

 debug(f"[INFO]: Attack stopped")

options = {

 "delete": delete,

 "create": create,

 "run": run

}

def main():

 dotenv.load_dotenv()

 if len(argv) < 2:

 print(f"No arguments given. Options are {', '.join(options.keys())}")

 return

 command = argv[1]

 if command not in options.keys():

 print(f"Invalid command. Options are {', '.join(options.keys())}")

 return

 options[command]()

if __name__ == "__main__":

 main()

Bash Code for Deploying Client Code on Server:

#!/bin/bash

if [-f /etc/apt/sources.list]; then

 apt update

 apt -y upgrade

 apt install -y python3-pip git

 apt-get install -y systemd

else

Personal Code: jgc887

33

 echo "Your distribution is not supported by this StackScript"

 exit

fi

if [! -d /root/ddos]; then

 git clone https://github.com/DhrumanGupta/mini-ddos-emulator

/root/ddos

else

 git --git-dir="/root/ddos/.git" pull origin master

fi

pip install -r /root/ddos/requirements.txt

echo "[Unit]

Description=Python DDoS Client

After=multi-user.target

[Service]

Type=simple

Restart=always

ExecStart=/usr/bin/python3 /root/ddos/client/main.py

[Install]

WantedBy=multi-user.target" > /etc/systemd/system/ddos-emulator.service

echo "SERVER_IP_ADDRESS=$SERVER_IP_ADDRESS" > /root/ddos/client/.env

systemctl daemon-reload

systemctl enable ddos-emulator.service

systemctl start ddos-emulator.service

2: Code for pre-processing data, training network, and running tests

The code below was used to pre-process the data collected before, and train the model. It was

running TensorFlow in Visual Studio Code, on a Lenovo Legion laptop.

import matplotlib.pyplot as plt

import matplotlib.ticker as mticker

from sklearn.model_selection import train_test_split

import pandas as pd

import numpy as np

import json

import time

import os

EPOCHS = 16

Personal Code: jgc887

34

def get_model(features, num_layers=2):

 import tensorflow as tf

 from tensorflow.python.keras.layers import Dense

 model = tf.keras.models.Sequential()

 normalizer = tf.keras.layers.Normalization(axis=-1)

 normalizer.adapt(features)

 model.add(normalizer)

 model.add(Dense(5, activation="relu", input_shape=(1,)))

 for i in range(num_layers):

 model.add(Dense(8, activation="relu"))

 model.add(Dense(1, activation="sigmoid"))

 model.compile(optimizer="adam", loss="binary_crossentropy",

metrics=["accuracy", tf.keras.metrics.MeanSquaredError()])

 return model

def get_processed_data(num):

 raw_data = pd.read_csv(f"data/data_{num}.csv")

 def process_ip(ip, raw_data):

 data = raw_data.loc[raw_data["ip"] == ip]

 final_df = pd.DataFrame(

 columns=[

 "time",

 "packet_size",

 "num_past_requests",

 "average_packet_size",

 "time_taken",

 "average_time_taken",

 "compromised",

]

)

 past_requests_time = 5

 num_requests = 5

 for i, row in data.iterrows():

 num_past_requests = 0

 packet_requests = 1

 packet_size = row["packet_size"]

Personal Code: jgc887

35

 time_taken = row["time_taken"]

 row_data = final_df.tail(num_requests - 1)

 packet_size += row_data["packet_size"].sum()

 time_taken += row_data["time_taken"].sum()

 num_past_requests = len(

 row_data.loc[final_df["time"] > row["time"] -

past_requests_time]

)

 final_df.loc[i] = [

 row["time"],

 row["packet_size"],

 num_past_requests,

 packet_size / packet_requests,

 row["time_taken"],

 time_taken / packet_requests,

 row["compromised"],

]

 return final_df

 final_data = []

 for ip in raw_data["ip"].unique():

 final_data.append(process_ip(ip, raw_data))

 final_data = pd.concat(final_data)

 return final_data

def preprocess():

 for i in range(5):

 data: pd.DataFrame = get_processed_data(i)

 data.to_csv(f'data/processed_data_{i}.csv')

 res = []

 for i in range(4):

 data = pd.read_csv(f'data/processed_data_{i}.csv')

 res.append(data)

 res = pd.concat(res)

 res.to_csv('data/processed_data.csv')

 target = res.pop("compromised")

Personal Code: jgc887

36

 shuffled = res.sample(frac=1)

 x_train, x_test, y_train, y_test = train_test_split(

 res, target, shuffle=True, test_size=0.2

)

 x_train.to_csv("data/x_train.csv", index=False)

 x_test.to_csv("data/x_test.csv", index=False)

 y_train.to_csv("data/y_train.csv", index=False)

 y_test.to_csv("data/y_test.csv", index=False)

def train_model(num_layers):

 x_train = pd.read_csv("data/x_train.csv")

 y_train = pd.read_csv("data/y_train.csv")

 model = get_model(features=x_train, num_layers=num_layers)

 history = model.fit(x_train, y_train, epochs=EPOCHS, batch_size=8)

 with open(f"models/history_{num_layers}.json", "w") as f:

 json.dump(history.history, f)

 model.save(f"models/model_{num_layers}.tf")

def train(seed):

 import tensorflow as tf

 tf.keras.utils.set_random_seed(seed)

 for i in range(1, 5):

 print()

 print()

 print(f"Training model with {i} layers")

 train_model(i)

 print()

 print()

def evaluate_model(n=2):

 import tensorflow as tf

 res = {}

 test = pd.read_csv("data/x_test.csv")

 model = tf.keras.models.load_model(f"models/model_{n}.tf")

 target = pd.read_csv("data/y_test.csv")

 target = target["compromised"]

 total = len(test)

 total_time_taken = 0

 wrong = []

 print(total)

 for i in range(len(test)):

 start = time.time()

Personal Code: jgc887

37

 prediction = model(test.iloc[i]).numpy()[0][0]

 end = time.time()

 total_time_taken += end-start

 compromised = prediction > 0.9

 if i % 500 == 0:

 print(f"[{i}/{total}] ({round((i/total)*100, 2)}%):

{total_time_taken/(i+1)}s")

 real = target.iloc[i]

 if compromised != real:

 wrong.append(prediction)

 accuracy = (1-len(wrong)/total) * 100

 print(f"Accuracy: {accuracy}%")

 res["accuracy"] = accuracy

 res["time"] = total_time_taken

 res["average_time"] = total_time_taken / total

 return res

def evaluate():

 res = []

 if os.path.exists("res.json"):

 with open("res.json", "r") as f:

 res = json.load(f)

 else:

 for i in range(1, 5):

 print()

 print()

 print()

 print()

 print(f"######### Model with {i} layers #########")

 print()

 with open(f"models/history_{i}.json", "r") as f:

 history = json.load(f)

 data = evaluate_model(i)

 res.append({

 "num_layers": i,

 "history": history["accuracy"],

 "time": data["time"],

 "average_time": data["average_time"],

 "accuracy": data["accuracy"]

 })

 print()

 print("#######################################")

Personal Code: jgc887

38

 with open('res.json', 'w') as f:

 json.dump(res, f)

 plt.figure(constrained_layout=True)

 bar_width = 0.3

 res2 = []

 with open('res_old.json', 'r') as f:

 res2 = json.load(f)

 accuracy = [res[i]["accuracy"] for i in range(len(res))]

 accuracy2 = [res2[i]["accuracy"] for i in range(len(res))]

 ax = plt.gca()

 ax.set_ylim([99.97, 100])

 ax.xaxis.set_major_locator(mticker.MultipleLocator(1))

 br1 = [i + bar_width/2 for i in range(len(res))]

 br2 = [x + bar_width for x in br1]

 plt.bar(br1, accuracy, width=bar_width, label='Model 1')

 plt.bar(br2, accuracy2, width=bar_width, label='Model 2')

 plt.xticks([r + bar_width for r in range(len(res))],

 [i + 1 for i in range(len(res))])

 plt.title("Accuracy for models with different layers")

 plt.legend([f"Model 1", f"Model 2"], loc="upper left")

 plt.xlabel('Number of Hidden Layers')

 plt.ylabel('Accuracy (%)')

 plt.savefig(f'diagrams/accuracy.png')

 # plt.show()

 plt.cla()

 bar_width = 0.3

 time_taken = [res[i]["average_time"] * 1000 for i in range(len(res))]

 time_taken2 = [res2[i]["average_time"] * 1000 for i in range(len(res))]

 ax = plt.gca()

 ax.xaxis.set_major_locator(mticker.MultipleLocator(1))

 br1 = [i + bar_width/2 for i in range(len(res))]

 br2 = [x + bar_width for x in br1]

Personal Code: jgc887

39

 plt.bar(br1, time_taken, width=bar_width, label='Model 1')

 plt.bar(br2, time_taken2, width=bar_width, label='Model 2')

 plt.xticks([r + bar_width for r in range(len(res))],

 [i + 1 for i in range(len(res))])

 plt.title("Average time taken for models with different layers")

 plt.xlabel('Number of Hidden Layers')

 plt.ylabel('Average time taken to classify request (milliseconds)')

 plt.legend([f"Model 1", f"Model 2"], loc="upper left")

 plt.savefig(f'diagrams/time_taken.png')

 for i in range(4):

 plt.cla()

 plt.plot(res[i]["history"])

 plt.plot(res2[i]["history"])

 plt.title(f"Model Accuracy vs Epochs ({i+1} layer{'s' if i > 0 else

''})")

 plt.ylabel("Accuracy")

 plt.xlabel("Epoch Number")

 plt.gca().set_ylim([0.9993, 1])

 plt.legend([f"Model 1", f"Model 2"], loc="lower right")

 plt.savefig(f"diagrams/model_{i+1}.png")

 plt.cla()

 import tensorflow as tf

 model = tf.keras.models.load_model("models/model_2.tf")

if __name__ == "__main__":

 # train(98765)

 evaluate()

Personal Code: jgc887

40

3: Screenshot of raw data

4: Screencast of model evaluation

The models with 4 different layers were tested upon the training data, and their performance

and accuracy was measured. The screencast of the code can be seen below.

https://youtu.be/b-iVnoBMfyo

5: List of Figures and Tables

Name Page No.

Figure 1: Structure of a feed forward neural network (self-made) 5

Equation 1: Equation for the activation of a neuron in layer i, given

consecutive layers j and I

6

Figure 2: Geographical locations of clients used in experiment 8

Figure 3.1: Client-side structure and logic 8

https://youtu.be/b-iVnoBMfyo

Personal Code: jgc887

41

Figure 3.2: Server-side structure 9

Table 1: Sample raw data 10

Figure 4.1: Packet Size of Each Request 11

Figure 4.2: Time Taken for Each Request 11

Figure 5: Python library imports used for preprocessing 12

Table 2.1: Fields for raw data 12

Table 2.2: Fields for processed data 12

Figure 6.1: Average packet size vs average time taken 13

Figure 6.2: Packet size vs average time taken 13

Figure 7: The structure of the programmed feed forward neural

network, where n is the number of layers

14

Figure 8.1: Accuracy vs Epochs with 1 layer 16

Figure 8.2: Accuracy vs Epochs with 2 layers 16

Figure 8.3: Accuracy vs Epochs with 3 layers 17

Figure 8.4: Accuracy vs Epochs with 4 layers 17

Figure 9: Accuracy of models on testing data for different layered

network

17

Figure 10: Average time taken to classify request vs number of hidden

layer

18

