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1. Introduction                           

Cyber-attacks can maliciously disable machines, steal data, or use an infected machine as a 

point for other attacks. Distributed Denial of Service (DDoS) attacks are a type of attack that 

send fake requests to a machine and flood it by overloading the system. This leads to the 

machine crashing or being rendered unusable. Such attacks can cost firms large sums of money 

since they lose money for every second their server malfunction. 

 

For example, the first few months of 2022 saw an unexpected increase in the number and 

duration of DDoS attacks, predominantly due to Russia’s invasion of Ukraine1. Although not 

all DDoS attacks have political implications, they are a powerful tool for cyber warfare. This 

type of cybercrime has become increasingly common and can be used to attain nefarious goals. 

 

A DDoS (distributed denial-of-service) attack is one of the most dangerous attacks in which 

the attacker aims to make a resource or server unavailable to its intended users. There are 

multiple ways to perform this, such as queuing requests, creating unterminated sessions, 

overloading packet sizes, etc. The attack is so dangerous because these requests are initiated 

by compromised devices, making it harder to distinguish between genuine and malicious 

requests – an IP or device rate limit does not prevent it. A recent example includes Cloudflare 

– one of the largest content delivery networks responsible for delivering over 7,000,000 

websites – which was the target of one of the most significant DDoS attacks in history. Matters 

like this make it pressing to find ways to detect and mitigate DDoS attacks efficiently. 

 

HTTP flooding is a common form of a DDoS attack. The compromised systems make 

continuous requests to a web server, using up its resources and preventing users from accessing 

 
1 Hacken. “How to Detect a DDoS Attack? - 5 Red Flags - Hacken.” Hacken, 8 Aug. 2022, 

hacken.io/discover/how-to-detect-a-ddos-attack/. Accessed 13 Aug. 2022. 



 

 

Personal Code: jgc887 

2 

 

them2. In addition, the requests are usually sent to endpoints that require many resources to 

process – such as querying and processing large amounts of data from a database – to increase 

each request's overall impact. These attacks are necessary to identify, as they consume large 

amounts of bandwidth and computing power and deny access to them to genuine users. Hence, 

it is necessary to identify them automatically. 

 

A DDoS request is hard to identify – no definite factors can be used to define it. While they 

target endpoints with a high packet size and processing time, it is hard to identify whether an 

individual request is compromised or not. Instead, they must be identified from the pattern of 

the incoming requests while considering various factors.  

 

Continuous monitoring is a popular tool used for detecting DDoS attacks, since it can be used 

to automatically deploy safety measures and alert the IT team when there is an anomaly in the 

requests. While it may speed up the mitigation process, it also requires more manual labor and 

may be ineffective if monitored too strictly3. However, since the patterns of each client can be 

analyzed to know whether they are malicious, neural networks, due to their pattern recognition 

ability, pose as a potent tool for detecting such attacks because they can detect patterns. 

 

This paper seeks to investigate further the extent to which a trained feed forward neural network 

can detect an HTTP flood DDoS, specifically upon receiving live data when used as a proxy. 

 

1.1 Worthiness 

The vulnerability and impact of a DDoS increases as the number of web applications increases 

hourly. From small businesses that have just launched their application to large-scale 

companies, this research could be fruitful. By correctly classifying the type of a request and 

 
2 “What Is a Distributed Denial-of-Service (DDoS) Attack?” Cloudflare, 2023, 

www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/. Accessed 11 July 2022. 
3 Hacken. “How to Detect a DDoS Attack? - 5 Red Flags - Hacken.” Hacken, 8 Aug. 2022, 

hacken.io/discover/how-to-detect-a-ddos-attack/. Accessed 13 Aug. 2022. 
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recognizing a pattern, a neural network can be used as a proxy to intercept every request, verify 

it, and only forward legitimate ones. This could save firms thousands of dollars and small 

businesses from such attacks, too – those that can cause them to shut down. Moreover, the data 

and analysis from this research could be extended to be applied to different DDoS attacks – 

SYN floods, UDP floods, and ICMP floods. 

 

This investigation also aims to record and compare the performance and timings of the neural 

network against the time taken to fulfill the request to understand the impact on the neural 

network on the server.  

 

1.2 Scope 

DDoS datasets, particularly for HTTP floods, usually contain sensitive data about the users and 

the server in use – which are often part of the requests – and hence are often found on malicious 

platforms that have to be accessed using the TOR network. This can be unethical to use for 

such an investigation. Thus, to conduct this experiment, a dataset will be generated by 

simulating a DDoS attack. 

 

DDoS attacks include thousands of devices, so, they are very costly and complicated to 

simulate and require extensive hardware access. Thus, an experiment simulating a small-scale 

DDoS will be conducted to answer the posed research question and achieve the paper’s aim. 

Firstly, large data sets will be generated consisting of DDoS emulations, including data about 

the HTTP requests (user IP, endpoint, time taken, packet size, etc. After the data sets are 

generated, an ANN will be trained to recognize DDoS patterns. 

 

Since the performance and results of a neural network are heavily dependent on its 

hyperparameters used, the hyperparameters used in this investigation will be selected by 

analyzing and understanding the preprocessed data. Moreover, to further measure the extent to 
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which a neural network can detect the attacks, the model will be trained with a different number 

of hidden layers. The results of these different models with then be compared and evaluated.  

2. Background Information          

2.1 Machine Learning and its Types 

Pattern recognition is based on machine learning, which is the study of programming 

computers to do tasks they haven’t been directly programmed to do4. These networks are then 

trained to recognize, analyze, and learn from data and perform complex tasks (i.e., identifying 

patterns and predicting events). They can be trained via multiple strategies – unsupervised, 

supervised, reinforcement, and more – and each has advantages and disadvantages. Supervised 

learning allows a network to identify and create mappings between the features and data 

classification5. 

 

There are several types of machine learning algorithms as well. Still, pattern recognition 

requires classification, which involves the computer learning the relations between the data and 

their labels. So, for example, a machine could be given a collection of texts grouped by their 

language, and the classification network would analyze the features of those texts to attempt to 

relate specific visual characteristics to certain languages. This is what is referred to as 

“training.” If successful, the network would eventually be able to accurately predict the 

language of texts it has not seen before by identifying relations between the features of the text 

to a language, which it made during training. Pattern recognition algorithms are trained 

similarly with thousands of labeled entries. Since the main goal of this investigation is to 

classify network requests, and because labeled data is present, supervised training will be used 

for this research. 

 
4 Ng, Andrew. “Supervised Machine Learning: Regression and Classification.” Coursera, 2022, 

www.coursera.org/learn/machine-learning. Accessed 13 Aug. 2022. 
5 Salian, Isha. “NVIDIA Blog: Supervised vs. Unsupervised Learning.” The Official NVIDIA Blog, 2 Aug. 2018, 

blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning/. Accessed 28 Aug. 2022. 



 

 

Personal Code: jgc887 

5 

 

2.2 Chosen Machine Learning Model 

DDoS attacks can be detected using many different types of machine learning models. Feed 

forward neural networks, support vector machines (SVM), and random forest are some of the 

most common and popular methods for detecting them6. 

 

Feed forward networks are generally applicable to most sorts of pattern detection scenarios. 

Since I have briefly worked with these networks, I will be further studying them and using a 

feed forward network for the sake of this investigation. The inner workings of a feed forward 

network are discussed below. 

 

2.3 Feed Forward Neural Networks 

Feed forward neural networks consist of layers of neurons: the input layer, the output layer, 

and the hidden layers. Each layer identifies certain patterns within the data. Inspired from how 

brains function, neural networks are made up of neurons. The purpose of an artificial network 

is to receive inputs, perform calculations, and give an output – and pass it onto the next layer 

of neurons. The input is represented as the first layer of neurons, and they continue to activate 

consecutive layers until the output layer is activated, which represents the output itself7. 

 
Figure 1: Structure of a feed forward neural network (self-made) 

 
6 Aytac, Tugba, et al. “Detection DDOS Attacks Using Machine Learning Methods.” Electrica, vol. 20, no. 2, 15 

June 2020, pp. 159–167, https://doi.org/10.5152/electrica.2020.20049. Accessed 7 Sept. 2022. 
7 Sanderson, Grant. “Neural Networks - YouTube.” YouTube, 2019, 

www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi. Accessed 9 Oct. 2022. 
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To receive and pass data, neurons rely on links, referred to as weights. The value of the neuron, 

which it passes forward, is called its activation8. All neurons in layers after the input layer rely 

on the previous layer for input, which is simply the activation of all the neurons in the layer 

before multiplied by the weights of the neuron with each of the neurons. Moreover, each neuron 

also has a bias, which indicates how much the neuron is activated in general (a negative bias 

means the neuron usually has low activation, whereas a positive bias means the neuron usually 

has a high activation). The activation for the nth neuron in the layer j with N neurons, which is 

preceded by the layer i is given by: 

𝐴𝑗𝑛 = 𝜎(∑(𝑤
𝑗𝑛

𝑗𝑝 × 𝐴𝑖𝑝)

𝑁

𝑝=1

+ 𝑏𝑗𝑛
) 

Equation 1: Equation for the activation of a neuron in layer i, given consecutive layers j and I9 

Here, 𝐴𝑖𝑛 represents the activation of the nth neuron in layer i, ∑ (𝑤
𝑖𝑛

𝑗𝑝 × 𝐴𝑗𝑝)
𝑁
𝑝=1  represents 

the sum of the products of the weights and activations of the neurons in the layer before, and 

𝑏𝑗𝑛 is the bias of the neuron. These biases and weights are assigned randomly using a seed 

when a network is created and are changed as the model trains itself. 𝜎 represents the activation 

function, which is a mathematical function that gives an output from an input and is used for 

performance and efficiency reasons10. 

 

The “output”, or result, or the network are the neuron activations in the output layer. Each 

neuron represents a unique answer, and its activation represents the probability that it is 

correct11. The answer with the highest probability is assumed to be the correct one. While 

training, the network compares the output with the real answer, using which a “cost” is 

 
8 Sanderson, Grant. “Neural Networks - YouTube.” YouTube, 2019, 

www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi. Accessed 9 Oct. 2022. 
9 IBID 
10 Sanderson, Grant. “Neural Networks - YouTube.” YouTube, 2019, 

www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi. Accessed 9 Oct. 2022. 
11 IBID 
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determined. The cost represents the error of the network (the lower, the better) and can be 

calculated using a range of different methods, such as mean square error, mean absolute error, 

and root mean square error12. Moreover, because the network is essentially a mathematical 

function, the cost can also be represented by a function. The error function can then be 

minimized to increase the accuracy of the network, effectively training the network. This is 

done by calculating the gradient of the cost function at the current weights and biases and 

descending downwards (to minimize it) by tweaking them. As the cost is further minimized 

during training, the network becomes better at predicting the answer, given a set of features13. 

 

Hence, neural networks can be looked at as a function which gives a certain number of outputs 

given specific inputs and parameters14. 

3. Experiment Methodology           

Primary experimental data sets are the main sources of data for this paper. An experimental 

methodology was chosen because there was limited secondary data to conclude this paper, and 

this method provides freedom to train and test the model with primary data. 

 

3.1 Generation of Data Sets 

The data sets have been generated by “simulating” a DDoS. This was done by writing two 

programs – a client and a server – responsible for mocking a server and a user (compromised 

or genuine) (refer to appendix 1 for code). The clients were deployed in 35 different virtual 

private servers over ten different geographical locations worldwide, as seen in figure 2 below. 

They were deployed using Linode and DigitalOcean (computing providers). 

 
12 Saini, Hrithik. “7 Types of Cost Functions in Machine Learning | Analytics Steps.” Www.analyticssteps.com, 

www.analyticssteps.com/blogs/7-types-cost-functions-machine-learning. Accessed 18 Aug. 2022. 
13 IBID 
14 IBID 
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Figure 2: Geographical locations of clients used in experiment15 

The client is structured as shown in figure 3.1 below, exposing two endpoints – compromised 

and user – giving the researcher control over the client. The same client structure is replicated 

on all 35 VPSs worldwide to act as a distributed system. While there were multiple clients, the 

server was kept constant. 

 

 
Figure 3.1: Client-side structure and logic 

 
15 Self-made using Google My Maps, mymaps.google.com. Accessed 19 Sept. 2022. 
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Figure 3.2: Server-side structure16 

The server is designed to keep the logical layer oblivious to the logging process, allowing the 

codebase to remain maintainable and helping maintain strict conditions for the ANN to be 

trained with (i.e., acting as middleware or firewall). 

 

The method below was used to conduct the simulation and generate the datasets: 

1) 30 out of the 35 devices initially act as “real” clients, making requests to random 

endpoints every 3-5 seconds. This means five clients are to act only as compromised 

devices, not making real requests. 

2) 5-6 minutes later (randomly chosen), 15 out of the 35 (including the five inactive ones 

mentioned in point 1) devices start simulating “compromised” clients by making 

requests to random endpoints to their maximum load. This emulates the situation where 

the attacker starts the DDoS, and the compromised devices flood the server with 

requests. During this, the other 20 devices continue to act as “real” users, as would in 

the real world. 

3) After 5-7 minutes (randomly chosen), the malicious clients stop the DDoS and are 

terminated by terminating the ongoing request from the researcher’s machine to the 

client on its compromised endpoint. 

4) The rest of the clients continue to make requests as normal users 

 
16 Figure 2.1 and 2.2 are self-made using excalidraw. “Excalidraw.” Excalidraw, excalidraw.com/. 
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5) The data logged earlier is then transferred to the researcher’s local machine in a CSV 

format by using the SCP protocol 

6) The process is repeated four more times, generating a total of 5 large datasets, each 

emulating a unique DDoS request pattern 

Since each client knows if it is acting as a malicious or real user, the request is labelled as 

compromised or not when it is made itself. 

 

Each experiment iteration was conducted automatically, using python 3.9, which controlled the 

clients and their states (refer to appendix 1 for code). Table 1 showcases a few data points of 

the data collected as a sample. 

ip endpoint headers time packet_size time_taken compromised 

139.144.44.193 / 

Host: 165.232.182.157 

User-Agent: python-

requests/2.28.1 

Accept-Encoding: gzip, 

deflate 

Accept: */* 

Connection: keep-alive 

Content-Type: 

application/json 

1674598718 100 0.057705225 FALSE 

170.187.139.144 /endpoint-2 

Host: 165.232.182.157 

User-Agent: python-

requests/2.28.1 

Accept-Encoding: gzip, 

deflate 

Accept: */* 

Connection: keep-alive 

Content-Type: 

application/json 

1674598721 359 0.051176134 FALSE 

157.245.104.1 /endpoint-4 

Host: 165.232.182.157 

User-Agent: python-

requests/2.28.1 

Accept-Encoding: gzip, 

deflate 

Accept: */* 

Connection: keep-alive 

Content-Type: 

application/json 

1674599070 5347 0.161323308 TRUE 

Table 1: Sample raw data. A screenshot of the entire data can be seen in Appendix 317 

 
17 The descriptions and units for the fields can be seen in Table 2.1 
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The packet size and time taken of the requests can be plotted against the time they were 

received to visualize the DDoS simulation. Since there are a very large number of requests, a 

random sample of 0.2% of the requests is plotted below. 

 
            Figure 4.1: Packet Size of Each Request                  Figure 4.2: Time Taken for Each Request18 

The compromised requests have a higher time taken per request and packet size. When looking 

at the pattern as a whole, an attack can be recognized. However, it is much harder to recognize 

whether an individual request is compromised just by looking at the information above. 

 

3.2 Processing the datasets for use 

The datasets generated must be preprocessed before they can be fed into the neural network as 

parameters. Feature extraction is an essential process, since it allows more specific information 

from the data to be found, which allows the network to find more intricate patterns. Moreover, 

by eliminating variables that are not needed, the number of features is greatly reduced, which 

reduces the time for the network to learn and generalize19. 

  

Features such as average packet size and request time for the past 5 requests and requests in 

the past 5 seconds by each client were calculated for each request. Moreover, data such as the 

IP address and headers were removed as they do not contain information that can be used to 

 
18 The diagrams are self-made using matplotlib and python 3.9 
19 Chatterjee, Sampriti. “What Is Feature Extraction? Feature Extraction in Image Processing.” Great Learning 

Blog: Free Resources What Matters to Shape Your Career!, 29 Oct. 2021, 

www.mygreatlearning.com/blog/feature-extraction-in-image-processing. Accessed 13 Oct. 2022. 
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recognize a DDoS. The five processed data sets were merged and then shuffled. Lastly, the 

datasets were split into training and evaluation data, with a 4:1 split ratio20 – 80% of the data 

was used for training, while 20% was used for evaluation). The preprocessing was done using 

python 3.9 and the scikit-learn, pandas, and numpy libraries, as seen in the figure below. 

 
Figure 5: Python library imports used for preprocessing 

 

Table 2.1 showcases the fields of the raw data, which was collected during the simulation, and 

Table 2.2 showcases the fields of the processed data, which will be used as input for the neural 

network. 

Table 2.1: Fields for raw data 

 

 
20 Tokuç, A. Aylin. “Splitting a Dataset into Train and Test Sets | Baeldung on Computer Science.” 

Www.baeldung.com, 14 Jan. 2021, www.baeldung.com/cs/train-test-datasets-ratio. Accessed 21 Oct. 2022. 

Using scikit-learn to split processed data into testing and training data Using pandas 

and numpy to 

load csv files and 

preprocess data 
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Table 2.2: Fields for processed data 

Since the processed data has aggregative and accumulative fields, each request contains 

information about some previous requests. Hence, the processed data is effectively able to 

describe the raw data. Furthermore, more relationships can be found within the data, such as 

the average time taken and packet size of each request. 

    
Figure 6.1: Average packet size vs average time taken      Figure 6.2: Packet size vs average  time taken21 

 

A relationship between the time taken and packet size for requests is visually evident, as seen 

in figure 6.1 and 6.2. The compromised and genuine requests form “clusters”, which can also 

be used by unsupervised models22. Overall, the processed data is effectively able to resemble 

 
21 The diagrams are self-made using matplotlib and python 3.9 
22 Mishra, Sanatan. “Unsupervised Learning and Data Clustering.” Medium, Towards Data Science, 19 May 2017, 

towardsdatascience.com/unsupervised-learning-and-data-clustering-eeecb78b422a. Accessed 14 Oct. 2022. 
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and enhance the features of the raw data, which would benefit the network in effectively 

classifying the requests. 

  

3.3 Dependent Variables 

The variable being measured in this paper is the classification success rate of the ANN – the 

percentage of requests it correctly classifies as malicious or real – and the time taken to classify 

the request. 

 

Time 

The time measured in this case is the time taken for the network to classify a request instead of 

the time taken to train the model. Python’s time.time() method was used to calculate the 

time before and after the call to the network.  

 

Accuracy 

The accuracy measured was the accuracy of the network in classifying requests correctly with 

evaluation data sets. The accuracy of the network is the number of correct classifications 

divided by the total number of classifications. 

 

3.4 Programming of the Feed Forward Neural Network 

The feed forward network was programmed using python and TensorFlow. It took 5 inputs, as 

seen in Table 2, omitting the label, and had one output neuron, whether the request was 

compromised. The structure of the network is illustrated below. 
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Figure 7: The structure of the programmed feed forward neural network, where n is the number of layers23 

The dimensions of the input layer are equal to the features of the dataset. As discussed before, 

the model would be trained with a different number of layers. The dense input layer will be 

processed by these hidden layers, and the output layer flattens the activation of the hidden 

layers into a single neuron.  

 

The models were trained using TensorFlow’s Sequential.train() function. Since the 

data has a large number of features, the model becomes more prone to descending to a local 

minimum instead of the global minimum. Hence, the model was trained with a low batch size 

of 8, which allows it to generalize the pattern better and have higher accuracy24.  

 

3.5 Experimental Procedure 

4 networks were configured with an input layer with 5 neurons, and an output layer with 1 

neuron. Each network was programmed to have a different number of hidden layers – 1, 2, 3, 

and 4 respectively. They were trained upon the same training data, and their performance and 

accuracy were then recorded against the testing data. 

 

 
23 Self-made using excalidraw. “Excalidraw.” Excalidraw, excalidraw.com/. 
24 Keskar, Nitish Shirish, et al. “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp 

Minima.” ArXiv:1609.04836 [Cs, Math], 9 Feb. 2017, arxiv.org/abs/1609.04836. 
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Additionally, neural networks are initialized with randomized weights and biases, so their 

training results may have outliers and inconsistencies. While a low batch size was already 

chosen to minimize this error, 2 models were also programmed for each configuration to ensure 

that the patterns observed were not pertaining to the randomized initial state. The models were 

completely identical, except their seed, which were “12345” and “98765”, and were nicknamed 

“Model 1” and “Model 2”. Both seeds were chosen arbitrarily. 

 

3.6 Hypothesis 

I hypothesize that because neural networks specialize in detecting patterns the network will be 

able to successfully detect a DDoS attack with high accuracy. Moreover, the accuracy would 

increase as the number of hidden layers are increased, as the network would be able to find 

more specific patterns. 

4.  The Experimental Results         

4.1 Accuracy over epochs 

  
     Figure 8.1: Accuracy vs Epochs with 1 layer            Figure 8.2: Accuracy vs Epochs with 2 layers 
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 Figure 8.3: Accuracy vs Epochs with 3 layers            Figure 8.4: Accuracy vs Epochs with 4 layers25 

The accuracy measured while training was the accuracy against the training data itself. The 

models were trained for 16 epochs, however as seen in the figures above, their accuracy 

remained similar after the first two epochs. 

 

4.2 Accuracy on testing data 

 
Figure 9: Accuracy of models on testing data for different layered networks26 

The networks had astonishingly high accuracies, of over 99.98%. Both, model 1 and model 2 

had a higher accuracy with two hidden layers, and the accuracy gradually reduced as more 

 
25 Figures 8.1, 8.2, 8.3, and 8.4 were self-made using python and matplotlib 
26 Self-made using python and matplotlib 
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layers were introduced. This is against my hypothesis, as I predicted that the accuracy would 

continue to rise. 

 

4.3 Time taken for classification 

 

Figure 10: Average time taken to classify request vs number of hidden layers27 

The time taken to classify a request increased for every hidden layer added. The networks took 

from 2 to 3.5 milliseconds to classify a request, which accounts for the TensorFlow function 

call overhead. 

5. Analysis            

5.1 Analyzing Accuracy 

As seen by the 99.99% accuracy with 2 hidden layers, the neural network is highly successful 

in classifying requests, and hence, can help solve the problem of mitigating HTTP flood DDoS 

attacks. While this makes it a potent tool in mitigating DDoS attacks, its high accuracy can be 

accredited to factors that may make the network less effective in the real world. The dataset 

created was only a simulation of a real DDoS attack. This meant that the data had a significantly 

lower number of individual clients. Hence, the patterns of the requests were also inherently 

 
27 Self-made using python and matplotlib 
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limited. This may cause the data collected to be too narrow, which as a result can cause the 

network to adjust only for the given dataset, and hence have high accuracy. 

 

5.2 Analyzing Performance 

 

In terms of performance, as discussed before, the network is highly efficient and performant. 

A request is usually classified in a few milliseconds, which is extremely low when compared 

to the average time taken by an HTTP request: 500ms28. Hence, the network would have a 

negligible impact when implemented as a middleware for servers.  

 

5.3 Making sense of the drop in accuracy 

As was seen in figure 9 above, the network’s accuracy reduced when it was trained upon 3 or 

4 hidden layers, which was against my proposed hypothesis. The larger the number of layers, 

the larger the number of trainable parameters for a network that influence its output. This means 

that Model 1 with 2 layers is not the same mathematical function as Model 1 with 4 layers. 

Although the function with 4 layers is more complicated, it does not guarantee better results. 

 

Each layer picks up on the layer before, and finds patterns in that, meaning, as more layers are 

added, more and more details are picked up which influence the output. However, when too 

many layers are added, the network overanalyzes patterns and starts considering “noise” – 

meaningless data29. This leads to the model overfitting itself on the training data, and in turn, 

leading to higher inaccuracy30.  

 

 
28 Saunders, Orde. “How Long Does an HTTP Request Take? | Blog | Decade City.” Decadecity.net, 12 Mar. 

2014, decadecity.net/blog/2012/09/15/how-long-does-an-http-request-take. Accessed 28 Nov. 2022. 
29 “What Is Noise in ML.” Iguazio, www.iguazio.com/glossary/noise-in-ml. Accessed 17 Dec. 2022. 
30 “What Is Overfitting? - Overfitting - AWS.” Amazon Web Services, Inc., aws.amazon.com/what-is/overfitting/. 

Accessed 28 Dec. 2022. 
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5.4 Computational Costs 

However, there are computational costs that come along the implementation of a network. 

Firstly, a machine with extensive resources, especially RAM and CPU, is required to train a 

neural network. With larger datasets, the training process can take days, if not weeks, and 

hence, the availability of system resources is essential. Furthermore, since the batch size is 

small, the training time for the model is further increased.  

 

Moreover, when using the network as a middleware, there are further implications for the 

resources. As the network must be loaded into RAM, and the CPU would be used while 

classifying the requests, the network might utilize resources that the server could otherwise 

use.  

6. Conclusion            

This experiment sought to identify the effectiveness and extent to which a feed forward neural 

network can identify and mitigate HTTP flood DDoS attacks. The feed forward network setup 

by me is able to successfully identify DDoS attacks to mitigate them, while being highly 

performant and having a minimal impact on the request timings. This is in line with and 

validates my hypothesis. 

6. Further Research Opportunities         

6.1 Investigating a change in the preprocessing of the data 

The feature extraction for this experiment contained several average and aggregate values. For 

example, the average packet size was calculated from the past 5 requests. It is intriguing to find 

the impact on the accuracy of the network when the preprocessing of the data is changed, such 

as changing the calculations to account for 10 requests, and when more features are added. 
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6.2 Utilizing different machine learning models 

As found after preprocessing the data, visual patterns were visible, which can be utilized by 

different models. Hence, different models can also be used to detect DDoS attacks, and since 

they differ in the way they recognize patterns, it is compelling to investigate how well other 

machine learning models can detect DDoS attacks. Moreover, as mentioned before, other 

models, such as SVM and random forest could also be explored. 

 

6.3 Extending to different DDoS attacks 

This investigation only examined how HTTP flood attacks can be mitigated and did not look 

at different types of DDoS attacks such as SYN and UDP floods. These attacks are executed 

on different network layers, and hence have different input parameters. Hence, it would be 

interesting to see how neural networks can be used to detect these types of attacks.  
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Appendix            

1: Code for simulation of DDoS 

The following code was used to provision multiple virtual private servers around the globe, 

deploy the client code on them, and then perform the DDoS simulation. It also has the code for 

the host server, which received the requests and stored them in files. 

Client that acts as a malicious or compromised user: 

import threading 

from dotenv import load_dotenv 

load_dotenv() 

 

import os 

import random 

import time 

from time import sleep 

from flask import Flask, request 

import requests 

 

app = Flask(__name__) 

 

user_endpoints = ['/', '/endpoint-1', '/endpoint-2', '/endpoint-3'] 

malicious_endpoints = ['/endpoint-3', '/endpoint-4', '/endpoint-5'] 

 

def get_url(endpoint): 

    return f"http://{os.getenv('SERVER_IP_ADDRESS')}{endpoint}" 

 

def make_request_to_endpoint(endpoint, data): 

    url = get_url(endpoint) 

    print(f"Making request to {url}") 

    requests.post(url, json=data) 

 

user_thread: threading.Thread = None 

user_running = False 

 

malicious_thread: threading.Thread = None 

malicious_running = False 

 

def run_user(timetorun): 

    global user_running 

    start = time.time() 

    while start + timetorun > time.time(): 

        if not user_running: 

            break 
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        make_request_to_endpoint(random.choice(user_endpoints), 

{"compromised": False}) 

        sleep(random.uniform(3, 5)) 

    user_running = False 

 

def run_malicious(timetorun): 

    global malicious_running 

    start = time.time() 

    while start + timetorun > time.time(): 

        if not malicious_running: 

            break 

        make_request_to_endpoint(random.choice(malicious_endpoints), 

{"compromised": True}) 

    malicious_running = False 

 

@app.route('/emulate-user') 

def normal(): 

    global user_thread, user_running 

    args = request.args 

    timetorun = args.get("time", default=0, type=int) 

    if timetorun <= 1: 

        return "Invalid time" 

 

    if user_running: 

        return "User already running" 

     

    user_running = True 

    user_thread = threading.Thread(target=run_user, args=(timetorun,)) 

    user_thread.start() 

    return 'Hello world!' 

 

@app.route('/stop-user') 

def stop_user(): 

    global user_thread, user_running 

    if user_running: 

        user_running = False 

        user_thread.join() 

        del user_thread 

        user_thread = None 

        return "User stopped" 

    else: 

        return "No user running" 

 

@app.route('/emulate-malicious-user') 

def malicous(): 

    global malicious_thread, malicious_running 

 

    args = request.args 
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    timetorun = args.get("time", default=0, type=int) 

    if timetorun <= 1: 

        return "Invalid time" 

 

    if malicious_running: 

        return "malicious already running" 

     

    malicious_running = True 

    malicious_thread = threading.Thread(target=run_malicious, 

args=(timetorun,)) 

    malicious_thread.start() 

 

    return 'Hello world!' 

 

@app.route('/stop-malicious-user') 

def stop_malicious(): 

    global malicious_thread, malicious_running 

    if malicious_running: 

        malicious_running = False 

        malicious_thread.join() 

        del malicious_thread 

        malicious_thread = None 

        return "Malicious stopped" 

    else: 

        return "No malicious user running" 

 

@app.route('/') 

def index(): 

    return 'pong' 

 

app.run(host="0.0.0.0", port=80) 

 

Server that receives the requests from the clients and saves them: 

from datetime import datetime, timedelta 

import random 

import time 

from flask import Flask, request 

import pandas as pd 

import os 

from queue import Queue 

 

app = Flask(__name__) 

data_queue = Queue() 

 

columns = ['ip', 'endpoint', 'packet_size', 'headers', 'time', 'time_taken', 

'compromised'] 
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data = pd.DataFrame(columns=columns) 

i = 0 

filename = f"data_{i}.csv" 

while os.path.exists(filename): 

    i += 1 

    filename = f"data_{i}.csv" 

 

route_data = { 

    "/": { 

        "packet_size": [30, 100], 

        "time_taken": [0.01, 0.1] 

    }, 

    "/endpoint-1": { 

        "packet_size": [250, 500], 

        "time_taken": [0.03, 0.2] 

    }, 

        "/endpoint-2": { 

        "packet_size": [250, 500], 

        "time_taken": [0.05, 0.15] 

    }, 

    "/endpoint-3": { 

        "packet_size": [500, 1000], 

        "time_taken": [0.04, 0.15] 

    }, 

    "/endpoint-4": { 

        "packet_size": [3000, 6000], 

        "time_taken": [0.1, 0.3] 

    }, 

    "/endpoint-5": { 

        "packet_size": [5000, 9700], 

        "time_taken": [0.1, 0.37] 

    }, 

} 

 

@app.before_request 

def log_request_info(): 

    if request.path not in route_data.keys(): 

        return 

 

    req_data = route_data[request.path] 

 

    compromised = request.get_json()["compromised"] 

 

    packet_size = random.randint(req_data["packet_size"][0], 

req_data["packet_size"][1]) 

    time_taken = random.uniform(req_data["time_taken"][0], 

req_data["time_taken"][1]) 
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    data_queue.put([request.remote_addr, request.path, packet_size, 

request.headers, time.time(), time_taken, compromised]) 

    if len(data) % 100 == 0: 

        data.to_csv(filename, index=False) 

 

@app.route('/', methods=['POST']) 

def hello_world(): 

    return 'Hello world!' 

 

@app.route('/endpoint-1', methods=['POST']) 

def hello_world_1(): 

    return 'Hello world!' 

 

@app.route('/endpoint-2', methods=['POST']) 

def hello_world_2(): 

    return 'Hello world!' 

 

@app.route('/endpoint-3', methods=['POST']) 

def hello_world_3(): 

    return 'Hello world!' 

 

@app.route('/endpoint-4', methods=['POST']) 

def hello_world_4(): 

    return 'Hello world!' 

 

@app.route('/endpoint-5', methods=['POST']) 

def hello_world_5(): 

    return 'Hello world!' 

 

def save_logs(): 

    global data 

    while True: 

        end = datetime.now() + timedelta(seconds=1) 

        res = [] 

        while datetime.now() < end: 

            try:  

                new_data = data_queue.get(timeout=0.1) 

                res.append(new_data) 

            except: 

                continue 

 

        res_df = pd.DataFrame.from_records(res, columns=columns) 

        if len(res_df) > 0: 

            data = pd.concat([data, res_df]) 

            data.to_csv(filename, index=False) 
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if __name__ == "__main__": 

    import threading 

    t = threading.Thread(target=save_logs, daemon=True) 

    t.start() 

    app.run(host='0.0.0.0', port=80) 

 

Code to run the simulation: 

from datetime import datetime 

import random 

from time import sleep 

import dotenv 

import linode as linode_api 

import os  

import pandas as pd 

from sys import argv 

import requests 

import digital_ocean 

from concurrent.futures import ThreadPoolExecutor 

import concurrent.futures 

 

csv_path = 'linodes_data.csv' 

 

def debug(msg): 

    print(f"{datetime.now().strftime('%H:%M:%S')} {msg}") 

 

def delete(): 

    linodes = linode_api.get_linodes_raw() 

    print(f"[INFO]: Deleting {len(linodes)} linodes") 

    for linode in linodes: 

        linode.delete() 

 

    digital_ocean.delete_all() 

 

def create(): 

    regions = linode_api.get_regions() 

    print(f"[INFO]: Found {len(regions)} regions") 

     

    linodes = linode_api.get_linodes() 

    print(f"[INFO]: {len(linodes)} linodes are running") 

 

    new_linodes = [] 

    if len(linodes) > 0: 

        debug("Linodes already exist.") 

        return 
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    for i in range(1): 

        lin, pwd = linode_api.make_linode(regions[i % len(regions)], 1059469, 

{"SERVER_IP_ADDRESS": os.getenv('SERVER_IP')}) 

        new_linodes.append([lin.id, pwd]) 

 

    linodes = linode_api.get_linodes() 

    for i in range(len(new_linodes)): 

        id = new_linodes[i][0] 

        for linode in linodes: 

            if linode['id'] == id: 

                new_linodes[i].append(linode['ip']) 

                break 

     

    do_regions = digital_ocean.get_regions() 

 

    def run_concurrent(func, args): 

        e = ThreadPoolExecutor(max_workers=15) 

        final_res = [] 

        futures = [e.submit(func, *arg) for arg in args] 

        for future in concurrent.futures.as_completed(futures): 

            try: 

                res = future.result() 

                if res: 

                    final_res.append(res) 

            except Exception as e: 

                print(f"[ERROR] {e}") 

 

        return final_res 

 

    args = [] 

 

    for i in range(1): 

        args.append((do_regions[i % len(do_regions)], f"Machine-{i}")) 

 

    res = run_concurrent(digital_ocean.create, args) 

    new_linodes += res 

 

     

    df = pd.DataFrame(new_linodes, columns=['Id', 'Password', 'IP']) 

    df.to_csv(csv_path, index=False) 

 

def run(): 

    data = pd.read_csv(csv_path) 

    seconds_before_attack = random.randint(5*60, 6*60) # 5-6 minutes 

    attack_duration_seconds = random.randint(5*60, 7*60) # 5-7 minutes 
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    print(f"http://{data.iloc[0]['IP']}/emulate-

user?time={seconds_before_attack*1000}") 

     

    requests.get(f"http://{data.iloc[0]['IP']}/emulate-

user?time={seconds_before_attack*1000}") 

    requests.get(f"http://{data.iloc[1]['IP']}/emulate-malicious-user?time=5") 

 

    if len(data) != 35: 

        debug(f"[ERROR]: Expected 35 linodes, found {len(data)}") 

        return 

     

     

    real_clients = [] 

    compromised_clients = [] 

 

    for i in range(30): 

        real_clients.append(data.iloc[i]['IP']) 

     

    for i in range(30, 35): 

        compromised_clients.append(data.iloc[i]['IP']) 

 

    debug(f"[INFO]: Real clients loaded") 

    debug(f"[INFO]: Starting real client simulation, will start attack in 

{seconds_before_attack} seconds") 

 

    for ip in real_clients: 

        requests.get(f"http://{ip}/emulate-

user?time={seconds_before_attack*1000}") 

     

    debug(f"[INFO]: User requests started, waiting {seconds_before_attack} 

seconds before attack") 

 

    sleep(seconds_before_attack) 

 

    debug(f"[INFO]: Starting attack..") 

 

    converted = [] 

    for i in range(9, -1, -1): 

        ip = random.choice(real_clients) 

        real_clients.remove(ip) 

        converted.append(ip) 

     

    for i in converted: 

        requests.get(f"http://{i}/stop-user") 

        requests.get(f"http://{ip}/stop-malicious-user") 

        compromised_clients.append(i) 
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    for ip in compromised_clients: 

        requests.get(f"http://{ip}/emulate-malicious-

user?time={attack_duration_seconds*1000}") 

 

    debug(f"[INFO]: Attack started, waiting {attack_duration_seconds} seconds 

before stopping attack") 

    sleep(attack_duration_seconds) 

 

    debug("[INFO]: Stopping attack..") 

 

    for ip in compromised_clients: 

        requests.get(f"http://{ip}/stop-malicious-user") 

        requests.get(f"http://{i}/stop-user") 

 

    debug(f"[INFO]: Attack stopped") 

 

options = { 

    "delete": delete, 

    "create": create, 

    "run": run 

} 

 

def main(): 

    dotenv.load_dotenv() 

    if len(argv) < 2: 

        print(f"No arguments given. Options are {', '.join(options.keys())}") 

        return 

     

    command = argv[1] 

    if command not in options.keys(): 

        print(f"Invalid command. Options are {', '.join(options.keys())}") 

        return 

     

    options[command]() 

 

if __name__ == "__main__": 

    main() 

 

Bash Code for Deploying Client Code on Server: 

#!/bin/bash 

if [ -f /etc/apt/sources.list ]; then 

   apt update 

   apt -y upgrade 

   apt install -y python3-pip git 

   apt-get install -y systemd 

else 
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   echo "Your distribution is not supported by this StackScript" 

   exit 

fi 

 

if [ ! -d /root/ddos ]; then  

        git clone https://github.com/DhrumanGupta/mini-ddos-emulator 

/root/ddos  

else  

        git --git-dir="/root/ddos/.git" pull origin master  

fi 

 

pip install -r /root/ddos/requirements.txt 

 

echo "[Unit] 

Description=Python DDoS Client 

After=multi-user.target 

[Service] 

Type=simple 

Restart=always 

ExecStart=/usr/bin/python3 /root/ddos/client/main.py 

 

[Install] 

WantedBy=multi-user.target" > /etc/systemd/system/ddos-emulator.service 

 

echo "SERVER_IP_ADDRESS=$SERVER_IP_ADDRESS" > /root/ddos/client/.env 

 

systemctl daemon-reload 

 

systemctl enable ddos-emulator.service 

systemctl start ddos-emulator.service 

 

2: Code for pre-processing data, training network, and running tests 

The code below was used to pre-process the data collected before, and train the model. It was 

running TensorFlow in Visual Studio Code, on a Lenovo Legion laptop. 

import matplotlib.pyplot as plt 

import matplotlib.ticker as mticker 

from sklearn.model_selection import train_test_split 

import pandas as pd 

import numpy as np 

import json 

import time 

import os 

 

EPOCHS = 16 
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def get_model(features, num_layers=2): 

    import tensorflow as tf 

    from tensorflow.python.keras.layers import Dense 

    model = tf.keras.models.Sequential() 

 

    normalizer = tf.keras.layers.Normalization(axis=-1) 

    normalizer.adapt(features) 

 

    model.add(normalizer) 

 

    model.add(Dense(5, activation="relu", input_shape=(1,))) 

 

    for i in range(num_layers): 

        model.add(Dense(8, activation="relu")) 

     

    model.add(Dense(1, activation="sigmoid")) 

 

    model.compile(optimizer="adam", loss="binary_crossentropy", 

metrics=["accuracy", tf.keras.metrics.MeanSquaredError()]) 

    return model 

 

def get_processed_data(num): 

    raw_data = pd.read_csv(f"data/data_{num}.csv") 

 

    def process_ip(ip, raw_data): 

 

        data = raw_data.loc[raw_data["ip"] == ip] 

 

        final_df = pd.DataFrame( 

            columns=[ 

                "time", 

                "packet_size", 

                "num_past_requests", 

                "average_packet_size", 

                "time_taken", 

                "average_time_taken", 

                "compromised", 

            ] 

        ) 

        past_requests_time = 5 

        num_requests = 5 

 

        for i, row in data.iterrows(): 

            num_past_requests = 0 

            packet_requests = 1 

            packet_size = row["packet_size"] 
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            time_taken = row["time_taken"] 

 

            row_data = final_df.tail(num_requests - 1) 

            packet_size += row_data["packet_size"].sum() 

            time_taken += row_data["time_taken"].sum() 

 

            num_past_requests = len( 

                row_data.loc[final_df["time"] > row["time"] - 

past_requests_time] 

            ) 

 

            final_df.loc[i] = [ 

                row["time"], 

                row["packet_size"], 

                num_past_requests, 

                packet_size / packet_requests, 

                row["time_taken"], 

                time_taken / packet_requests, 

                row["compromised"], 

            ] 

 

        return final_df 

 

    final_data = [] 

    for ip in raw_data["ip"].unique(): 

        final_data.append(process_ip(ip, raw_data)) 

 

    final_data = pd.concat(final_data) 

    return final_data 

 

def preprocess(): 

    for i in range(5): 

        data: pd.DataFrame = get_processed_data(i) 

        data.to_csv(f'data/processed_data_{i}.csv') 

 

    res = [] 

 

    for i in range(4): 

        data = pd.read_csv(f'data/processed_data_{i}.csv') 

 

        res.append(data) 

 

    res = pd.concat(res) 

    res.to_csv('data/processed_data.csv') 

 

    target = res.pop("compromised") 
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    shuffled = res.sample(frac=1) 

    x_train, x_test, y_train, y_test = train_test_split( 

        res, target, shuffle=True, test_size=0.2 

    ) 

 

    x_train.to_csv("data/x_train.csv", index=False) 

    x_test.to_csv("data/x_test.csv", index=False) 

    y_train.to_csv("data/y_train.csv", index=False) 

    y_test.to_csv("data/y_test.csv", index=False) 

 

def train_model(num_layers): 

    x_train = pd.read_csv("data/x_train.csv") 

    y_train = pd.read_csv("data/y_train.csv") 

    model = get_model(features=x_train, num_layers=num_layers) 

    history = model.fit(x_train, y_train, epochs=EPOCHS, batch_size=8) 

    with open(f"models/history_{num_layers}.json", "w") as f: 

        json.dump(history.history, f) 

 

    model.save(f"models/model_{num_layers}.tf") 

 

def train(seed): 

    import tensorflow as tf 

    tf.keras.utils.set_random_seed(seed) 

    for i in range(1, 5): 

        print() 

        print() 

        print(f"Training model with {i} layers") 

        train_model(i) 

        print() 

        print() 

 

def evaluate_model(n=2): 

    import tensorflow as tf 

    res = {} 

    test = pd.read_csv("data/x_test.csv") 

    model = tf.keras.models.load_model(f"models/model_{n}.tf") 

 

    target = pd.read_csv("data/y_test.csv") 

    target = target["compromised"] 

    total = len(test) 

    total_time_taken = 0 

    wrong = [] 

    print(total) 

    for i in range(len(test)): 

        start = time.time() 
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        prediction = model(test.iloc[i]).numpy()[0][0] 

        end = time.time() 

        total_time_taken += end-start 

        compromised = prediction > 0.9 

        if i % 500 == 0: 

            print(f"[{i}/{total}] ({round((i/total)*100, 2)}%): 

{total_time_taken/(i+1)}s") 

        real = target.iloc[i] 

        if compromised != real: 

            wrong.append(prediction) 

 

    accuracy = (1-len(wrong)/total) * 100 

    print(f"Accuracy: {accuracy}%") 

 

    res["accuracy"] = accuracy 

    res["time"] = total_time_taken 

    res["average_time"] = total_time_taken / total 

 

    return res 

 

def evaluate(): 

    res = [] 

 

    if os.path.exists("res.json"): 

        with open("res.json", "r") as f: 

            res = json.load(f) 

    else: 

        for i in range(1, 5): 

            print() 

            print() 

            print() 

            print() 

            print(f"######### Model with {i} layers #########") 

            print() 

            with open(f"models/history_{i}.json", "r") as f: 

                history = json.load(f) 

 

            data = evaluate_model(i) 

 

            res.append({ 

                "num_layers": i, 

                "history": history["accuracy"], 

                "time": data["time"], 

                "average_time": data["average_time"], 

                "accuracy": data["accuracy"] 

            }) 

            print() 

            print("#######################################") 
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        with open('res.json', 'w') as f: 

            json.dump(res, f) 

 

    plt.figure(constrained_layout=True) 

 

    bar_width = 0.3 

 

    res2 = [] 

    with open('res_old.json', 'r') as f: 

        res2 = json.load(f) 

 

    accuracy = [res[i]["accuracy"] for i in range(len(res))] 

    accuracy2 = [res2[i]["accuracy"] for i in range(len(res))] 

 

    ax = plt.gca() 

    ax.set_ylim([99.97, 100]) 

    ax.xaxis.set_major_locator(mticker.MultipleLocator(1)) 

 

    br1 = [i + bar_width/2 for i in range(len(res))] 

    br2 = [x + bar_width for x in br1] 

 

    plt.bar(br1, accuracy, width=bar_width, label='Model 1') 

    plt.bar(br2, accuracy2, width=bar_width, label='Model 2') 

 

    plt.xticks([r + bar_width for r in range(len(res))], 

        [i + 1 for i in range(len(res))]) 

 

    plt.title("Accuracy for models with different layers") 

    plt.legend([f"Model 1", f"Model 2"], loc="upper left") 

    plt.xlabel('Number of Hidden Layers') 

    plt.ylabel('Accuracy (%)') 

    plt.savefig(f'diagrams/accuracy.png') 

    # plt.show() 

 

    plt.cla() 

 

    bar_width = 0.3 

 

    time_taken = [res[i]["average_time"] * 1000 for i in range(len(res))] 

    time_taken2 = [res2[i]["average_time"] * 1000 for i in range(len(res))] 

 

    ax = plt.gca() 

    ax.xaxis.set_major_locator(mticker.MultipleLocator(1)) 

 

    br1 = [i + bar_width/2 for i in range(len(res))] 

    br2 = [x + bar_width for x in br1] 
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    plt.bar(br1, time_taken, width=bar_width, label='Model 1') 

    plt.bar(br2, time_taken2, width=bar_width, label='Model 2') 

 

    plt.xticks([r + bar_width for r in range(len(res))], 

        [i + 1 for i in range(len(res))]) 

 

    plt.title("Average time taken for models with different layers") 

    plt.xlabel('Number of Hidden Layers') 

    plt.ylabel('Average time taken to classify request (milliseconds)') 

    plt.legend([f"Model 1", f"Model 2"], loc="upper left") 

    plt.savefig(f'diagrams/time_taken.png') 

 

 

    for i in range(4): 

        plt.cla() 

        plt.plot(res[i]["history"]) 

        plt.plot(res2[i]["history"]) 

 

        plt.title(f"Model Accuracy vs Epochs ({i+1} layer{'s' if i > 0 else 

''})") 

        plt.ylabel("Accuracy") 

        plt.xlabel("Epoch Number") 

        plt.gca().set_ylim([0.9993, 1]) 

        plt.legend([f"Model 1", f"Model 2"], loc="lower right") 

        plt.savefig(f"diagrams/model_{i+1}.png") 

 

     

    plt.cla() 

    import tensorflow as tf 

    model = tf.keras.models.load_model("models/model_2.tf")     

 

if __name__ == "__main__": 

    # train(98765) 

    evaluate() 
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3: Screenshot of raw data 

 

 

4: Screencast of model evaluation 

The models with 4 different layers were tested upon the training data, and their performance 

and accuracy was measured. The screencast of the code can be seen below. 

https://youtu.be/b-iVnoBMfyo 
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