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Introduction

Data Compression, the process through which information can be represented in a

more compact form (Sayood) can work through various different types of algorithms but

can largely be categorized into two “umbrella terms”, so to speak, those terms being

lossy compression, and lossless compression. According to Ng et al., Lossless

compression is used where perfect reproduction is required while lossy compression is

used where perfect reproduction is not possible or requires too many bits. This means,

hence their names, lossy results in data loss, while lossless does not. Compression is a

process that is quite commonly performed to shrink very large files into much smaller

sizes in order to be able to, for example, save storage, or to be sent over the internet

much faster than if they were not compressed (Chung). Uncompressed files also run the

risk of getting corrupted. There are a variety of different algorithms that file compressing

software use, with each one of them having varying strengths and weaknesses from

each other. Due to the fact that lossless compression algorithms preserve the quality of

files, they are often preferred over lossy compression algorithms, hence they will be the

focus of my EE.
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There are a multitude of criteria that can be used to evaluate the effectiveness of both

lossy and lossless compression algorithms; those being the time complexity as well as

space complexity (Davies), compression ratio, which is the number of bits required to

represent the data before compression to the number of bits required to represent the

data after compression (Sayood). The most important one out of the three would be the

compression ratio, as the whole point of a compression algorithm is to reduce the size

of the file as much as possible. Two extremely popular lossless compression techniques

are Huffman Coding, and Shannon-Fano coding.

I chose these two algorithms in particular despite them being relatively old, first and

foremost due to the fact that they are lossless compression techniques, making them

more ideal for practical applications in the real world. These algorithms are also still very

widely used within a multitude of compression formats, such as MP3, to name one.

These two are also good to test as they are quite similar in nature to each other; with

both of them making similar techniques to compress files.
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This research could be beneficial to businesses looking to store large amounts of data;

with an ever increasing number of companies opting to store their data digitally, the

need for more storage space is increasing rapidly. Furthermore, compression improves

the security of data by a significant margin, for companies storing sensitive data such as

banks and hospitals (Saunders) and also greatly reduces the cost of storage, as

companies don't need to invest as much money into storage space.
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Background Information

What is a Tree?

Before delving into the algorithms themselves, it is important to understand a type of

data structure known as a tree; this is due to the fact that both algorithms make use of

Binary Search Trees, which are a subset of trees themselves.

By definition, a tree is a hierarchical data structure which represents data in such a way

that it can be traversed through with relative ease (GeeksforGeeks). It is made up of

nodes that are connected to each other via an “edge” - essentially just a line that links

the nodes up together. A diagram of this is shown below.

Figure 1. Representation of a Tree (Wikipedia Contributors)
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As we can see in Fig 1 above, each parent node can have any number of child, or leaf

nodes. Such is not the case with binary search trees, however, which are discussed in

the next subsection. It is also important to note that trees are unordered, and do not

follow a sequence.

What is a Binary Search Tree?

A binary search tree is a subset of the tree abstract data structure, and follows the same

principles, however, in a binary search tree, all the nodes are ordered sequentially, and

each parent node can only have 2 child, or leaf nodes the lower valued nodes are

always to the left side of the parent, and the higher ones go to the right. An example of

this is shown below.

Figure 2. Diagram displaying a Binary Search Tree (Java Tutorials Point)
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What is Entropy?

Entropy is defined as the smallest number of bits needed to represent a value. Shannon

extended this idea and applied it to larger datasets, where the entropy is the minimum

number of bits needed to represent the entire dataset (McAnlis and Haecky), essentially

meaning that the entropy of a set is the smallest size a set of data can be compressed

to. The formula for this is shown below.

Where H is Entropy, pᵢ is the probability of an element occurring, and ∑ is the number of

occurrences of the element.

Most developers of compression algorithms look to disprove this formula; but as a

general rule of thumb, this is the smallest size the algorithms look to achieve and this is

no exception for Huffman Coding and Shannon-Fano coding.
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What is Variable Length Coding (VLC)?

A variable length code is something that represents symbols in a certain number of bits.

They allow for the lossless compression of data (Wikipedia Contributors). It is a concept

that is important to know in order to understand the theory behind lossless compression

algorithms. In essence, the probabilities of the occurrence for each symbol is calculated,

and then the variable length code is assigned to them. VLC’s are the core principle

behind a large number of lossless compression algorithms, including Huffman Coding

and Shannon-Fano coding, as both these compression algorithms make use of it in the

process of creating a probability model for the Binary Search Tree generated by them.

More on that later.

In a nutshell, VLC’s use 3 steps to encode data. The algorithm first goes through the

string, or whichever data set it is given. Codewords are then assigned to each symbol

within the data, depending on their probability of occurring. Lastly, the algorithm once

again goes through the data, and outputs the codeword to the compressed bitstream

(McAnlis and Haecky).

How do lossless compression algorithms work?

Generally speaking, lossless compression algorithms make use of statistical modeling

techniques in order to limit repeated data within a file (Chung). The algorithms work

differently when it comes to text files, for example, versus audio, however it is

fundamentally the same. A simplified example is given below.
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The following is a representation of recorded data in 1 byte sample:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 63 63 57 56 60 59 67 67 71 71 71 71 71

71 71 71 6A 7A 66 86 86 83 83 82 81 6B 6B 72 72 72 76 75 75 75 9E 9E 9E

As we can see in this data, there are a significant number of repetitions of certain

sounds. These are highlighted below.

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 63 63 57 56 60 59 67 67 71 71 71 71 71

71 71 71 6A 7A 66 86 86 83 83 82 81 6B 6B 72 72 72 76 75 75 75 9E 9E 9E

These repetitions arise from patterns, such as a certain note being played for several

seconds at a time, or in the case of “00”, prolonged periods of silence.

The algorithm, however, may not only look for repetitions of patterns, for example, guitar

riffs or drum beats. We will be using a new sample to display this, seen below:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 67 66 65 78 79 67 66 65 77 77 77 75 76

80 55 51 67 66 65 69 6E 73 75 76 80 9E 8A 67 66 65 75 76 80

The patterns are highlighted below:
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00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 67 66 65 78 79 67 66 65 77 77 77 75 76

80 55 51 67 66 65 69 6E 73 75 76 80 9E 8A 67 66 65 75 76 80

The algorithm can then significantly shrink the file size by representing the repeated

values and/or patterns using a single hexadecimal value, where the first letter can be

any letter that was not present in the input data, the second letter represents the

number of repetitions in hexadecimal, and the third part is what was repeated.

For example:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 = CF 00

C is a randomly chosen letter, F is 15 in hexadecimal, and “00” is the repeated data.

Repeating this with the rest of the data, the compressed sample is shown below.

CF 00 C2 63 57 56 60 59 C2 67 C8 71 6A 7A 66 C2 86 A2 83 82 81 C2 6B C3 72 76

C3 75 C3 9E

For the second sample, the patterns are compressed in a similar fashion. The first letter

is a randomly chosen letter not present in the sample, and the second letter is a number

to represent what pattern it is. For example:
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67 66 65 = F0

Where F is a randomly chosen letter, and 0 represents the fact that “67 66 65” is pattern

number “0”

Repeating this with the other patterns, we can now compress the second sample.

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 F0 78 79 F0 77 77 77 F1 55 51 F0 69 6E

73 F1 9E 8A F0 F1

We can now go a step further and compress the repeated values as well, like so:

CF 00 F0 78 79 F0 C3 77 F1 55 51 F0 69 6E 73 F1 9E 8A F0 F1

As can be observed, the sample has been compressed significantly.

Going more in depth into the process, It involves two main steps, the first of which being

the generation of the statistical model, the second step being the algorithm using said

model to “predict” the next bit sequences. As far as the statistical models go, there are

two ways in which they are generated, known as static models, and adaptive models.
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The main difference between static and adaptive models is that in static, the model is

created and stored based on the input data, however in adaptive, the model adapts and

changes based on new data, hence the name. Adaptive models are typically preferred

over static models for streaming data, for the reason that they adapt as they are fed

more data. (Wikipedia Contributors)

In a nutshell, lossless algorithms create a set of data that can be uncompressed into

what is essentially a duplicate of the original file.

Huffman Coding Algorithm

One of the most famous lossless compression algorithms of all time, Huffman coding

follows the same principle as any other lossless compression algorithm. David Huffman

developed this lossless compression algorithm which is generally most effective with

samples with large volumes of recurring data or patterns (Geekific). As a result of its

popularity as well as simplicity, it is an extremely commonly used algorithm. The

pseudocode explaining how the algorithm creates a binary search tree is shown below:
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Figure 3. Huffman Coding Pseudocode (Moffat)

What this code is essentially doing is creating a tree using the frequency of characters

or values, and creating a “prefix code” for each instance. The idea behind the whole

algorithm, mathematically, follows relatively simplistic mathematical principles, which is

what makes it such a popular algorithm to implement. The n symbols in the input

alphabet make up the weights of “leaf nodes”. The two leaf nodes with the lowest weight

are then found and removed from the set and then merged together to make a new

node. This node is then re-added to the initial set, and then the whole process gets

repeated for n-1 iterations.

For discussion’s sake, we may take the string below as an example:
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B B B B A A A C C D

The program first calculates the frequency of of each character in the string, like shown

below:

Letter B A C D

Frequency 4 3 2 1

The frequencies are subsequently sorted in ascending order, and then stored in a data

structure called a “Priority queue”.

Letter D C A B

Frequency 1 2 3 4

Following this, an empty node is created. The two lowest values are assigned to the left

and right of the parent node respectively as leaf nodes. The parent node is assigned the

sum of the two leaf nodes.
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.

The process is then repeated with all the characters in the string.

In the event that a tie was to occur between any of the leaf nodes, the one with higher

weight is kept over the other.
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Shannon-Fano Coding

Shannon-Fano Coding is a form of lossless compression used for various file formats,

and was created in 1949 by Claude Elwood Shannon and Robert Fano. Fundamentally,

replaces all the characters in a string with binary code, the length of which is based on

how frequently each character occurs in the string. It has several differences when

compared to Huffman Coding, with examples of this being that rather than creating the

tree from the bottom to the top, the tree is created from the top down. The pseudocode

is shown below:

Figure 4. Pseudocode for Shannon-Fano Coding (Ahuja)
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The way this algorithm works is it first creates a list of probabilities, or frequency in order

to represent the number of times the characters in the string (for example) occur. This is

done in order to determine the relative frequency of occurrence for each character

(Lamorahan et al.). This is shown in the diagram below:

Figure 5. Table displaying Shannon-Fano Probability (Ahuja)

The probability of each character is then sorted by descending order as can be

observed in the diagram below:

Figure 6. Probability Table Splitting (Ahuja)
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The list is then split in halves, ideally having the total probabilities of both halves being

relatively close to each other. The value “0” is then assigned to the left half, and “1” is

assigned to the right half. This is then repeated until all characters are in sub groups

(Ahuja).

Figure 7. Shannon-Fano Probability Tree (GeeksforGeeks)

A tree is then created, with the condition that the character on the left side is given a

value of 0 and the character on the right is given a value of 1 (Lamorahan et al.).

The third and fourth step of the process are then implemented recursively to both halves

of the probability/frequency table (Lamorahan et al.).
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Comparing the two algorithms

There are several key differences between Huffman coding and Shannon-Fano coding.

Huffman coding is often considered more “optimal” than Shannon-Fano coding

(TechDifferences). This is due to the fact that Huffman coding is based on a prefixed

value, whereas Shannon-Fano coding makes use of a cumulative distribution function.

The reason Huffman coding is considered more optimal is due to the fact that

Shannon-Fano coding does not always manage to get the smallest file size possible, as

a result of the way its binary search tree is made, whereas Huffman coding succeeds

with this with a higher frequency (OpenGenus).

A summary is shown below.

Figure 8. Algorithm Comparison Table (Tech Differences)
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These algorithms have key differences when it comes to their mathematics; they follow

similar principles, with slight differences, and it is these slight differences that cause

them to largely different results when it comes to the compression of files.

Theoretically, due to Huffman Coding’s use of prefix codes rather than the cumulative

distribution function, it should theoretically outperform the Shannon-Fano algorithm.

Methodology

In order to test the compression ratio of these two algorithms, A program for both

Huffman coding and Shannon-Fano coding has been written; The Huffman one in

Python, and the Shannon-Fano one in Go. The investigation data will also be collected

from these programs. They will both take the exact same text files as input and

compress the file, outputting a compressed version of the file. The compression ratio

will then be calculated, and this process will be repeated with different input files.

The files to be tested would be a sample text file containing random text, the entire Bee

Movie script, and lastly the script to the movie “Shrek”; The reason I have chosen these

three text files is due to the fact that the first sample text contains repeated phrases and

the bee movie script contains lots of varied characters within. As aforementioned, these

files will be put into the compression algorithms, and a compressed version of them will

be outputted. Following this, I will calculate the compression ratio for each of the files,

comparing the original file size with the new compressed size of the file.
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In the analysis of results, I will then calculate the mean of the ratios, and find the

percentage of itself the file gets compressed to.

My hypothesis is that the Huffman Coding algorithm should have a better compression

ratio due to the above comparison, and due to the files not having that much repetition

within them, barring the “Crazy? I was crazy once” copypasta text file; The copypasta

text file is also being tested due to the fact that the sheer amount of repetition within that

file should have an effect on the experiment.

The Programs

Two programs have been written; one in python and the other in go, in order to conduct

the experiment, and are listed in the appendix. The idea is that these programs will take

in the input files and run them through their respective algorithms. The programs are

written so that they should output compressed versions of the input files. I will then be

able to compare the compressed file sizes to the original ones and calculate the

compression ratio each time. I will then be able to find the average compression ratio for

each of the algorithms, and evaluate which algorithm is more effective based on the

comparison. After undergoing compression, I should have two files like shown below.
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The Huffman Coding algorithm utilizes 2 different functions; the first one containing the

actual compression algorithm itself, and the second program being used to assign the

test file to the function.

The Shannon-Fano program works in a similar manner, in that it also outputs a

compressed version of the input file. The compressor itself is split into 4 separate code

files; one containing the actual compression function itself, another one containing the

decompression function, which is redundant for my experiment, the root file, which

executes the functions, and lastly, the util file, which assigns the new file to its directory.

Test Data

The text files will be tested using the two algorithms to test the difference in the

compression ratio. I will first simply run the files through the compression algorithms and

obtain their compressed sizes. After compiling these results into a table, I will then

create a new table in order to calculate the compression ratio for each of the files.
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Results + Analysis

For each of the files, I have calculated the average compression ratios and will be

comparing these to each other in order to determine which algorithm is more efficient.

The raw data of my experiment is shown below:

Algorithm

Sample Original File Size
(KB)

Huffman Shannon-Fano

Sample Text 699 385 398

Bee Movie Script 49 29 30

“Crazy? I was crazy
once” copypasta

52 27 28

Shrek Script 38 22 24
Figure 9. Raw Data Table

It can clearly be seen that in every single sample fed into these algorithms, the Huffman

Coding algorithm performed better than the Shannon-Fano Algorithm every single time.

However, In order to correctly evaluate this, and to see the extent to which the Huffman

Coding Algorithm performed better, I would have to calculate the compression ratio of

each one. This is done in the table below, with the values being calculated by simply

comparing the uncompressed file size to the compressed file size. The values are

shown in the processed data table below.
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Sample Compression ratio
(Huffman)

Compression ratio
(Shannon-Fano)

Sample Text 699:385 699:398

Bee Movie Script 49:29 49:30

“Crazy? I was crazy once”
copypasta

52:27 52:28

Shrek Script 38:22 38:24

Average 196177:109620 Kilobytes
≈ 196:110 Megabytes
= 98:55 Megabytes

570859:334320
Kilobytes
≈ 571:334 Megabytes

Figure 10. Processed Data Table

After calculating the compression ratio, I can now more confidently infer that the

Huffman Coding algorithm performed better than the Shannon-Fano one, as we can see

a significant difference in their respective compression ratios. It can be observed that

For Huffman, on average the algorithm compresses the file to around 56.1% of its

original size, while for the Shannon-Fano algorithm, the file gets compressed to around

58.5% of its original size.
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While this may not seem like a very large difference on a surface level, the 2.4%

difference ends up becoming quite significant when it comes to larger files than the

ones used for the test cases. This is in line with my initial hypothesis about these

algorithms, as according to my research, Huffman coding always produces optimal

results; while Shannon-Fano does not due to its dependance on probability models.

This means that it would require data to follow certain types of pattern for the algorithm

to be optimal, which is why Huffman coding is often preferred over it. Inefficient

compression may arise from issues such as inefficient probability distributions, or when

there is a very limited number of symbols within a file; due to the low number of

occurrences for each symbol, it makes it difficult for the algorithm to produce an efficient

probability model for the text file. Huffman, on the other hand, does not suffer from such

an issue due to the fact that it makes use of the prefix code instead.

A factor that may have impacted the results is that the type of Huffman coding was not

considered, as in whether the algorithm was adaptive or not; If one of the two in

particular were looked into, it is possible that different conclusions may have been

reached.
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Conclusion

In conclusion, the answer to my research question, “Investigation into Huffman Coding

and Shannon-Fano Coding: Which algorithm is more efficient?” can be sufficiently

answered through the tests I have conducted for a general answer. However, if we were

to go more in depth, there are specific cases for which Shannon-Fano coding would

undoubtedly be more optimal than Huffman coding, due to the values within the files

being favorable for the probability model generated by Shannon-Fano. While Huffman

coding is a more widely used algorithm due to it being able to always generate the

optimal result for itself, both algorithms have their merits, and which algorithm is

objectively better depends highly on the use case; like aforementioned, Shannon-Fano

would more effectively be able to produce its probability model with files containing

many repeated characters within.

Compression ratio, however, is not the sole way to evaluate the effectiveness of a

compression algorithm, however. Although Huffman coding had the better compression

ratio in the tests I conducted, I did not deduce which algorithm had the better runtime,

which is another factor used in determining the efficiency of an algorithm. That being

said, the data collected throughout this essay could be useful for firms looking for more

efficient data storage solutions and help in evaluating the benefits and drawbacks of

both algorithms.
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Limitations

Testing for anything other than the compression ratio for my case would not have not

been possible with the programs I was running. Go is a much faster language than

python, resulting in a test for runtime being unfair, as the Shannon-Fano algorithm

would have completely swept every test. That being said however, real world users may

prioritize the speed of compression over the actual compression ratio and it is therefore

an important consideration when evaluating the efficiency of algorithms.

Using adaptive Shannon-Fano Coding could have also yielded different results; this is

due to the fact that the adaptive versions of compression algorithms almost always

outperform the arithmetic versions.
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Appendix

Huffman Coding algorithm
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Shannon-Fano Algorithm:
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Raw Data:

Algorithm

Sample Original File Size
(KB)

Huffman Shannon-Fano

Sample Text 699 385 398

Bee Movie Script 49 29 30

“Crazy? I was crazy
once” copypasta

52 27 28

Shrek Script 38 22 24

Processed Data:

Sample Compression ratio
(Huffman)

Compression ratio
(Shannon-Fano)

Sample Text 699:385 699:398

Bee Movie Script 49:29 49:30

“Crazy? I was crazy
once” copypasta

52:27 52:28

Shrek Script 38:22 38:24

Average 196177:109620 Kilobytes
≈ 196:110 Megabytes
= 98:55 Megabytes

570859:334320 Kilobytes
≈ 571:334 Megabytes
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