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Terminology 
Explained in simplified language with respect to the paper 

Mitigations These are common techniques which are used to protect software applications 

against well-known exploits and vulnerabilities. 

Executable These files are programs which consist of encoded instructions to perform 

specific tasks. 

Shared 

Library 

A file containing object code which cannot be run directly but is usually linked 

to an executable. 

Core Dump A file containing a process’s memory dump when it terminates unexpectedly. 

Memory 

Page 

A memory page is a contiguous block of virtual memory which is described by 

a single entry in the page table. 

Physical 

Memory 

The memory mapped to RAM. 

Virtual 

Memory 

A feature of the operating system which can be used to compensate for 

shortages in physical memory. 

Userspace The code that runs outside the context of the operating system’s kernel. 

System Call A way for userspace programs to interact with the operating system’s kernel. 

Dereference Access or manipulate data contained in a memory location pointed by a 

pointer. 

Code 

Execution 

An attacker’s ability to execute arbitrary code on a target computer. 

Buffer A region of physical memory used to temporarily store data while it is being 

moved from one place to another. 

Arbitrary 

Write 

It is a condition where an attacker has the ability to write an arbitrary value at 

an arbitrary location in the memory. 

Chunk A fixed region of memory used to store user data. It also consists of meta-data 

which includes the size of the chunk. 

Glibc The GNU C library. It defines standard functions and system API which are 

used by programmers while developing software. 
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1: Introduction 

Binary exploitation is the process which is used to exploit compiled applications. There are 

multiple ways to carry out such an attack. This generally deals with memory corruption bugs. It is 

well known that most of the low level/compiled languages give a lot of control to the programmer. 

Unlike high level programming languages, where the programmer has to only implement the code 

logic, low level languages require the programmer to implement everything. For example, the 

programmer is responsible for managing memory which is used by the program. Such low-level 

programming languages are very efficient because these can be directly converted into assembly 

language and run by the computer. This is one of the reasons why softwares such as operating 

systems and browsers still make use of low-level languages. Thus, logic errors in low level code 

are mis utilized to perform binary exploitation. 

Such vulnerabilities have been exploited in the wild for decades. Several techniques are utilized to 

hijack the control flow of the programs. Exploitation often includes injection of shellcode into the 

running program or even make use of the machine instructions which are already present in the 

program. Developers have come up with several mitigation strategies to prevent memory 

corruption vulnerabilities. This makes the exploitation harder up to a certain extent but doesn’t 

eradicate it completely.  

1.1: Scope and significance 

The aim of this essay is to analyze and model various stack and heap exploitation techniques on 

Linux. Furthermore, test its applicability with respect to the modern GNU C library. This essay 

also aims to showcase various mitigations that have been applied over the time to protect systems 
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from common attacks. It will be determined which techniques hold more relevance and are tough 

to mitigate. 

1.2: Methodology 

I will start by looking at the ELF (Executable and Linkable Format) executables, which is the 

format used by Linux to run executable files. Then, explain how memory management is done on 

Linux processes. I’ll then explore various mitigations present on stack and heap implementations 

in the GNU C library. Various exploitation techniques used to bypass these mitigations will be 

discussed. The mitigations introduced in the two different glibc versions as mentioned in the 

research question, will be compared. 

2: Processes on Linux 

Processes are fundamental to any multitasking operating system. Various processes can run the 

same program separately. On the Linux kernel, a separate thread is created for each process. These 

processes might have different priorities and are handled respectively by the task scheduler. 

2.1: The ELF executable 

ELF is a cross-platform file format which is used for executables, shared libraries, object files and 

core dumps. This is the standard file format for the Linux operating system. This format consists 

of various segments which include the ELF header, the section header table and the program header 

table (Linux manual page). 
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2.2: Memory Management 

Just like any other operating system, processes on Linux can allocate memory pages. This allocated 

memory might be mapped to RAM (as physical memory) or the on the disk (as virtual memory). 

As shown in figure 1 memory pages can generally be divided into three categories - 

● Stack 

● Heap 

● Mapped pages 

 
Figure 1: Memory layout in a linux process (The linux programming interface) 

2.2.1: Stack 

A memory page with a fixed small size is allocated for the stack. The stack follows last in first out 

order. The push instruction can be used to push data on the top of the stack. The pop instruction 
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can be used to pop data from the bottom of the stack. The stack is used to store data in a running 

process. 

2.2.2: Heap 

Heap is dynamically allocated memory which can be used by the program if a larger storage size 

is required. On userspace programs, heap memory is allocated through brk and sbrk system-calls. 

These system-calls are used by the malloc() function which is defined under the GNU C library. 

The data allocated through malloc() can be deallocated with the free() function. Usually, heap 

memory is directly stored on RAM. 

2.2.3: Mapped pages 

As it is known that, RAM has limited space which sometimes may not be enough. In such a 

scenario, mapped pages are allocated. This region of memory is backed by the disk storage and 

can be transferred to RAM when it is dereferenced. This memory management technique is also 

called virtual memory. 

2.2.4: Registers 

Registers store data which can be accessed by the processor very quickly. In general, there are 

various types of registers: 

● Memory Address Registers (MAR): These hold the address of the memory region to read 

data from or to write data. 

● Memory Data Registers (MDR): These hold the data to be written to the memory regions 

pointed by memory address registers. 
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● General purpose registers: There are multiple such registers present in the processor. 

These can be used to temporarily store data in the execution of a process. 

● Program Counter (PC): This register holds the address of the memory region which 

points to the next instruction to be executed. The value of this register is incremented after 

the execution of each instruction. The increment size depends on the instruction itself. 

● Instruction Register (IR): This register holds the instruction which is being executed 

currently. This is fetched from the program counter (Khushal). 

2.3 Heap Freelists 

Once freed, heap chunks are stored in singly/doubly linked lists. There are various types of free-

lists depending on the properties of an allocated chunk.  

 

● Per-thread-cache list 

This is a singly linked list which acts as a per-thread cache. It can store a maximum of 7 

freed chunks at once. This free-list has the highest priority in the allocation of chunks. 

Addition and deletion happen in LIFO manner. There are 64 tcache bins for different sizes. 

● Fastbin 

Just like tcahe, fastbins also use singly linked lists. Although, there is no limit on the 

maximum number of chunks a fastbin can store. Addition and deletion happen in LIFO 

manner. There is a total of 8 fastbins. 

● Unsorted Bin 

Only one unsorted bin exists. Its main purpose is to act as a cache for allocation requests. 

Unlike other bins, this does not have a fixed size. Before being inserted to small/large bins, 

chunks are stored in the unsorted bin. 
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● Small bin 

Unlike tcache bins and fastbins, each smallbin maintains a doubly linked list. There is a 

total of 64 fastbins. Also, addition and deletion happen in FIFO (First in first out) manner. 

If an unsorted bin is present and an allocation request cannot be met by it, then it is 

transferred to a largebin or unsorted bin depending on the size. 

● Large bin 

Large bins are stored in a doubly linked list. Unlike the other bins, this might have a range 

of sizes in the same bin which are sorted in a decreasing order. There are 65 fastbins in 

total. Insertion and deletion can happen at any position in the linked list for each large bin, 

depending on the size of the allocation request (Delorie). 

3: Exploitation and Mitigations 

The aim for exploitation will be to analyze and exploit common vulnerabilities and use them to 

gain code execution. 

3.1.1: Stack Buffer Overflow 

A stack-based buffer overflow is a very common vulnerability. This occurs when a stack buffer 

can be overwritten. This is generally due to a lack of bounds checking in the program. The 

following C program demonstrates a simple buffer overflow: 

Figure 2: Sample C program demonstrating a buffer overflow 
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The program as shown in figure 2, allocates an array buffer of size 20 on the stack. The call to 

fgets() allows the user to input data on that buffer through standard input. As the input size is 

greater than 20, this can result in a stack overflow. This can be used to corrupt the metadata on the 

stack frame. 

 

Figure 3: Stack frame for the main() function 

Figure 3 visualizes the stack frame for the main function. As it can be deduced from the figure, the 

saved frame pointer and saved return pointer are stored contiguous to the array buffer. An attacker 

can use the stack buffer overflow to overwrite the saved return pointer (also known as program 

counter) and hijacking the control flow of the program. The saved return pointer can be overwritten 
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with an address to a controlled region in memory and arbitrary code execution can be achieved. 

This can be seen in figure 4.  

 

Figure 4: Stack frame after buffer overflow 

3.1.2: Mitigations against stack buffer overflow 

Due to wild exploitation of buffer overflows various mitigations were introduced against it. These 

include Stack Canary, NX, PIE (position independent executable), ASLR etc. 

Stack Canary 

Stack canary as seen in figure 5 is a mitigation which was introduced to protect against buffer 

overflow attacks. This mitigation stores a randomly generated value between the allocated buffer 

and the saved frame pointer. Before returning to the saved return pointer this value is checked 
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using XOR operation. The value on the stack is XORed with the original value of the stack canary. 

If the result of the XOR operation is not zero as it should be, an exception is raised and the program 

crashes immediately preventing an attacker from exploiting the program (Hawkins). 

 

Figure 5: Demonstrating a stack canary 

Weakness 

This mitigation is ineffective when the value of the stack canary can be found. This can be the case 

if there are any memory leaks in the program.  

No-Executable Bit 

This NX bit is a mitigation that marks the user controlled regions (such as stack and heap) in the 

memory as non executable. It was added in various processors as a page table entry. This allows 
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the segregation of memory to be used either as code or as data storage. It ensures that even if the 

return pointer is hijacked, code execution is not possible. If the return pointer points to such a 

region, the program crashes. 

Weakness 

This mitigation prevents an attacker to completely take control over the execution flow of the 

program. But control over the program counter is still possible. This allows an attacker to reuse 

existing snippets of code from a program and chain them together to gain code execution. This 

attack method is known as Return-oriented programming, ROP (Shapiro). 

ASLR 

ASLR (Address Space Layout Randomization) is a mitigation technique which randomizes the 

address space of memory regions in a process. Due to this, addresses of memory regions are 

unknown. Thus, an attacker cannot trivially utilize techniques such as ROP (Marco-Gisbert). 

Weakness 

Just like in the case of stack canary, this mitigation technique is ineffective when memory leaks 

are present in the program. A memory leak may be used to calculate the addresses of memory 

regions. 

3.2: Heap 

As mentioned in 2.1.2, heap memory is dynamically allocated. Thus, a program can request or 

release memory from the heap region when required. The glibc malloc implementation is chunk 

oriented. This means that it allocates a huge region of memory at once and then it’s further divided 

into smaller chunks as per to the allocation requests. Each of these chunks contain meta-data which 

stores its properties. In general, there are two types of chunks: Allocated and freed.  
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struct malloc_chunk { 

 

  INTERNAL_SIZE_T      mchunk_prev_size;  /* Size of previous chunk (if 

free).  */ 

  INTERNAL_SIZE_T      mchunk_size;       /* Size in bytes, including 

overhead. */ 

 

  struct malloc_chunk* fd;         /* double links -- used only if free. */ 

  struct malloc_chunk* bk; 

 

  /* Only used for large blocks: pointer to next larger size.  */ 

  struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */ 

  struct malloc_chunk* bk_nextsize; 

}; 

Malloc chunk data structure definition (GNU libc source code) 

 

 

Figure 6: heap chunk in use 
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 As shown in figure 6, the header of each used chunk consists of the size of the previous chunk 

and the current chunk. The size field stores three other properties which are bit-masked. When a 

chunk gets freed, it is stored in a free-list of its respective size. For smaller sizes it is stored in a 

singly linked list, while for larger sizes it is stored in a doubly linked list. The forward pointer and 

backward pointers in this case are called fd and bk respectively. This can be seen in figure 7. 

 

Figure 7: freed heap chunk 

3.2.1: Use After Free 

A use-after-free vulnerability is caused when the program frees an allocated chunk but it is still 

accessible by the user. Thereby, the term: use-after-free. This vulnerability can be used to corrupt 
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the chunk metadata or can be used for memory leaks. It might leave an attacker with powerful 

primitives, required for exploitation (Younan). 

 3.2.2: Double free 

This vulnerability occurs when an allocated pointer is freed twice. This means that two consecutive 

calls to malloc() will return the same address. This has a similar effect to that of a use after free 

vulnerability. An attacker can use this to corrupt the chunk metadata. 

 3.2.3: Unsafe unlink 

The unlink method is used for removing a node from a doubly linked list. In this case, if an attacker 

controls the fd and bk pointers for a freed chunk it can be used to gain an arbitrary write primitive. 

This can be further used to gain code execution (Kapil). 

 3.2.4: Heap buffer overflow 

The causes of this vulnerability are the same as a stack buffer overflow as mentioned in 3.1.1. This 

allows an attacker to overflow into contiguous chunks and corrupt their metadata. There are near 

to no mitigations that fix this issue. It might help an attacker to gain various primitives which can 

lead to code execution.  

3.3: glibc heap exploitation techniques 

There are various known heap exploitation techniques specific to the glibc heap implementation. 

These utilize the vulnerabilities discussed in 3.2. 

3.3.1: Tcache poisoning 

Tcache as shown in figure 8 is a per-thread cache which can store a small number of chunks. These 

are stored in singly linked lists. There are different bins for each size depending on the alignment. 

 



Page 14 of 32 
 

 

Figure 8: Sample tcache bin for size 24 

As tcache is supposed to be fast, a lot of security checks were skipped. This gives rise to many 

attacks, one of those being tcache poisoning. This attack can be used when a use-after-free 

vulnerability is present. As shown in figure 9, it can be performed by corrupting the fd pointer in 

a freed chunk and can force malloc() to return a pointer to an arbitrary region (Itkin).

 

Figure 9: Tcache poisoning through use-after-free 

3.3.2: Tcache/Fastbin Dup 

 Similar to tcache, fastbin is a singly linked list which contains freed chunks. There are a few 

differences between these two bin lists. Unlike tcache, fastbin does not have a limit in the number 

of chunks it can store. Fastbin also has extra security checks to ensure the validity of a chunk. 

Duping is a method to free the same chunk twice. This results in having a duplicate of the chunk 

in the freelist. This can be seen in figure 10. 

 
Figure 10: Tcache/fastbin dup 
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3.3.3: House of spirit 

Unlike other heap vulnerabilities which require an overflow or a use-after-free primitive, this 

attack functions differently. It requires an attacker to have control over the pointer pointing to the 

heap region. This pointer can be overwritten to point to a non-heap region, such as stack or mapped 

memory. Once this pointer is freed with the free() function, it gets inserted into the free-list. For 

this to happen, the region must meet certain security checks. However, this is not difficult due to 

the structure of a glibc heap chunk, as only the size field of the current and the continuous chunk 

must be valid (Rørvik). 

3.3.4: House of force 

Just as in house of spirit, the end goal for this technique is to make malloc() return an arbitrary 

pointer. This requires a heap overflow and also the ability to fully control the size for allocation 

requests. The size of the top chunk is modified to a very large value such as -1. -1 being an unsigned 

integer, translates to 0xffffffffffffffff on 64 bit systems. A value this big can cover the entire 

address space if the program. Thus, if the address of the top chunk is known, this technique can be 

used to return an arbitrary pointer with malloc() (Kevin). 

3.3.5: House of Einherjar 

House of Einherjar is a very powerful glibc heap exploitation technique, which can be exploited 

in the very old glibc releases as well as the latest ones with slight modification. Just like other 

techniques, the end goal is to make malloc() return an arbitrary pointer in the memory. This 

technique requires only a single null byte overflow vulnerability, which is a common mistake made 

by programmers. As shown in figure 7, the PREV_IN_USE flag is bit masked in the size field of 
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a chunk. This technique uses the overflow to clear this flag. As the flag is now cleared, the 

prev_size field is used and can be controlled by the attacker. When the next chunk gets freed, the 

heap allocator finds that the previous chunk is not in use. Thus, it consolidates the previous chunk 

with the current chunk to prevent fragmentation on the heap. The size of the previous chunk is 

defined in the prev_size field, which is controlled by the attacker. The attacker can use this 

primitive to free arbitrary heap chunks which are contiguous to the chunk being freed and cause a 

use-after-free condition. This can be further exploited trivially to gain code execution. This 

technique is very powerful as it works on almost all versions of the glibc and can be used to gain 

powerful primitives. 

3.4: Comparison based on security 

One of the major differences between both the glibc versions is the introduction of tcache freelist. 

Although tcache makes the allocations faster, it does this at the cost of security. While in some 

cases the tcache implementation presents better mitigations, it makes exploitation easier otherwise.  

The following structure presents a freed tcache chunk. 

typedef struct tcache_entry 

{ 

  struct tcache_entry *next; 

  struct tcache_perthread_struct *key; 

} tcache_entry; 

 

Double free detection in tcache 

As the tcache list is based on a singly linked list, the bk field is not used. This is thus used as a key. 

This points to the tcache_perthread_struct for the tcache list of the respective chunk size. This 

value is set when the chunk is already in the tcache free-list. Due to ASLR, it is not possible for 

an attacker to know the value of tcache_perthread_struct as it changes on each run. When an 
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allocation request is made and the tcache_entry is deleted from the list, the key value is cleared. 

Due to this, if a chunk is already in the tcache list, and it is freed again through a dangling pointer, 

the key value will be already present in the chunk. This will trigger a further check and the tcache 

list will be iterated to check if this chunk already exists in the list. If it does, the program will abort 

to prevent exploitation. 

Weakness 

This mitigation solely depends on whether the key value points to the  tcache_perthread_struct. 

Thus, it can be overcome with the help of a use-after-free vulnerability where the value of the key 

is overwritten. As a result, the check is never triggered. However, these two vulnerabilities rarely 

co-exist.  

Figure 11 and 12 show the implementation of the described technique (glibc 2.31): 

 

Figure 11: Tcache double free check bypass 
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Figure 12: Tcache double free demonstration 

 

Double free detection in fastbin 

Unlike the double free check in the tcache list, fastbin doesn’t use a key to detect double free. 

Instead, it just compares the pointer being freed to the head of the linked list. Thus, if the same 

chunk is freed right after the previous free, it will trigger the double free abort. 

Weakness 

Only the head of the fastbin linked list is checked for the double free. As the whole linked list isn’t 

traversed, a double free attack can be performed by freeing another chunk before the double free. 

This can be seen in figure 13 and 14. 

 
Figure 13: Fastbin double free check bypass 

 
Figure 14: Fastbin double free example 
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Freelist poisoning in tcache 

 

Figure 15: tcache_get method 

As it can be seen from the code in figure 15, malloc() uses the tcache_get() method internally to 

get chunks from the tcache list. Here, no checks are being made. Thus, if an attacker controls the 

next field with a use-after-free they will be able to control the pointer returned by tcache_get() and 

hence malloc(). 

Freelist poisoning in fastbin 
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Figure 16: fastbin_get method 

The general strategy for fastbin poisoning is similar to that of tcache. It requires control over the 

fd pointer after a chunk is freed. Fastbin, just like tcache, is based on a singly linked list. If the fd 

pointer of a freed chunk is overwritten, a subsequent call to malloc() will return a pointer to this 

address. However, unlike tcache there are extra checks on the chunk metadata before the chunk is 

returned, as seen in figure 16. These metadata checks significantly reduce the impact of a use-

after-free bug. While, tcache poisoning provides an attacker with a primitive to make malloc() 

return a nearly arbitrary pointer, fastbin limits this ability by only returning chunks which follow 

the same structure as a fastbin chunk for the specified size. This forces an attacker to either find or 

create “fake chunks” in the memory such that the fd pointer points to it. 
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3.5: Performance benchmarking comparison 

Performance is an important ground for the comparison between the efficiency of the two 

implementations. This benchmarking will be performed on various devices. Various allocation 

sizes will be tested for each device. 

Hypothesis 

In glibc version 2.26 a freelist known as tcache was introduced. It is a per-thread cache with a 

limited number of entries which serves allocation sizes less than 1024. This has the highest priority 

when an allocation is served. Thus, the performance is expected to be better in glibc 2.31 while 

there should not be much of a difference in larger allocation sizes. 

Results 

#1) Processor: Intel i7-10750H 

      Device name: Lenovo legion 5 laptop 

      CPU count: 6 (12 threads) 

      Processor Speed: 3200MHz 

      Operating System: Ubuntu 20.04 LTS (based on linux kernel version 5.4.0) 

 

Runtime for single process 10,000,000 requests between 0 to 1024 bytes 

Test no. Glibc 2.15 time in seconds Glibc 2.31 time in seconds 

1 0.382785 0.020909 

2 0.388431 0.052439 

3 0.378810 0.017607 

4 0.383213 0.018688 

5 0.379097 0.051745 

Average 0.3824672 0.0322776 

 

Runtime for 12 processes 10,000,000 requests between 0 to 1024 bytes 

Test no. Glibc 2.15 time in seconds 

(average of all processes) 

Glibc 2.31 time in seconds 

(average of all processes) 
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1 0.5984496 0.1309238 

2 0.6059243 0.12632841 

3 0.606181 0.11436658 

4 0.592927 0.1234309 

5 0.606477 0.1244845 

Average 0.60199178 0.12390683 

 
Runtime for single process 10,000,000 requests between 0 to 8192 bytes 

Test no. Glibc 2.15 time in seconds Glibc 2.31 time in seconds 

1 0.309495 0.296383 

2 0.319182 0.292292 

3 0.316961 0.302637 

4 0.314434 0.301698 

5 0.317795 0.301023 

Average 0.315573 0.2988066 

 
Runtime for 12 processes 10,000,000 requests between 0 to 8192 bytes 

Test no. Glibc 2.15 time in seconds 

(average of all processes) 

Glibc 2.31 time in seconds 

(average of all processes) 

1 0.534113 0.52165375 

2 0.5106381 0.51852641 

3 0.51503525 0.5148141 

4 0.5121525 0.521318 

5 0.4939454 0.52281108 

Average 0.51317685 0.519824668 
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Result Analysis 

As it can be seen in the results, glibc 2.31 performs much better than 2.15 for smaller allocations. 

This provides evidence that the hypothesis holds true. There are very small time differences for 

larger allocations. However, these might have been caused due to the random errors that were 

present during the testing.  

The introduction of tcache brings in significant improvement in the performance of the heap 

allocator.  

4: Conclusion 

4.1: Propositions 

The glibc 2.31 release brings with itself a significant increase in the performance of the heap 

allocator. This also includes various security fixtures and mitigations. However, the introduction 

of tcache makes exploitation much easier in various conditions. It has been seen that a lot of 

exploits have utilized tcache for successful exploitation. Thus, the implementation of tcache must 

be reviewed under future releases and the required security checks should be introduced.  

4.2: Closing statements 

After studying the implementation and comparing the benchmarks of the heap allocator in both 

the glibc releases, it is evident that version 2.31 shows a better performance. It also introduces 

various mitigations that were absent in the prior release. It fixes trivial double free attacks which 

were widely exploited previously. However, in the implementation for tcache it makes a trade-off 

between performance and security. It choses performance over security by removing most security 

checks which were present in the prior fastbin implementation. This issue needs to be resolved in 

the future releases for improved security. This essay utilized various research papers, 
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documentations and security-related websites to limit the chances of citing inaccurate information. 

Hence to answer my research question, “To what extent is the GNU C library heap implementation 

on glibc version 2.31 more secure than version 2.15 and how has this affected its performance?”, 

the new glibc version 2.31 has made improvements in performance but has barely added any 

mitigating measures for common security vulnerabilities. A lot of these vulnerabilities can be 

addressed by introducing freelist hardening measures while having almost no impact on the 

performance (Itkin). These might be introduced in future releases of the glibc.  

4.3: Limitations and future scope 

The techniques discussed in this essay require a good control over the heap allocation and free 

requests. This might not always be possible in real life scenarios. There are various heap 

exploitation techniques based on smallbins and largebins, which were exploitable in glibc 2.15 but 

are no longer exploitable in glibc 2.31. However, these go beyond the scope of this essay and hence 

were not discussed. Applications such as browsers, sometimes use their own heap implementations 

(Ex. chrome uses tcmalloc). Thus, glibc heap exploitation techniques can be completely 

disregarded in such scenarios. The GNU C library is undergoing constant development. Thus, 

tcache being an experimental feature might be removed in future releases.  
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6: Appendix 

Code used to benchmark malloc (Lever) 

/* 

 *  malloc-test 

 *  cel - Thu Jan  7 15:49:16 EST 1999 

 * 

 *  Benchmark libc's malloc, and check how well it 

 *  can handle malloc requests from multiple threads. 

 * 

 *  Syntax: 

 *  malloc-test [ size [ iterations [ thread count ]]] 

 * 

 */ 

 

#include stdio.h 

#include stdlib.h 

#include sys/time.h 

#include unistd.h 

 

#include pthread.h 

 

#define USECSPERSEC 1000000 

#define pthread_attr_default NULL 

#define MAX_THREADS 50 

 

void run_test(void); 

void * dummy(unsigned); 

 

static unsigned size = 512; 

static unsigned iteration_count = 1000000; 

 

int main(int argc, char *argv[]) 

{ 

 unsigned i; 

 unsigned thread_count = 1; 

 pthread_t thread[MAX_THREADS]; 

 

 /* 

  * Parse our arguments 

  */ 

 switch (argc) { 

 case 4: 

  /* size, iteration count, and thread count were specified */ 

  thread_count = atoi(argv[3]); 

  if (thread_count > MAX_THREADS) thread_count = MAX_THREADS; 

 case 3: 

  /* size and iteration count were specified; others default 

*/ 

  iteration_count = atoi(argv[2]); 

 case 2: 

  /* size was specified; others default */ 

  size = atoi(argv[1]); 

 case 1: 

  /* use default values */ 

  break; 
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 default: 

  printf("Unrecognized arguments.\n"); 

  exit(1); 

 } 

 

 /* 

  * Invoke the tests 

  */ 

 printf("Starting test...\n"); 

 for (i=1; i<=thread_count; i++) 

  if (pthread_create(&(thread[i]), pthread_attr_default, 

     (void *) &run_test, NULL)) 

   printf("failed.\n"); 

 

 /* 

  * Wait for tests to finish 

  */ 

 for (i=1; i<=thread_count; i++) 

  pthread_join(thread[i], NULL); 

 

 exit(0); 

} 

 

void run_test(void) 

{ 

 register unsigned int i; 

 register unsigned request_size = size; 

 register unsigned total_iterations = iteration_count; 

 struct timeval start, end, null, elapsed, adjusted; 

 

 /* 

  * Time a null loop.  We'll subtract this from the final 

  * malloc loop results to get a more accurate value. 

  */ 

 gettimeofday(&start, NULL); 

        srand(0xdeadbeef); 

 

 for (i = 0; i < total_iterations; i++) { 

  register void * buf; 

  buf = dummy(i); 

  buf = dummy(i); 

 } 

 

 gettimeofday(&end, NULL); 

 

 null.tv_sec = end.tv_sec - start.tv_sec; 

 null.tv_usec = end.tv_usec - start.tv_usec; 

 if (null.tv_usec < 0) { 

  null.tv_sec--; 

  null.tv_usec += USECSPERSEC; 

 } 

 

 /* 

  * Run the real malloc test 

  */ 

 gettimeofday(&start, NULL); 
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 for (i = 0; i < total_iterations; i++) { 

  register void * buf; 

  buf = malloc(rand() % (request_size+1)); 

  free(buf); 

 } 

 

 gettimeofday(&end, NULL); 

 

 elapsed.tv_sec = end.tv_sec - start.tv_sec; 

 elapsed.tv_usec = end.tv_usec - start.tv_usec; 

 if (elapsed.tv_usec < 0) { 

  elapsed.tv_sec--; 

  elapsed.tv_usec += USECSPERSEC; 

 } 

 

 /* 

  * Adjust elapsed time by null loop time 

  */ 

 adjusted.tv_sec = elapsed.tv_sec - null.tv_sec; 

 adjusted.tv_usec = elapsed.tv_usec - null.tv_usec; 

 if (adjusted.tv_usec < 0) { 

  adjusted.tv_sec--; 

  adjusted.tv_usec += USECSPERSEC; 

 } 

 printf("Thread %d adjusted timing: %d.%06d seconds for %d requests" 

  " of %d bytes.\n", pthread_self(), 

  adjusted.tv_sec, adjusted.tv_usec, total_iterations, 

  request_size); 

 

 pthread_exit(NULL); 

} 

 

void * dummy(unsigned i) 

{ 

 return NULL; 

} 

 

 


