
Investigating algorithms for solving the Traveling Salesman Problem

To what extent Branch and Bound algorithm, Greedy algorithm and the Christofides'

algorithm are efficient ways of solving the Travelling Salesman Problem (TSP)?

A Computer Science Extended Essay

4000 words

CS EE World
https://cseeworld.wixsite.com/home
23/34 (B)
May 2022

"e-mail: nadia [dot] hoffmann123 [at] gmail.com
My name is Nadia, I got admitted to several unis, but going to Warsaw
University
My supervisor expected my EE to be graded higher, but I'm happy with the
result nonetheless, as the entire process of writing the essay was surprisingly
quite pleasant. If you have any questions regarding CS EE, CAS or IB in
general, I'll be more than happy to help! Good luck with your essay :)"

Table of Contents

1. Introduction ... 1

2. Background information ... 3

2.1 The Structure of the TSP.. 3

2.2 The Complexity of the TSP ... 5

2.3 An Overview of Some Classical Algorithms for Solving the TSP 6

2.3.1 Example of Exact Algorithm: The Branch and Bound Algorithm 7

2.3.2 Example of Approximate Algorithm: The Christofides'Algorithm 9

2.3.3 Example of Heuristic Algorithm: The Greedy Algorithm 10

3. Hypothesis and Experiment Methodology... 12

3.1 Hypothesis and Applied Theory .. 12

3.2 The Independent Variable .. 13

3.3 The Dependent Variable .. 13

3.3.1 Time .. 13

3.3.2 Accuracy ... 14

3.4 The Controlled Variables ... 14

3.5 The Experimental Procedure .. 15

4. The Experimental Results ... 17

4.1 The Tabular Data Representation .. 17

4.1.1 The Average Execution Time ... 18

4.1.2 The Accuracy of the Calculated Tour Lengths ... 20

4.2 The Graphical Data Representation ... 22

4.2.1 The Average Execution Time ... 22

4.2.2 The Average Accuracy of the Calculated Tour Lengths .. 25

4.3 Data Analysis ... 25

4.4 Possible Improvements and Further Research Opportunities .. 26

5. Conclusions ... 28

6. Reference list .. I

7. Appendices ... VI

Appendix A: Code of the Algorithms Used ... VI

Appendix B: The Datasets and Their Representation .. XV

Appendix C: Raw Data Tables .. XXXI

1

1. Introduction

The Traveling Salesman Problem (TSP) is an NP-hard optimization problem. Despite its

simplicity at the first glance, it is one of the most known and studied problems in Mathematics

and Computer Science. It is dated back to the 18th century, when it was studied by Irish and

British mathematicians Sir William Rowan Hamilton and Thomas Penyngton Kirkman. Its idea

is: given the cost or travel time between cities in the set find the shortest or cheapest (therefore

the most optimal) way through all of them, visiting each of them exactly once and returning to

the first one.1 Additional assumptions are that distances are positive and, since every city is

visited only once, there is a finite number of solutions. There are also many variations of the

problem: some require that the distance between city A and B is the same as one between B

and A (these are called symmetric TSP); in others distance from A to B might be different than

from B to A (asymmetric TSP).2 In this work focus will be placed on symmetric TSP cases.

TSP is a problem which the optimal solutions to are very beneficial for the wide amount of

fields. The obvious ones are transport or postal businesses, where goods have to be delivered

in the fastest way possible. The optimal route problem also occurs in manufacturing circuit

boards or other objects - the order of the holes has to be scheduled so that the machine has to

make as little movement as possible to save time and, therefore, money. However, TSP

algorithms or their elements are also used in much more scientific and rather surprising areas,

such as genome sequencing, planning satellite routes or x-ray crystallography. 3 The variety of

1 Rajesh Matai, Surya Singh, and Murari Lal, “Traveling Salesman Problem: An Overview of Applications,

Formulations, and Solution Approaches” in Traveling Salesman Problem, Theory and Applications (Rijeka:

InTech, 2010), pp. 1 10.5772/12909>.
2 Chetan Chauhan, Ravindra Gupta, and Kshitij Pathak, “Survey of Methods of Solving TSP along with Its

Implementation Using Dynamic Programming Approach”, International Journal of Computer Applications, 52.4

(2012), 12 <https://research.ijcaonline.org/volume52/number4/pxc3881550.pdf> [accessed 19 February 2021].
3 Matai, Singh and Lal, “Traveling Salesman Problem: An Overview of Applications, Formulations, and

Solution Approaches”, pp. 2-4

https://research.ijcaonline.org/volume52/number4/pxc3881550.pdf

2

situations where the algorithms for solving the TSP can be applied shows how broad are

applications of them and how important it is to find the most efficient one of them.

To investigate and evaluate the algorithms for solving the TSP, the experiments on their

accuracy and execution time were made in order to find the most efficient one, here defined as

the one with the highest accuracy and smallest execution time. Different data sets were used

and the execution time and accuracy were analyzed. Mathematical and logical explanations for

the results obtained were presented and discussed to answer the research question: to what

extent Branch and Bound algorithm, Greedy algorithm and the Christofides’ algorithm

are efficient ways of solving the Travelling Salesman Problem (TSP)?

3

2. Background information

2.1 The Structure of the TSP

TSP can be modelled in several ways, one of which is using the graph theory.

Definition 1: A graph G can be defined as a pair (𝑉, 𝐸), where 𝑉 is a set of vertices, and 𝐸 is a

set of edges between the vertices 𝐸 ⊆ {(𝑢, 𝑣) | 𝑢, 𝑣 ∈ 𝑉}. If the graph is undirected, the

adjacency relation defined by the edges is symmetric, or 𝐸 ⊆ {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉} (sets of

vertices rather than ordered pairs).4

Several other definitions are needed to model TSP using the graphs. The length or the cost of

the routes is the crucial element of the problem. Therefore, the weight function must be applied

on every edge.

Definition 2: A weight function or distance function on a graph 𝐺 = (𝑉, 𝐸) is a function 𝑤 ∶

𝐸 → ℝ that gives every edge of E a real number.5

In order to be able to fully understand the problem, description of some more characteristics of

the graph are necessary.

Definition 3: A path is a list of vertices of a graph where each vertex has an edge between it

and the next vertex.6

Definition 4: Hamiltonian cycle is a path through a graph that starts and ends at the

same vertex and includes every other vertex exactly once.7

4 Paul E. Black and Paul J. Tanenbaum, “graph”, Dictionary of Algorithms and Data Structures, 2005

<https://xlinux.nist.gov/dads/HTML/graph.html> [accessed 29 June 2021].
5 Daniël Vos, “Basic Principles of the Traveling Salesman Problem and Radiation Hybrid Mapping”

(unpublished Bachelor Thesis, 2016) <https://repository.tudelft.nl/islandora/object/uuid:0ebb0f3b-e352-4f3c-

8465-5c6be2812a90/datastream/OBJ/download> [accessed 19 February 2021].
6 Paul E. Black, “path”, Dictionary of Algorithms and Data Structures, 2005

<https://xlinux.nist.gov/dads/HTML/path.html> [accessed 29 June 2021].
7 Paul E. Black, “Hamiltonian cycle”, Dictionary of Algorithms and Data Structures, 2005

<https://xlinux.nist.gov/dads/HTML/hamiltonianCycle.html> [accessed 29 June 2021].

https://xlinux.nist.gov/dads/HTML/graph.html
https://repository.tudelft.nl/islandora/object/uuid:0ebb0f3b-e352-4f3c-8465-5c6be2812a90/datastream/OBJ/download
https://repository.tudelft.nl/islandora/object/uuid:0ebb0f3b-e352-4f3c-8465-5c6be2812a90/datastream/OBJ/download
https://xlinux.nist.gov/dads/HTML/path.html
https://xlinux.nist.gov/dads/HTML/hamiltonianCycle.html

4

Definition 5: A complete graph is an undirected graph with an edge between every pair

of vertices.8

Therefore, the definition of the TSP might be as follows: “Given an graph G and a weight

function w on G, determine the minimum weight Hamiltonian cycle in G”.9 Logically, for the

graph to have a Hamiltonian cycle, it has to be complete. Therefore, the number of possible

tours can be calculated using the formula
(𝑛−1)!

2
, where n is the number of nodes (vertices) of

the graph.10 The more vertices, the more possible tours, and the number of them increases very

quickly, which is illustrated in the table 2.1.1 below:

S. No. Nodes (n) Edges (Arcs)
(𝑛−1)𝑛

2
 Tours

(𝑛−1)!

2

1 1 0 0

2 2 1 ½

3 3 3 1

4 4 6 3

5 5 10 12

6 6 15 60

7 7 21 360

8 8 28 2520

9 9 36 20160

10 10 45 181440

8 Paul E. Black, “complete graph”, Dictionary of Algorithms and Data Structures, 2005

<https://xlinux.nist.gov/dads/HTML/completeGraph.html> [accessed 29 June 2021].
9 Vos, “Basic Principles of the Traveling Salesman Problem and Radiation Hybrid Mapping”
10 Antima Sahalot and Sapna Shrimali, “A Comparative Study of Brute Force Method, Nearest Neighbour and

Greedy Algorithms to Solve the Travelling Salesman Problem”, IMPACT: International Journal of Research in

Engineering & Technology, 2.6 (2014), 60–61 10.1.1.684.8937>.

https://xlinux.nist.gov/dads/HTML/completeGraph.html

5

Table 2.1.1: Number of edges and tours for complete graph with n nodes. Adapted from Sahalot and Shrimali,

“A Comparative Study of Brute Force Method, Nearest Neighbour and Greedy Algorithms to Solve the

Travelling Salesman Problem”

2.2 The Complexity of the TSP

To classify the TSP to the computational complexity class, the investigation of the time

complexity of the known solving algorithms is needed. In order to do that, the definition of the

decision problems is necessary. These are ones the answer for which may be only ‘yes’ or

‘no’.11 The TSP itself is not a decision problem, but can be easily reformulated in order to

become one. The decision version of TSP is: given 𝑏 ∈ 𝑅, does the tour with length less than

b exist for a certain TSP?12 The decision problem belongs to a class P if the polynomial-time

algorithm for solving it exists, and to the class NP if the polynomial-time nondeterministic

algorithm for solving it exists. Nondeterministic algorithm is one where more than one path of

computation is possible.13 It is proved that “there is a polynomial-time algorithm for the TSP

if and only if there is a polynomial-time algorithm for TSP decision”.14 However, Karp in his

work proved that decision problem of TSP is NP-complete. When a problem belongs to NP-

complete class, it means it is “a decision problem such that if it can be solved in polynomial

time then every problem in NP can be solved in polynomial time”.15 A problem such that its

decision problem is in NP-complete class is called NP-hard, which is the case of the Traveling

Salesman Problem.16

11 Tiago Salvador, “The Traveling Salesman Problem: A Statistical Approach”, (2010), pp. 8–12

<http://www.math.lsa.umich.edu/~saldanha/Files/Report%20TSP.pdf> [accessed 29 June 2021].
12 Vos, “Basic Principles of the Traveling Salesman Problem and Radiation Hybrid Mapping”
13 Salvador, “The Traveling Salesman Problem: A Statistical Approach”
14 Salvador, “The Traveling Salesman Problem: A Statistical Approach”
15 Vos, “Basic Principles of the Traveling Salesman Problem and Radiation Hybrid Mapping”
16 Vos, “Basic Principles of the Traveling Salesman Problem and Radiation Hybrid Mapping”

http://www.math.lsa.umich.edu/~saldanha/Files/Report%20TSP.pdf

6

2.3 An Overview of Some Classical Algorithms for Solving the TSP

There are many classical algorithms developed for solving the TSP. It is important to

distinguish between main types of the solutions: the exact and non-exact ones, which can be

divided into the approximate and the heuristic ones.17 Each of them have their advantages and

disadvantages, which are described in the table 2.3.1 below.

Exact solvers Approximate solvers Heuristic solvers

Guarantee of finding the

optimal solution

In worst case approximation for

the found solution within a

known bound

Find feasible solution

Longer execution time Usually faster than exact

algorithms

Usually faster than exact

algorithms

More space used Usually less space used than

exact algorithms

Usually less space used

than exact algorithms

Table 2.3.1: Comparison of types of algorithms. Adapted from Chauhan, Ravindra, and Kshitij, “Survey of

Methods of Solving TSP along with Its Implementation Using Dynamic Programming Approach”

It is easy to confuse approximate and heuristic algorithms, as those names are sometimes used

interchangeably. For example, the Christofides’ algorithm is sometimes described as a heuristic

algorithm, whereas in other papers it is an approximate one. However, there is an important

distinction between those two types of solutions. Heuristics is following certain steps in order

to solve a very time-consuming problem quicker or find an approximate solution when exact

one is impossible to find using classic methods. It trades accuracy and/or optimality for speed.18

17 Chauhan, Ravindra, and Kshitij, “Survey of Methods of Solving TSP along with Its Implementation Using

Dynamic Programming Approach”
18 Judea Pearl, Heuristics : Intelligent Search Strategies for Computer Problem Solving (Reading, Mass.:

Addison-Wesley Pub. Co, 1984).

7

However, there is no proof on the quality of the given result. An algorithm is called an

approximate one when the quality of the solution in the worst-case scenario is known and

mathematically proved.19 Therefore, as the Christofides’ algorithm has a mathematical proof

of the worst-case results bound, and Greedy does not have one, Christofides’ method is

considered as an approximation solution and Greedy algorithm is heuristic in this paper.

2.3.1 Example of Exact Algorithm: The Branch and Bound Algorithm

The Branch and Bound algorithm is an example of an exact solution for TSP. Its main idea is

to break the problem into several sub-problems, calculate lower bounds for them and therefore

find routes whose distances are less than bound.20 The mathematical approach to this principle

as stated by Y. Narahari is as follows:

“Let S be a subset of solutions, L(S) – a lower bound on the cost of any solution belonging to

S and C – a cost of the best solution so far. If 𝐶 ≤ 𝐿(𝑆), there is no need to explore S because

it does not contain better solution. If 𝐶 > 𝐿(𝑆), then we need to explore S because it may

contain a better solution.”21

There might be different bounding functions used, therefore the exact time complexity depends

on the function chosen.22 However, in the worst case of never being able to prune a node the

19 David P Williamson and David Bernard Shmoys, The Design of Approximation Algorithms (New York:

Cambridge University Press, 2011).

20 Mirta Mataija, Mirjana Rakamarić Šegić, and Franciska Jozić, “Solving the Travelling Salesman Problem

Using the Branch And Bound Method,” Zbornik Veleučilišta U Rijeci, 4.1 (2016), 259–70

<https://hrcak.srce.hr/file/236378> [accessed 16 January 2022].

21 Y. Narahari, “8.4.2 Optimal Solution for TSP Using Branch and Bound,” Gtl.csa.iisc.ac.in, 2001

<https://gtl.csa.iisc.ac.in/dsa/node187.html> [accessed 15 January 2022].

22 Weixiong Zhang, Branch-And-Bound Search Algorithms and Their Computational Complexity, 1996

<https://apps.dtic.mil/sti/pdfs/ADA314598.pdf> [accessed 16 January 2022].

https://hrcak.srce.hr/file/236378
https://gtl.csa.iisc.ac.in/dsa/node187.html
https://apps.dtic.mil/sti/pdfs/ADA314598.pdf

8

complexity of this algorithm is the same as the brute force algorithm’s, so O(n!).23 The steps

for the algorithm used in this investigation are as follows, according to Y. Narahari24:

1. Calculate the lower bound on the cost of any tour with the formula:

1

2
∑

(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑙𝑒𝑎𝑠𝑡 𝑐𝑜𝑠𝑡 𝑒𝑑𝑔𝑒𝑠
 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣)

𝑣∈𝑉

where V is the set of all vertices.

2. Prepare a solution tree. An example solution tree for 5 nodes is:

Figure 2.3.1.1: A solution tree example for 5 nodes. Adapted from Y. Narahari, “8.4.2 Optimal Solution for TSP

Using Branch and Bound”

The nodes are in the lexicographic order.

3. In the step of branching, while considering two children of the node, decide which

edges should be excluded or included from the route, using the following rules:

23 Mataija, Rakamarić Šegić, and Jozić, “Solving the Travelling Salesman Problem Using the Branch And Bound

Method”
24 Y. Narahari, “8.4.2 Optimal Solution for TSP Using Branch and Bound,”

9

a. “If excluding the edge (x, y) would make it impossible for nodes x or y to have

as many as two adjacent edges in the tour, then (x, y) must be included.

b. If including (x, y) would cause x or y to have more than two edges adjacent in

the tour, or would complete a non-tour cycle with edges already included, then

(x, y) must be excluded.”25

4. Calculate lower bounds for both children nodes, excluding the nodes that need to be

omitted according to the solution tree. If the lower bound of the child is greater or equal

to lowest cost of the tour calculated so far, this child node may be ignored and so its

descendants.

5. If no child node can be ignored, the child with smaller lower bound is considered first.

After examining this node, the sibling node has to be investigated again, as there might

be new best solution found.26

2.3.2 Example of Approximate Algorithm: The Christofides'Algorithm

An example of an approximate algorithm for TSP may be the Christofides’ algorithm. It was

developed by Nicos Christofides as an extension of one of the earlier-developed algorithms

with ratio of 2 in worst case scenario (which means the tour found could be utmost twice as

long as the optimal solution).27 The Christofides’ method has ratio of 3/2 to the shortest

possible route in the worst case, which is an improvement to previous algorithms. It performs

worse in terms of time complexity, though, as it is equal to O(n3) comparing to earlier

O(n2log2(n)).28 The algorithm’s procedure is:

25 Y. Narahari, “8.4.2 Optimal Solution for TSP Using Branch and Bound,”
26 Y. Narahari, “8.4.2 Optimal Solution for TSP Using Branch and Bound,”
27Nicos Christofides, Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem, 1976

<https://apps.dtic.mil/sti/pdfs/ADA025602.pdf> [accessed 15 January 2022].

28 Christian Nilsson, Heuristics for the Traveling Salesman Problem, 2003

<http://160592857366.free.fr/joe/ebooks/ShareData/Heuristics%20for%20the%20Traveling%20Salesman%20P

roblem%20By%20Christian%20Nillson.pdf> [accessed 15 January 2022].

https://apps.dtic.mil/sti/pdfs/ADA025602.pdf
http://160592857366.free.fr/joe/ebooks/ShareData/Heuristics%20for%20the%20Traveling%20Salesman%20Problem%20By%20Christian%20Nillson.pdf
http://160592857366.free.fr/joe/ebooks/ShareData/Heuristics%20for%20the%20Traveling%20Salesman%20Problem%20By%20Christian%20Nillson.pdf

10

1. Build a Minimum Spanning Tree from the inputted graph. Minimum Spanning Tree

(MST) is the tree connecting all vertices of the undirected, edge-weighted graph with

the lowest possible total weight and without any cycles.29

2. Create a Minimum Weight Matching (MWM) in the subgraph of nodes with an odd

degree in the MST. MWM is finding a set of edges without common vertices with the

minimized sum of weights.30

3. Add edges from MWM to the MST.

4. Create an Euler cycle (so the cycle that includes every edge31) from the pseudograph

generated in the previous steps. Take shortcuts to avoid visiting a node twice.32

2.3.3 Example of Heuristic Algorithm: The Greedy Algorithm

The Greedy algorithm is a simple example of a heuristic approach for solving the TSP.33 In

order to find the optimal tour, it searches for the shortest edge from the current node and adds

it to the path unless it would create a cycle which has less edges than the number of nodes or it

“increases the degree of any node to more than 2”.34 What is more, one edge cannot be added

twice. The algorithm’s steps are as follows:

1. Sort all edges.

2. Choose the shortest edge that follows the rules above.

29 Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová, “Otakar Borůvka on Minimum Spanning Tree

Problem Translation of Both the 1926 Papers, Comments, History,” Discrete Mathematics, 233.1-3 (2001), 3–

36 <https://www.sciencedirect.com/science/article/pii/S0012365X00002247> [accessed 16 January 2022].

30 William Cook and André Rohe, “Computing Minimum-Weight Perfect Matchings,” INFORMS Journal on

Computing, 11.2 (1999), 138–48 <https://www.math.uwaterloo.ca/~bico/papers/match_ijoc.pdf> [accessed 16

January 2022].

31 Emanuel Lazar, 5.6 Euler Paths and Cycles, 2016 <https://www2.math.upenn.edu/~mlazar/math170/notes05-

6.pdf> [accessed 16 January 2022].

32 Christian Nilsson, Heuristics for the Traveling Salesman Problem
33 Christian Nilsson, Heuristics for the Traveling Salesman Problem
34 Christian Nilsson, Heuristics for the Traveling Salesman Problem

https://www.sciencedirect.com/science/article/pii/S0012365X00002247
https://www.math.uwaterloo.ca/~bico/papers/match_ijoc.pdf
https://www2.math.upenn.edu/~mlazar/math170/notes05-6.pdf
https://www2.math.upenn.edu/~mlazar/math170/notes05-6.pdf

11

3. Repeat step 2 as long as tour consists of less than N edges, N being a number of cities

(nodes).

The time complexity of the Greedy algorithm is O(n2log2(n)).35

35 Christian Nilsson, Heuristics for the Traveling Salesman Problem

12

3. Hypothesis and Experiment Methodology

3.1 Hypothesis and Applied Theory

The algorithms were described and explained carefully, including their time efficiency. The

comparison of the complexities in the big O notation is:

𝑂(𝑛3) > 𝑂(𝑛2 log2 𝑛) > 𝑂(𝑛!) for n < 5,

𝑂(𝑛3) > 𝑂(𝑛!) > 𝑂(𝑛2 log2 𝑛) for n = 5

and

𝑂(𝑛!) > 𝑂(𝑛3) > 𝑂(𝑛2 log2 𝑛) for n > 5.

Therefore it can be concluded that the comparative time efficiency of the algorithms depends

on the datasets sizes. In case of less than 5 cities, the most time-efficient algorithm should be

Branch and Bound, then Greedy and the last one should be Christofides’. For the problems

with 5 cities, the best method should become the Greedy, second should be the Branch and

Bound, and the Christofides’ algorithm should perform the worst. However, when the number

of cities will become greater than 5, the time efficiency of the Christofides’ method should get

better than the Branch and Bound one.

The most accurate algorithm will be the Branch and Bound one, as it gives the exact solutions.

It is proved that the results given by the Christofides’ method will be within the bound of 3/2

of the optimal tour. However, it is hard to predict the accuracy of the Greedy algorithm, as

there is no proof to its correctness.

In conclusion, Branch and Bound should be the fastest and most accurate, so the most efficient

one for small datasets. For bigger datasets, Greedy algorithm should have shorter execution

time than the Christofides’, however, its accuracy might be worse.

13

3.2 The Independent Variable

The independent variable that will be changed during the experiment is the dataset size. As

the number of all possible tours grows very quickly, the number of the cities in consecutive

datasets are increased by 5, starting from 5 and ending at 25 included. This way a sufficient

range of results will be obtained, resulting in not too many points on the graph, but enough to

analyze the algorithms. What is more, some algorithms may perform good on particular

datasets, while in reality their complexity is much bigger than what is represented by the time

took to give the solution. Therefore 3 different data matrices will be tested within the dataset

size in order to obtain more reliable results.

3.3 The Dependent Variable

In order to answer the research question and find the efficiency of the algorithms investigated,

the dependent variable in this experiment consists of two elements – time and accuracy of the

result obtained. Both of them are crucial, as an algorithm that gives the shortest tour length, but

takes very long time to find it, is less efficient than one that gives tour length very close to the

shortest one, but in much less time. On the other hand, algorithm giving quick, but very

inaccurate results is not very efficient as well.

3.3.1 Time

Execution time of the algorithms is going to be measured in nanoseconds using

System.nanoTime() method. The time elapsed from some arbitrary but fixed origin time36 will

be measured before and after calling the function starting the algorithms to avoid influence on

the results by additional calculations (for example one connected to creation of graph or reading

the data matrix). Then results will be subtracted from each other to get the completion time of

36 Oracle, “System (Java Platform SE 8),” Docs.oracle.com

<https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#nanoTime--> [accessed 13 January 2022].

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html%23nanoTime--

14

the algorithm. The average execution time in a dataset size is going to be taken into account,

as algorithms’ calculation time might be different for different data. Some may be the worst-

case scenario for the algorithms, especially the exact one, therefore the results will be

calculated much longer than with other data.

3.3.2 Accuracy

In order to calculate the accuracy, the shortest possible tour is necessary to be known. This will

be obtained through execution of the branch and bound algorithm, which is an exact algorithm

and will give accurate shortest path. Then, a formula will be applied:

𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ

𝑝𝑎𝑡ℎ 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑
= 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

in order to calculate the ratio of the paths and the calculated path accuracy.

3.4 The Controlled Variables

Several variables may have an influence on the efficiency of the algorithms, especially time,

therefore they need to be controlled. They are shown in the table 3.4.1 below.

Variable Description

The same code used for each algorithm The algorithms from Appendix A will be used

The same data type used In all the sets tested the data type used will

be int (32-bit integer)

Computer and operating system used The experiment will be conducted on one

computer, an Acer Aspire A515-52G

personal laptop. Specifications:

Operational System: Windows 10 Home,

version 21H1

15

Processor: IntelI Core i5-8265U CPU @

1.60GHz

Memory: 8GB 2400 MHz DDR3

The same number of programs opened on the

computer during tests

The only program opened by the user (apart

from the background tasks executed

independently by the operating system) is

going to be IntelliJ IDEA executing the code

Integrated Development Environment (IDE)

used

IDE: IntelliJ IDEA Educational 2021.2.3

Build: #IE-212.5457.63

Java Runtime Environment:

1.8.0_271-b09 x86_64

Java Virtual Machine: OpenJDK

64-Bit Server VM

Table 3.4.1: Controlled variables and their descriptions

3.5 The Experimental Procedure

The experimental procedure is as follows: first, the 1st dataset matrix for 5 cities will be inserted

into the code of Branch and Bound algorithm. It will be run 5 times, recording the execution

time and tour length calculated each time. Next, the same will be done with datasets 2 and 3

for 5 cities, and all the rest of datasets (datasets 1, 2 and 3 for 10, 15, 20 and 25 cities). The

Greedy and Christofides’ algorithms will be tested analogously. The code of the algorithms

was taken from the sources represented in table 3.5.1.

Algorithm Source

The Branch and

Bound algorithm

Rai, Anurag, “Traveling Salesman Problem Using Branch and

Bound,” GeeksforGeeks, 2016

16

<https://www.geeksforgeeks.org/traveling-salesman-problem-

using-branch-and-bound-2/> [accessed 8 January 2022]

The Greedy

algorithm

JGraphT, “jgrapht/jgrapht-

core/src/main/java/org/jgrapht/alg/tour/GreedyHeuristicTSP.ja

va,” GitHub, 2022

<https://github.com/jgrapht/jgrapht/blob/master/jgrapht-

core/src/main/java/org/jgrapht/alg/tour/GreedyHeuristicTSP.ja

va> [accessed 27 January 2022]

The Christofides’

algorithm

JGraphT, “jgrapht/jgrapht-core/src/main/java/org/jgrapht/alg/tour/

ChristofidesThreeHalvesApproxMetric TSP.java,” GitHub,

2022 <https://github.com/jgrapht/jgrapht/blob/master/jgrapht-

core/src/main/java/org/jgrapht/alg/tour/

ChristofidesThreeHalvesApproxMetric TSP.java> [accessed

27 January 2022]

Table 3.5.1: The sources of the code of the algorithms.

Please refer to the Appendix A for the code used and to Appendix B for the datasets tested and

their representation.

17

4. The Experimental Results

4.1 The Tabular Data Representation

Examples of the raw data can be seen in the table 4.1.1 and 4.1.2 below.

For 5 cities Dataset 1 [ns] Dataset 2 [ns] Dataset 3 [ns]

Branch and Bound 194.400 183.400 59.500

223.000 171.500 132.500

134.000 158.900 74.300

130.300 166.300 68.100

103.700 156.000 91.900

Greedy 26673.400 31479.400 22900.800

28784.600 27000.100 27029.200

24204.100 30058.700 27804.000

25795.200 24730.900 27396.300

31906.500 27571.800 31047.700

Christofides' 86633.700 53487.800 57711.300

88809.100 51471.500 61522.000

67883.700 58842.500 44465.700

75021.400 52108.600 78825.400

79499.600 59324.400 51810.400

Table 4.1.1: The raw data table of execution time of the algorithms for 5 cities.

For 5 cities Dataset 1 Dataset 2 Dataset 3

Branch and Bound 19 67 1209

Greedy 21 69 1209

Christofides’ 21 69 1209

18

Table 4.1.2: The raw data table of the tours’ lengths of the algorithms for 5 cities.

Such tables were prepared for each of the datasets’ sizes, giving total of 225 results for time

and 45 for tour lengths. For the rest of the raw data please refer to Appendix C. In the tables

below, the processed data will be presented.

Data was processed using Microsoft Excel, therefore precise values were used in calculations.

In the tables below, numbers were rounded to 3 decimal digits for clear representation.

4.1.1 The Average Execution Time

For 5 cities

 Dataset 1 [ns] Dataset 2 [ns] Dataset 3 [ns] Average [ns]

Branch and Bound

algorithm

157.080 167.220 85.260 136.520

Greedy algorithm 27472.760 28168.180 27235.600 27625.513

Christofides’

algorithm

79569.500 55046.960 58866.960 64494.473

For 10 cities

 Dataset 1 [ns] Dataset 2 [ns] Dataset 3 [ns] Average [ns]

Branch and Bound

algorithm

8475.960 2509.160 6525.200 5836.773

Greedy algorithm 32070.120 27393.640 28904.280 29456.013

Christofides’

algorithm

75827.920 82613.760 66070.360 74837.347

For 15 cities

 Dataset 1 [ns] Dataset 2 [ns] Dataset 3 [ns] Average [ns]

19

Branch and Bound

algorithm

26930.660 140106.840 1095020.020 420685.840

Greedy algorithm 33352.820 30587.940 31114.000 31684.920

Christofides’

algorithm

71988.960 71816.740 84018.380 75941.360

For 20 cities

 Dataset 1 [ns] Dataset 2 [ns] Dataset 3 [ns] Average [ns]

Branch and Bound

algorithm

10030093.880 1271482.000 3448042.480 4916539.453

Greedy algorithm 34619.840 32828.660 35834.960 34427.820

Christofides’

algorithm

74797.660 79019.260 79421.360 77746.093

For 25 cities

 Dataset 1 [ns] Dataset 2 [ns] Dataset 3 [ns] Average [ns]

Branch and Bound

algorithm

34076004.580 No data No data No data

Greedy algorithm 44401.460 38624.000 34615.240 39213.567

Christofides’

algorithm

77445.980 71615.460 86470.760 78510.733

Table 4.1.1.1: Average execution time in the datasets and the average for the algorithms.

For 5 and 10 cities there are big differences between average execution times of the exact

solution and other algorithms. However, for 15 cities the Branch and Bound algorithm’s

execution time significantly exceeds two other ones. The differences between times of Greedy

and Christofides’ methods are pretty consistent throughout all trials. The Branch and Bound

20

algorithm for datasets 2 and 3 with 25 cities did not give any results after 5 hours of

calculations, therefore the program was terminated and no execution time was obtained.

4.1.2 The Accuracy of the Calculated Tour Lengths

The Branch and Bound algorithm is the exact algorithm, therefore the tour calculated by it is

the shortest possible one. Therefore the accuracy ratio for this algorithm is always going to be

equal to 1.

For 5 cities

 Accuracy ratio

for dataset 1

Accuracy ratio

for dataset 2

Accuracy ratio

for dataset 3

Average

accuracy ratio

Branch and Bound

algorithm

1.000 1.000 1.000 1.000

Greedy algorithm 0.905 0.971 1.000 0.959

Christofides’

algorithm

0.905 0.971 1.000 0.959

For 10 cities

 Accuracy ratio

for dataset 1

Accuracy ratio

for dataset 2

Accuracy ratio

for dataset 3

Average

accuracy ratio

Branch and Bound

algorithm

1.000 1.000 1.000 1.000

Greedy algorithm 0.882 0.823 0.913 0.873

Christofides’

algorithm

0.938 0.948 1.000 0.962

For 15 cities

21

 Accuracy ratio

for dataset 1

Accuracy ratio

for dataset 2

Accuracy ratio

for dataset 3

Average

accuracy ratio

Branch and Bound

algorithm

1.000 1.000 1.000 1.000

Greedy algorithm 1.000 0.948 0.912 0.953

Christofides’

algorithm

0.895 0.846 0.940 0.894

For 20 cities

 Accuracy ratio

for dataset 1

Accuracy ratio

for dataset 2

Accuracy ratio

for dataset 3

Average

accuracy ratio

Branch and Bound

algorithm

1.000 1.000 1.000 1.000

Greedy algorithm 0.790 0.879 0.974 0.881

Christofides’

algorithm

0.887 0.969 0.881 0.912

For 25 cities

 Accuracy ratio

for dataset 1

Accuracy ratio

for dataset 2

Accuracy ratio

for dataset 3

Average

accuracy ratio

Branch and Bound

algorithm

1.000 No data No data 1.000

Greedy algorithm 0.946 No data No data 0.946

Christofides’

algorithm

0.919 No data No data 0.919

Table 4.1.2.1: Accuracy ratio of the results and the average accuracy ratio for the algorithms.

22

The accuracy ratios of the Greedy and Christofides’ algorithms do not follow a consistent

pattern. The Branch and Bound algorithm for datasets 2 and 3 with 25 cities did not give any

results after 5 hours of calculations, therefore the program was terminated. Since no exact

shortest tour length was obtained for both of the datasets, it was impossible to calculate the

accuracy ratio for other algorithms in datasets 2 and 3. Thus the accuracy ratio for the dataset

1 was used as an average for the case of 25 cities.

Algorithm Average accuracy ratio

Branch and Bound algorithm 1.000

Greedy algorithm 0.922

Christofides’ algorithm 0.929

Table 4.1.2.2: Overall average accuracy ratio of the algorithms.

4.2 The Graphical Data Representation

4.2.1 The Average Execution Time

Graph 4.2.1: Execution time of the Branch and Bound algorithm against the number of cities (nodes)

0

1000000

2000000

3000000

4000000

5000000

6000000

5 10 15 20 25

Ti
m

e
[n

s]

Number of cities [nodes]

Execution time of the Branch and Bound algorithm against the
number of cities (nodes)

23

The graph 4.2.1 shows the fast significant increase in the execution time of the Branch and

Bound algorithm when the datasets get bigger.

Graph 4.2.2: Execution time of the Greedy algorithm against the number of cities (nodes)

The Greedy algorithm’s execution time presented on the graph 4.2.2 increases slowly, but

steadily.

Graph 4.2.3: Execution time of the Christofides’ algorithm against the number of cities (nodes)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20 25 30

Ti
m

e
[n

s]

Number of cities (nodes)

Execution time of the Greedy algorithm against the number of
cities (nodes)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 5 10 15 20 25 30

Ti
m

e
[n

s]

Number of cities (nodes)

Execution time of the Christofides’ algorithm against the
number of cities (nodes)

24

The Christofides’ algorithm, as shown in the graph above, slows down more significantly when

number of cities is increased from 5 to 10; later its execution time grows steadily.

A graph below has a logarithmic scale for clearer data representation.

Graph 4.2.4: Execution time of all algorithms against the number of cities (nodes)

The points of intersection of the Branch and Bound algorithm’s graph and other ones are for

12 cities in case of the Greedy algorithm and 13 for Christofides’ algorithm.

1

10

100

1000

10000

100000

1000000

10000000

0 5 10 15 20 25 30

Ti
m

e
[n

s]

Number of cities (nodes)

Execution time of the algorithms against the number of cities
(nodes)

Branch and Bound algorithm

Greedy algorithm

Christofides’ algorithm

25

4.2.2 The Average Accuracy of the Calculated Tour Lengths

Graph 4.2.1: The average accuracy of the calculated tour path by all algorithms against the number of cities

(nodes)

The accuracy of the Branch and Bound algorithm is the same all the time. Both Greedy and

Christofides’ algorithms have high accuracy which tend to a straight line. It seems that

Christofides’ accuracy has a falling tendency, while Greedy’s converges to some middle value.

4.3 Data Analysis

The hypothesis of dependence of the execution time of the algorithms on the datasets’ sizes

was partially correct. The Greedy algorithm’s performance was overall better than

Christofides’ one, and the Branch and Bound heuristic had longer and longer execution time.

For the datasets of 5 and 10 cities its times were smaller than ones of the two other algorithms

and for 15 and 20 cities they became bigger. What is interesting are the points of interception

on the graph 4.2.4. From the hypothesis it could be expected that between 4 and 5 cities there

should be the point of interception of the Branch and Bound and Greedy algorithms’ execution

time, and between 5 and 6 cities would be the intercept of Branch and Bound and Christofides’

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25 30

A
cc

u
ra

cy

Number of cities (nodes)

The average accuracy of the calculated tour length against the
number of cities (nodes)

Branch and Bound algorithm

Greedy algorithm

Christofides’ algorithm

26

time graph. However, this is not the case. The Branch and Bound and Greedy algorithms’

graphs intercept at 12 cities, and Branch and Bound and Christofides’ at 13 cities. The points

of interception are therefore moved by between 7 and 9 on the x axis comparing to what was

expected from the mathematical analysis and hypothesis.

According to Muhammad Shaaban, some processors may do some operations quicker than

other ones, as they might require less micro operations on them.37 This means that the time of

making one calculation by the processor is not the same in every case. The big O notation does

take into account how quickly the number of operations that have to be made in the worst case

scenario in order to find the solution grows.38 Therefore the actual execution time might not be

representative for the number of the operations done.

The hypothesis about the accuracy of the algorithms was overall right. The Greedy algorithm

has lower general average accuracy ratio than the Christofides’ heuristic, however, this is not

a significant difference. What is more, each algorithm was more accurate than the other one

equal number of times. In the case of 5 cities, the accuracy of the methods was the same; Greedy

algorithm was more accurate for 15 and 25 cities, and Christofides’ was better for 10 and 20

cities. The Branch and Bound, being the exact algorithm, gave the most optimal route for each

dataset. However, its execution time became insufficiently long for the set of 25 cities.

4.4 Possible Improvements and Further Research Opportunities

In order to better analyze the algorithms, more datasets and bigger number of cities could be

tested. More precise range of datasets sized could be used, so the datasets’ sizes could be

37 Muhammad Shaaban, Central Processor Unit (CPU) & Computer System Performance Measures: CPI, CPU

Execution Equation, Benchmarking, MIPS Rating, Amdahl’s Law, 2011 <meseec.ce.rit.edu/eecc550-

winter2011/550-12-6-2011.pdf> [accessed 19 January 2022].

38 Austin Mohr, Quantum Computing in Complexity Theory and Theory of Computation, 2007

<http://www.austinmohr.com/Work_files/complexity.pdf> [accessed 19 January 2022].

https://meseec.ce.rit.edu/eecc550-winter2011/550-12-6-2011.pdf
https://meseec.ce.rit.edu/eecc550-winter2011/550-12-6-2011.pdf
http://www.austinmohr.com/Work_files/complexity.pdf

27

consecutively raised by 2, which could potentially lead to more precise results. An important

limitation was the processor used in the experiment. As it was discussed in part 4.3, some

processors may do some operations faster or slower. What is more, there might have been some

processes running in the background when the algorithms’ performance was measured, which

might have influenced the final results. The investigation could be conducted on computers

with different processors in order to further analyze the efficiency of the algorithms.

Moreover, there are many other types of algorithms that were not covered in this study. An

important one could be dynamic programming approach, an example of which is Held-Karp

algorithm, which has the complexity of O(n22n) and is one of the most known approaches to

the TSP.39

The execution time of the algorithm depends strongly on the computational power of the

machine it is tested on. As the field of the quantum computing becomes increasingly

significant, it is seen by some as the future of the computer science. As quantum computers

can hypothetically have much more computational power than classical computers, the

possibility of solving the TSP quicker than ever emerges. There even exists an algorithm for

solving the TSP on the quantum machine, using IBM Quantum Experience cloud quantum

computer.40 However, it has its limitations, as the maximum number of q-bits (quantum bits)

available currently on IBM’s machines is 127.41

39 Michael Held and Richard M. Karp, “A Dynamic Programming Approach to Sequencing Problems”, Journal

of the Society for Industrial and Applied Mathematics, 10.1 (1962), 196–210.

40 Karthik Srinivasan and others, Efficient Quantum Algorithm for Solving Travelling Salesman Problem: An

IBM Quantum Experience, 2018 <https://arxiv.org/pdf/1805.10928.pdf> [accessed 19 January 2022].

41 IBM, “IBM Quantum Processor Types”, IBM Quantum, 2021 <https://quantum-

computing.ibm.com/services/docs/services/manage/systems/processors> [accessed 19 January 2022].

https://arxiv.org/pdf/1805.10928.pdf
https://quantum-computing.ibm.com/services/docs/services/manage/systems/processors
https://quantum-computing.ibm.com/services/docs/services/manage/systems/processors

28

5. Conclusions

The aim of the study was to use the theory behind the Traveling Salesman Problem and three

examples of different types of the algorithms for solving it and apply it practically to investigate

the relationship between the execution time and accuracy of the calculated tour and the number

of cities in the problem. As expected, the execution time of the Greedy heuristic is overall better

than the Christofides’ method, and the Branch and Bound algorithm tends to perform better

than those two on smaller sets of data, but worse on the big ones. However, the number of cities

which the Branch and Bound algorithm becomes slower is different than the one expected,

which may be caused by processor’s role in the computations. As the Branch and Bound is an

exact algorithm and always outputs the shortest tour, its accuracy was the best. The accuracy

of the Greedy and Christofides’ solutions was not following any pattern when compared to the

number of cities in the dataset. The overall accuracy of the Christofides’ method was by 0.007,

so 0.7% better than one of the Greedy algorithm.

Therefore, the answer to the research question of this essay – “to what extent Branch and Bound

algorithm, Greedy algorithm and the Christofides' algorithm are efficient ways of solving the

Travelling Salesman Problem (TSP)?” – is not simple. For the datasets consisting of less than

12 cities the most efficient is the Branch and Bound algorithm, as it gives the exact result

in the shortest time. For bigger datasets, the Christofides’ has worse execution time than

the Greedy method, however the second one is less accurate. That means that the

efficiency of those two algorithms for datasets bigger than 12 cities is comparable.

I

6. Reference list

Bibliography

Abdulkarim, Haider, and Ibrahim Alshammari, “Comparison of Algorithms for Solving

Traveling Salesman Problem,” International Journal of Engineering and Advanced

Technology (IJEAT), 4.6 (2015), 76–79

<https://www.researchgate.net/publication/280597707_Comparison_of_Algorithms_f

or_Solving_Traveling_Salesman_Problem> [accessed 17 February 2021]

Black, Paul E., “Dictionary of Algorithms and Data Structures,” Xlinux.nist.gov, 2005

<https://xlinux.nist.gov/dads/> [accessed 29 June 2021]

Black, Paul E., and Paul J. Tanenbaum, “Graph,” Dictionary of Algorithms and Data

Structures, 2005 <https://xlinux.nist.gov/dads/HTML/graph.html> [accessed 29 June

2021]

Bondy, John Adrian, and Uppaluri Siva Ramachandra Murty, Graph Theory with

Applications (New York: North Holland, 1982)

<https://www.iro.umontreal.ca/~hahn/IFT3545/GTWA.pdf> [accessed 28 June 2021]

Chauhan, Chetan, Ravindra Gupta, and Kshitij Pathak, “Survey of Methods of Solving TSP

along with Its Implementation Using Dynamic Programming Approach,”

International Journal of Computer Applications, 52.4 (2012), 12

<https://research.ijcaonline.org/volume52/number4/pxc3881550.pdf> [accessed 19

February 2021]

II

Christofides, Nicos, Worst-Case Analysis of a New Heuristic for the Travelling Salesman

Problem, 1976 <https://apps.dtic.mil/sti/pdfs/ADA025602.pdf> [accessed 15 January

2022]

Clausen, Jens, Branch and Bound Algorithms - Principles and Examples, 1999

<https://imada.sdu.dk/~jbj/heuristikker/TSPtext.pdf> [accessed 24 August 2021]

Cook, William, and André Rohe, “Computing Minimum-Weight Perfect Matchings,”

INFORMS Journal on Computing, 11.2 (1999), 138–48

<https://www.math.uwaterloo.ca/~bico/papers/match_ijoc.pdf> [accessed 16 January

2022]

Held, Michael, and Richard M. Karp, “A Dynamic Programming Approach to Sequencing

Problems,” Journal of the Society for Industrial and Applied Mathematics, 10.1

(1962), 196–210 10.1137/0110015>

IBM, “IBM Quantum Processor Types,” IBM Quantum, 2021 <https://quantum-

computing.ibm.com/services/docs/services/manage/systems/processors> [accessed 19

January 2022]

jddeep003, “Travelling Salesman Problem | Greedy Approach,” GeeksforGeeks, 2020

<https://www.geeksforgeeks.org/travelling-salesman-problem-greedy-approach/>

[accessed 8 January 2022]

JGraphT, “jgrapht/jgrapht-core/src/main/java/org/jgrapht/alg/tour/

ChristofidesThreeHalvesApproxMetric TSP.java,” GitHub, 2022

<https://github.com/jgrapht/jgrapht/blob/master/jgrapht-

core/src/main/java/org/jgrapht/alg/tour/ ChristofidesThreeHalvesApproxMetric

TSP.java> [accessed 27 January 2022]

III

JGraphT, “jgrapht/jgrapht-core/src/main/java/org/jgrapht/alg/tour/GreedyHeuristicTSP.java,”

GitHub, 2022 <https://github.com/jgrapht/jgrapht/blob/master/jgrapht-

core/src/main/java/org/jgrapht/alg/tour/GreedyHeuristicTSP.java> [accessed 27

January 2022]

Lazar, Emanuel, 5.6 Euler Paths and Cycles, 2016

<https://www2.math.upenn.edu/~mlazar/math170/notes05-6.pdf> [accessed 16

January 2022]

Matai, Rajesh, Surya Singh, and Murari Lal, “Traveling Salesman Problem: An Overview of

Applications, Formulations, and Solution Approaches,” in Traveling Salesman

Problem, Theory and Applications (Rijeka: InTech, 2010), pp. 1–24 10.5772/12909>

Mataija, Mirta, Mirjana Rakamarić Šegić, and Franciska Jozić, “Solving the Travelling

Salesman Problem Using the Branch and Bound Method,” Zbornik Veleučilišta U

Rijeci, 4.1 (2016), 259–70 <https://hrcak.srce.hr/file/236378> [accessed 16 January

2022]

Mohr, Austin, Quantum Computing in Complexity Theory and Theory of Computation, 2007

<http://www.austinmohr.com/Work_files/complexity.pdf> [accessed 19 January

2022]

Narahari, Y., “8.4.2 Optimal Solution for TSP Using Branch and Bound,” Gtl.csa.iisc.ac.in,

2001 <https://gtl.csa.iisc.ac.in/dsa/node187.html> [accessed 15 January 2022]

Nešetřil, Jaroslav, Eva Milková, and Helena Nešetřilová, “Otakar Borůvka on Minimum

Spanning Tree Problem Translation of Both the 1926 Papers, Comments, History,”

Discrete Mathematics, 233.1-3 (2001), 3–36

IV

<https://www.sciencedirect.com/science/article/pii/S0012365X00002247?via%3Dihu

b> [accessed 16 January 2022]

Nilsson, Christian, Heuristics for the Traveling Salesman Problem, 2003

<http://160592857366.free.fr/joe/ebooks/ShareData/Heuristics%20for%20the%20Tra

veling%20Salesman%20Problem%20By%20Christian%20Nillson.pdf> [accessed 15

January 2022]

Oracle, “System (Java Platform SE 8),” Docs.oracle.com

<https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#nanoTime-->

[accessed 13 January 2022]

Pearl, Judea, Heuristics : Intelligent Search Strategies for Computer Problem Solving

(Reading, Mass.: Addison-Wesley Pub. Co, 1984)

Rai, Anurag, “Traveling Salesman Problem Using Branch and Bound,” GeeksforGeeks, 2016

<https://www.geeksforgeeks.org/traveling-salesman-problem-using-branch-and-

bound-2/> [accessed 8 January 2022]

Sahalot, Antima, and Sapna Shrimali, “A Comparative Study of Brute Force Method, Nearest

Neighbour and Greedy Algorithms to Solve the Travelling Salesman Problem,”

IMPACT: International Journal of Research in Engineering & Technology, 2.6

(2014), 59–72 10.1.1.684.8937>

Salvador, Tiago, “The Traveling Salesman Problem: A Statistical Approach” (2010), pp. 8–

12 <http://www.math.lsa.umich.edu/~saldanha/Files/Report%20TSP.pdf> [accessed

29 June 2021]

V

Shaaban, Muhammad, Central Processor Unit (CPU) & Computer System Performance

Measures: CPI, CPU Execution Equation, Benchmarking, MIPS Rating, Amdahl’s

Law, 2011 <http://meseec.ce.rit.edu/eecc550-winter2011/550-12-6-2011.pdf>

[accessed 19 January 2022]

Srinivasan, Karthik, Saipriya Satyajit, Bikash Behera, and Prasanta Panigrahi, Efficient

Quantum Algorithm for Solving Travelling Salesman Problem: An IBM Quantum

Experience, 2018 <https://arxiv.org/pdf/1805.10928.pdf> [accessed 19 January 2022]

Vos, Daniël, “Basic Principles of the Traveling Salesman Problem and Radiation Hybrid

Mapping” (unpublished Bachelor Thesis, 2016)

<https://repository.tudelft.nl/islandora/object/uuid:0ebb0f3b-e352-4f3c-8465-

5c6be2812a90/datastream/OBJ/download> [accessed 19 February 2021]

Williamson, David P, and David Bernard Shmoys, The Design of Approximation Algorithms

(New York: Cambridge University Press, 2011)

Zhang, Weixiong, Branch-And-Bound Search Algorithms and Their Computational

Complexity, 1996 <https://apps.dtic.mil/sti/pdfs/ADA314598.pdf> [accessed 16

January 2022]

VI

7. Appendices

Appendix A: Code of the Algorithms Used

A.1: The Branch and Bound Algorithm

The code was taken from Geeks for Geeks website: https://www.geeksforgeeks.org/traveling-

salesman-problem-using-branch-and-bound-2/

// Java program to solve Traveling Salesman Problem

// using Branch and Bound.

import java.util.*;

public class TSP_Branch {

 static int N = 25;

 // final_path[] stores the final solution ie, the

 // path of the salesman.

 static int final_path[] = new int[N + 1];

 // visited[] keeps track of the already visited nodes

 // in a particular path

 static boolean visited[] = new boolean[N];

 // Stores the final minimum weight of shortest tour.

 static int final_res = Integer.MAX_VALUE;

 // Function to copy temporary solution to

 // the final solution

 static void copyToFinal(int curr_path[])

 {

 for (int i = 0; i < N; i++)

 final_path[i] = curr_path[i];

https://www.geeksforgeeks.org/traveling-salesman-problem-using-branch-and-bound-2/
https://www.geeksforgeeks.org/traveling-salesman-problem-using-branch-and-bound-2/

VII

 final_path[N] = curr_path[0];

 }

 // Function to find the minimum edge cost

 // having an end at the vertex i

 static int firstMin(int adj[][], int i)

 {

 int min = Integer.MAX_VALUE;

 for (int k = 0; k < N; k++)

 if (adj[i][k] < min && i != k)

 min = adj[i][k];

 return min;

 }

 // function to find the second minimum edge cost

 // having an end at the vertex i

 static int secondMin(int adj[][], int i)

 {

 int first = Integer.MAX_VALUE, second = Integer.MAX_VALUE;

 for (int j=0; j<N; j++)

 {

 if (i == j)

 continue;

 if (adj[i][j] <= first)

 {

 second = first;

 first = adj[i][j];

 }

 else if (adj[i][j] <= second &&

 adj[i][j] != first)

VIII

 second = adj[i][j];

 }

 return second;

 }

 // function that takes as arguments:

 // curr_bound -> lower bound of the root node

 // curr_weight-> stores the weight of the path so far

 // level-> current level while moving in the search

 // space tree

 // curr_path[] -> where the solution is being stored which

 // would later be copied to final_path[]

 static void TSPRec(int adj[][], int curr_bound, int curr_weight,

 int level, int curr_path[])

 {

 // base case is when we have reached level N which

 // means we have covered all the nodes once

 if (level == N)

 {

 // check if there is an edge from last vertex in

 // path back to the first vertex

 if (adj[curr_path[level - 1]][curr_path[0]] != 0)

 {

 // curr_res has the total weight of the

 // solution we got

 int curr_res = curr_weight +

 adj[curr_path[level-1]][curr_path[0]];

 // Update final result and final path if

 // current result is better.

 if (curr_res < final_res)

IX

 {

 copyToFinal(curr_path);

 final_res = curr_res;

 }

 }

 return;

 }

 // for any other level iterate for all vertices to

 // build the search space tree recursively

 for (int i = 0; i < N; i++)

 {

 // Consider next vertex if it is not same (diagonal

 // entry in adjacency matrix and not visited

 // already)

 if (adj[curr_path[level-1]][i] != 0 &&

 visited[i] == false)

 {

 int temp = curr_bound;

 curr_weight += adj[curr_path[level - 1]][i];

 // different computation of curr_bound for

 // level 2 from the other levels

 if (level==1)

 curr_bound -= ((firstMin(adj, curr_path[level - 1]) +

 firstMin(adj, i))/2);

 else

 curr_bound -= ((secondMin(adj, curr_path[level - 1]) +

 firstMin(adj, i))/2);

 // curr_bound + curr_weight is the actual lower bound

X

 // for the node that we have arrived on

 // If current lower bound < final_res, we need to explore

 // the node further

 if (curr_bound + curr_weight < final_res)

 {

 curr_path[level] = i;

 visited[i] = true;

 // call TSPRec for the next level

 TSPRec(adj, curr_bound, curr_weight, level + 1,

 curr_path);

 }

 // Else we have to prune the node by resetting

 // all changes to curr_weight and curr_bound

 curr_weight -= adj[curr_path[level-1]][i];

 curr_bound = temp;

 // Also reset the visited array

 Arrays.fill(visited,false);

 for (int j = 0; j <= level - 1; j++)

 visited[curr_path[j]] = true;

 }

 }

 }

 // This function sets up final_path[]

 static void TSP(int adj[][])

 {

 int curr_path[] = new int[N + 1];

XI

 // Calculate initial lower bound for the root node

 // using the formula 1/2 * (sum of first min +

 // second min) for all edges.

 // Also initialize the curr_path and visited array

 int curr_bound = 0;

 Arrays.fill(curr_path, -1);

 Arrays.fill(visited, false);

 // Compute initial bound

 for (int i = 0; i < N; i++)

 curr_bound += (firstMin(adj, i) +

 secondMin(adj, i));

 // Rounding off the lower bound to an integer

 curr_bound = (curr_bound==1)? curr_bound/2 + 1 :

 curr_bound/2;

 // We start at vertex 1 so the first vertex

 // in curr_path[] is 0

 visited[0] = true;

 curr_path[0] = 0;

 // Call to TSPRec for curr_weight equal to

 // 0 and level 1

 TSPRec(adj, curr_bound, 0, 1, curr_path);

 }

 // Driver code

 public static void main(String[] args)

 {

 //Adjacency matrix for the given graph

XII

 int adj[][] = {

 //here goes the adjacency matrix

 };

 long start = System.nanoTime();

 TSP(adj);

 long end = System.nanoTime();

 System.out.println("Location: " + (end - start));

 System.out.printf("Minimum cost : %d\n", final_res);

 }

}

/* This code contributed by PrinciRaj1992 */

A.2: The Greedy Algorithm and the Christofides’ Algorithm

Both of the codes for those algorithms were taken from the jgrapht.alg.tour library. They are

available as the GitHub repository, the Greedy algorithm code:

https://github.com/jgrapht/jgrapht/blob/master/jgrapht-

core/src/main/java/org/jgrapht/alg/tour/GreedyHeuristicTSP.java

and the Christofides’ method code:

https://github.com/jgrapht/jgrapht/blob/master/jgrapht-

core/src/main/java/org/jgrapht/alg/tour/ChristofidesThreeHalvesApproxMetricTSP.java.

Therefore the code used in the experiment looked like this:

import org.jgrapht.*;

import org.jgrapht.alg.tour.GreedyHeuristicTSP;

import org.jgrapht.graph.*;

import java.net.*;

https://github.com/jgrapht/jgrapht/blob/master/jgrapht-core/src/main/java/org/jgrapht/alg/tour/GreedyHeuristicTSP.java
https://github.com/jgrapht/jgrapht/blob/master/jgrapht-core/src/main/java/org/jgrapht/alg/tour/GreedyHeuristicTSP.java
https://github.com/jgrapht/jgrapht/blob/master/jgrapht-core/src/main/java/org/jgrapht/alg/tour/ChristofidesThreeHalvesApproxMetricTSP.java
https://github.com/jgrapht/jgrapht/blob/master/jgrapht-core/src/main/java/org/jgrapht/alg/tour/ChristofidesThreeHalvesApproxMetricTSP.java

XIII

public class TSP_Greedy {

 public static void main (String[] args) throws URISyntaxException {

 int adj[][] = {

 //here was the adjacency matrix

 };

 Graph<URI, DefaultWeightedEdge> g = new

DefaultUndirectedWeightedGraph<>(DefaultWeightedEdge.class);

//here was the code for creating the nodes and assigning the edges’ weight

 GreedyHeuristicTSP algorithm = new GreedyHeuristicTSP();

 long start = System.nanoTime();

 // Function Call

 GraphPath result = algorithm.getTour(g);

 long end = System.nanoTime();

 System.out.println(result.getWeight());

 System.out.println("Location: " + (end - start));

 }

}

for the Greedy algorithm and so:

import org.jgrapht.*;

import org.jgrapht.alg.tour.ChristofidesThreeHalvesApproxMetricTSP;

import org.jgrapht.graph.*;

XIV

import java.net.*;

public class TSP_Christofides {

 public static void main (String[] args) throws URISyntaxException {

 int adj[][] = {

 //here was the adjacency matrix

 };

 Graph<URI, DefaultWeightedEdge> g = new

DefaultUndirectedWeightedGraph<>(DefaultWeightedEdge.class);

//here was the code for creating the nodes and assigning the edges’ weight

 ChristofidesThreeHalvesApproxMetricTSP algorithm = new

ChristofidesThreeHalvesApproxMetricTSP();

 long start = System.nanoTime();

 // Function Call

 GraphPath result = algorithm.getTour(g);

 long end = System.nanoTime();

 System.out.println(result.getWeight());

 System.out.println("Location: " + (end - start));

 }

}

for the Christofides’ algorithm.

XV

Appendix B: The Datasets and Their Representation

The Branch and Bound as an input needed a matrix representation of the weight of the edges

between the vertices. That means that if there is a square matrix of a size n, the [i][j] element

represents the weight of the edge between the nodes i and j.

The Greedy and Christofides’ algorithms needed a graph representation of the problem. The

jgrapht library was used to obtain those and assign the weights of the edges using the data from

the matrices. An example below created a graph with two nodes and one undirected weighted

edge in order to show functions that were used to create the graphs:

//adjacency matrix for the example graph

int adj[][] = {

{0, 1},

{1, 0}

};

//defining the undirected weighted graph g

Graph<URI, DefaultWeightedEdge> g = new

DefaultUndirectedWeightedGraph<>(DefaultWeightedEdge.class);

//defining the vertices A and B(nodes/cities)

URI A = new URI("A");

URI B = new URI("B");

//assigning the vertices A and B to the graph

g.addVertex(A);

g.addVertex(A);

//creating an edge between A and B

g.addEdge(A, B);

XVI

//assigning the weight to the edge

DefaultWeightedEdge AB = g.getEdge(A, B);

g.setEdgeWeight(AB, adj[0][1]);

The code was analogous for the bigger sets of data.

B.1 Matrices for 5 cities datasets

Dataset 1 for 5 cities problem

0 3 4 2 7

3 0 4 6 3

4 4 0 5 8

2 6 5 0 6

7 3 8 6 0

Dataset 2 for 5 cities problem

0 27 12 17 11

27 0 16 11 29

12 16 0 6 12

17 11 6 0 18

11 29 12 18 0

Dataset 3 for 5 cities problem

XVII

0 64 378 519 434

64 0 318 455 375

378 318 0 170 265

519 455 170 0 223

434 375 265 223 0

B.2 Matrices for 10 cities datasets

Dataset 1 for 10 cities problem

0 8 20 31 12 48 36 2 5 39

8 0 38 9 33 37 22 6 4 14

50 38 0 11 55 1 23 46 41 17

31 9 11 0 44 13 16 19 25 18

12 33 55 44 0 54 53 30 28 45

48 37 1 13 54 0 26 47 40 24

36 22 23 16 53 26 0 29 35 34

2 6 46 19 30 47 29 0 3 27

5 4 41 25 28 40 35 3 0 20

39 14 17 18 45 24 34 27 20 0

Dataset 2 for 10 cities problem

0 300 325 466 217 238 431 336 451 47

300 0 638 180 595 190 138 271 229 236

325 638 0 251 88 401 189 386 565 206

XVIII

466 180 251 0 139 371 169 316 180 284

217 595 88 139 0 310 211 295 474 130

238 190 401 371 310 0 202 122 378 157

431 138 189 169 211 202 0 183 67 268

336 271 386 316 295 122 183 0 483 155

451 229 565 180 474 378 67 483 0 299

47 236 206 284 130 157 268 155 299 0

Dataset 3 for 10 cities problem

0 2451 713 1018 1631 1374 2408 213 2571 875

2451 0 1745 1524 831 1240 959 2596 403 1589

713 1745 0 355 920 803 1737 851 1858 262

1018 1524 355 0 700 862 1395 1123 1584 466

1631 831 920 700 0 663 1021 1769 949 796

1374 1240 803 862 663 0 1681 1551 1765 547

2408 959 1737 1395 1021 1681 0 2493 678 1724

213 2596 851 1123 1769 1551 2493 0 2699 1038

2571 403 1858 1584 949 1765 678 2699 0 1744

875 1589 262 466 796 547 1724 1038 1744 0

B.3 Matrices for 15 cities datasets

Dataset 1 for 15 cities problem

0 29 82 46 68 52 72 42 51 55 29 74 23 72 46

XIX

29 0 55 46 42 43 43 23 23 31 41 51 11 52 21

82 55 0 68 46 55 23 43 41 29 79 21 64 31 51

46 46 68 0 82 15 72 31 62 42 21 51 51 43 64

68 42 46 82 0 74 23 52 21 46 82 58 46 65 23

52 43 55 15 74 0 61 23 55 31 33 37 51 29 59

72 43 23 72 23 61 0 42 23 31 77 37 51 46 33

42 23 43 31 52 23 42 0 33 15 37 33 33 31 37

51 23 41 62 21 55 23 33 0 29 62 46 29 51 11

55 31 29 42 46 31 31 15 29 0 51 21 41 23 37

29 41 79 21 82 33 77 37 62 51 0 65 42 59 61

74 51 21 51 58 37 37 33 46 21 65 0 61 11 55

23 11 64 51 46 51 51 33 29 41 42 61 0 62 23

72 52 31 43 65 29 46 31 51 23 59 11 62 0 59

46 21 51 64 23 59 33 37 11 37 61 55 23 59 0

Dataset 2 for 15 cities problem

0 141 134 152 173 289 326 329 285 401 388 366 343 305 276

141 0 152 150 153 312 354 313 249 324 300 272 247 201 176

134 152 0 24 48 168 210 197 153 280 272 257 237 210 181

152 150 24 0 24 163 206 182 133 257 248 233 214 187 158

173 153 48 24 0 160 203 167 114 234 225 210 190 165 137

289 312 168 163 160 0 43 90 124 250 264 270 264 267 249

326 354 210 206 203 43 0 108 157 271 290 299 295 303 287

329 313 197 182 167 90 108 0 70 164 183 195 194 210 201

XX

285 249 153 133 114 124 157 70 0 141 147 148 140 147 134

401 324 280 257 234 250 271 164 141 0 36 67 88 134 150

388 300 272 248 225 264 290 183 147 36 0 33 57 104 124

366 272 257 233 210 270 299 195 148 67 33 0 26 73 96

343 247 237 214 190 264 295 194 140 88 57 26 0 48 71

305 201 210 187 165 267 303 210 147 134 104 73 48 0 30

276 176 181 158 137 249 287 201 134 150 124 96 71 30 0

Dataset 3 for 15 cities problem

0 633 257 91 412 150 80 134 259 505 353 324 70 211 268

633 0 390 661 227 488 572 530 555 289 282 638 567 466 420

257 390 0 228 169 112 196 154 372 262 110 437 191 74 53

91 661 228 0 383 120 77 105 175 476 324 240 27 182 239

412 227 169 383 0 267 351 309 338 196 61 421 346 243 199

150 488 112 120 267 0 63 34 264 360 208 329 83 105 123

80 572 196 77 351 63 0 29 232 444 292 297 47 150 207

134 530 154 105 309 34 29 0 249 402 250 314 68 108 165

259 555 372 175 338 264 232 249 0 495 352 95 189 326 383

505 289 262 476 196 360 444 402 495 0 154 578 439 336 240

353 282 110 324 61 208 292 250 352 154 0 435 287 184 140

324 638 437 240 421 329 297 314 95 578 435 0 254 391 448

70 567 191 27 346 83 47 68 189 439 287 254 0 145 202

211 466 74 182 243 105 150 108 326 336 184 391 145 0 57

268 420 53 239 199 123 207 165 383 240 140 448 202 57 0

XXI

B.4 Matrices for 20 cities datasets

Dataset 1 for 20 cities problem

0 144 114 105 31 109 135 132 85 79 158 20 73 162 127 190 156 58 87 71

144 0 144 181 147 76 195 73 64 114 220 135 71 18 39 60 37 101 62 146

114 144 0 49 86 169 51 78 130 42 76 94 114 154 105 151 125 137 94 46

105 181 49 0 73 189 31 124 152 67 52 88 135 195 146 197 169 147 123 40

31 147 86 73 0 128 104 119 97 57 126 17 82 164 122 184 151 80 85 40

109 76 169 189 128 0 212 126 38 128 238 112 54 92 95 137 110 51 77 148

135 195 51 31 104 212 0 129 174 85 26 118 157 206 157 201 176 173 141 67

132 73 78 124 119 126 129 0 92 65 153 115 84 80 35 73 47 118 55 98

85 64 130 152 97 38 174 92 0 90 200 82 17 82 66 120 89 36 39 112

79 114 42 67 57 128 85 65 90 0 111 59 73 128 80 137 106 95 57 33

158 220 76 52 126 238 26 153 200 111 0 141 183 231 182 224 201 198 167 91

20 135 94 88 17 112 118 115 82 59 141 0 67 153 114 177 142 63 75 52

73 71 114 135 82 54 157 84 17 73 183 67 0 90 64 123 89 35 28 95

162 18 154 195 164 92 206 80 82 128 231 153 90 0 49 47 35 119 79 161

127 39 105 146 122 95 157 35 66 80 182 114 64 49 0 62 28 99 40 113

190 60 151 197 184 137 201 73 120 137 224 177 123 47 62 0 34 156 102 170

156 37 125 169 151 110 176 47 89 106 201 142 89 35 28 34 0 123 68 139

58 101 137 147 80 51 173 118 36 95 198 63 35 119 99 156 123 0 63 106

87 62 94 123 85 77 141 55 39 57 167 75 28 79 40 102 68 63 0 85

71 146 46 40 40 148 67 98 112 33 91 52 95 161 113 170 139 106 85 0

Dataset 2 for 20 cities problem

0 74 4110 3048 2267 974 4190 3302 4758 3044 3095 3986 5093 6407 5904 8436 6963 6694 6576 8009

74 0 4070 3000 2214 901 4138 3240 4702 2971 3021 3915 5025 6338 5830 8369 6891 6620 6502 7939

4110 4070 0 1173 1973 3496 892 1816 1417 3674 3778 2997 2877 3905 5057 5442 4991 5151 5316 5596

3048 3000 1173 0 817 2350 1172 996 1797 2649 2756 2317 2721 3974 4548 5802 4884 4887 4960 5696

2267 2214 1973 817 0 1533 1924 1189 2498 2209 2312 2325 3089 4401 4558 6342 5175 5072 5075 6094

974 901 3496 2350 1533 0 3417 2411 3936 2114 2175 3014 4142 5450 4956 7491 5990 5725 5615 7040

4190 4138 892 1172 1924 3417 0 1233 652 3086 3185 2203 1987 3064 4180 4734 4117 4261 4425 4776

3302 3240 1816 996 1189 2411 1233 0 1587 1877 1979 1321 1900 3214 3556 5175 4006 3947 3992 4906

4758 4702 1417 1797 2498 3936 652 1587 0 3286 3374 2178 1576 2491 3884 4088 3601 3818 4029 4180

3044 2971 3674 2649 2209 2114 3086 1877 3286 0 107 1360 2675 3822 2865 5890 4090 3723 3560 5217

3095 3021 3778 2756 2312 2175 3185 1979 3374 107 0 1413 2725 3852 2826 5916 4088 3705 3531 5222

3986 3915 2997 2317 2325 3014 2203 1321 2178 1360 1413 0 1315 2511 2251 4584 2981 2778 2753 4031

5093 5025 2877 2721 3089 4142 1987 1900 1576 2675 2725 1315 0 1323 2331 3350 2172 2275 2458 3007

6407 6338 3905 3974 4401 5450 3064 3214 2491 3822 3852 2511 1323 0 2350 2074 1203 1671 2041 1725

5904 5830 5057 4548 4558 4956 4180 3556 3884 2865 2826 2251 2331 2350 0 3951 1740 1108 772 2880

XXII

8436 8369 5442 5802 6342 7491 4734 5175 4088 5890 5916 4584 3350 2074 3951 0 2222 2898 3325 1276

6963 6891 4991 4884 5175 5990 4117 4006 3601 4090 4088 2981 2172 1203 1740 2222 0 684 1116 1173

6694 6620 5151 4887 5072 5725 4261 3947 3818 3723 3705 2778 2275 1671 1108 2898 684 0 432 1776

6576 6502 5316 4960 5075 5615 4425 3992 4029 3560 3531 2753 2458 2041 772 3325 1116 432 0 2174

8009 7939 5596 5696 6094 7040 4776 4906 4180 5217 5222 4031 3007 1725 2880 1276 1173 1776 2174 0

Dataset 3 for 20 cities problem

0 39 22 59 54 33 57 32 89 73 29 46 16 83 120 45 24 32 36 25

39 0 20 20 81 8 49 64 63 84 10 61 25 49 81 81 58 16 72 60

22 20 0 39 74 18 60 44 71 73 11 46 6 61 99 61 37 10 51 40

59 20 39 0 93 27 51 81 48 80 30 69 45 32 61 97 75 31 89 78

54 81 74 93 0 73 43 56 104 76 76 77 69 111 72 46 56 84 49 53

33 8 18 27 73 0 45 61 71 88 8 63 22 57 87 77 54 18 68 56

57 49 60 51 43 45 0 85 88 115 52 103 60 75 64 85 79 63 83 78

32 64 44 81 56 61 85 0 74 43 55 23 40 81 97 17 8 50 8 7

89 63 71 48 104 71 88 74 0 38 69 51 75 16 35 75 77 61 77 80

73 84 73 80 76 88 115 43 38 0 81 28 72 53 55 38 49 70 42 50

29 10 11 30 76 8 52 55 69 81 0 55 16 57 91 71 48 11 62 50

46 61 46 69 77 63 103 23 51 28 55 0 44 59 81 32 26 46 29 29

16 25 6 45 69 22 60 40 75 72 16 44 0 67 105 56 33 16 46 35

83 49 61 32 111 57 75 81 16 53 57 59 67 0 39 88 82 51 87 85

120 81 99 61 72 87 64 97 35 55 91 81 105 39 0 84 104 90 93 104

45 81 61 97 46 77 85 17 75 38 71 32 56 88 84 0 23 67 9 21

24 58 37 75 56 54 79 8 77 49 48 26 33 82 104 23 0 44 14 3

32 16 10 32 84 18 63 50 61 70 11 46 16 51 90 67 44 0 58 47

36 72 51 89 49 68 83 8 77 42 62 29 46 87 93 9 14 58 0 12

25 60 40 78 53 56 78 7 80 50 50 29 35 85 104 21 3 47 12 0

B.5 Matrices for 25 cities datasets

Dataset 1 for 25 cities problem

XXIII

0

8

3

9

3

1

2

9

1

3

3

1

3

9

1

5

1

1

6

9

1

3

5

1

1

4

1

1

0

9

8

9

9

9

5

8

1

1

5

2

1

5

9

1

8

1

1

7

2

1

8

5

1

4

7

1

5

7

1

8

5

2

2

0

1

2

7

8

3
0

4

0

5

3

6

2

6

4

9

1

1

1

6

9

3

8

4

9

5

9

8

8

9

6

8

6

7

1

2

7

1

5

6

1

7

5

1

5

2

1

6

5

1

6

0

1

8

0

2

2

3

2

6

8

1

7

9

9

3

4

0
0

4

2

4

2

4

9

5

9

8

1

5

4

4

4

5

8

6

4

5

4

3

1

3

6

8

6

1

1

7

1

3

5

1

1

2

1

2

5

1

2

4

1

4

7

1

9

3

2

4

1

1

5

7

1

2

9

5

3

4

2

0

1

1

1

1

4

6

7

2

6

5

7

0

8

8

1

0

0

8

9

6

6

7

6

1

0

2

1

4

2

1

5

6

1

2

7

1

3

9

1

5

5

1

8

0

2

2

8

2

7

8

1

9

7

1

3

3

6

2

4

2

1

1

0 9

3

5

6

1

5

5

6

2

8

2

9

5

8

4

6

2

7

4

9

3

1

3

3

1

4

6

1

1

7

1

2

8

1

4

8

1

7

3

2

2

2

2

7

2

1

9

4

1

3

9

6

4

4

9

1

1

9 0

3

9

6

5

6

3

7

1

9

0

1

0

3

9

2

7

1

8

2

1

0

0

1

4

1

1

5

3

1

2

4

1

3

5

1

5

6

1

8

1

2

3

0

2

8

0

2

0

2

1

5

1

9

1

5

9

4

6

3

5

3

9

0
2

6

3

4

5

2

7

1

8

8

7

7

6

3

7

8

6

6

1

1

0

1

1

9

8

8

9

8

1

3

0

1

5

6

2

0

6

2

5

7

1

8

8

1

6

9

1

1

6

8

1

7

2

6

1

6

5

2

6

0
3

7

5

9

7

5

9

2

8

3

7

6

9

1

5

4

9

8

1

0

3

7

0

7

8

1

2

2

1

4

8

1

9

8

2

5

0

1

8

8

1

3

5

9

3

5

4

6

5

5

5

6

3

3

4

3

7
0

2

2

3

9

5

6

4

7

4

0

5

5

3

7

7

8

9

1

6

2

7

4

9

6

1

2

2

1

7

2

2

2

3

1

5

5

1

1

4

8

4

4

4

7

0

6

2

7

1

5

2

5

9

2

2
0

2

0

3

6

2

6

2

0

3

4

4

3

7

4

9

1

6

8

8

2

8

6

1

1

1

1

6

0

2

1

0

1

3

6

1

1

0

9

5

5

8

8

8

8

2

9

0

7

1

7

5

3

9

2

0
0

1

8

1

1

2

7

3

2

4

2

6

1

8

0

6

4

7

7

6

8

9

2

1

4

0

1

9

0

1

1

6

9

8

9

8

6

4

1

0

0

9

5

1

0

3

8

8

9

2

5

6

3

6

1

8

0

1

1

3

4

3

1

5

6

6

3

8

5

7

5

8

7

6

2

8

3

1

2

9

1

7

8

1

0

0

XXIV

9

9

8

9

5

4

8

9

8

4

9

2

7

7

8

3

4

7

2

6

1

1

1

1

0

2

3

2

4

5

3

6

8

8

9

7

4

8

7

7

1

9

3

1

4

0

1

8

9

1

1

1

9

5

6

8

3

1

6

6

6

2

7

1

6

3

7

6

4

0

2

0

2

7

3

4

2

3
0

1

5

6

2

8

7

1

0

6

8

7

1

0

0

9

3

1

1

6

1

6

3

2

1

2

1

3

2

8

1

6

7

3

6

7

6

7

4

8

2

7

8

9

1

5

5

3

4

3

2

3

1

2

4

1

5
0

7

3

9

2

1

1

2

9

6

1

0

9

9

3

1

1

3

1

5

8

2

0

5

1

2

2

1

5

2

1

2

7

8

6

1

0

2

9

3

1

0

0

6

6

5

4

3

7

4

3

4

2

5

6

5

3

6

2

7

3

0

4

4

5

4

2

6

3

9

6

8

9

4

1

4

4

1

9

6

1

3

9

1

5

9

1

5

6

1

1

7

1

4

2

1

3

3

1

4

1

1

1

0

9

8

7

8

7

4

6

1

6

3

6

8

8

7

9

2

4

4

0

2

2

3

4

3

8

3

0

5

3

1

0

2

1

5

4

1

0

9

1

8

1

1

7

5

1

3

5

1

5

6

1

4

6

1

5

3

1

1

9

1

0

3

9

1

9

1

8

0

8

5

8

9

1

0

6

1

1

2

5

4

2

2

0

3

3

2

9

4

6

6

4

1

0

7

1

5

7

1

2

5

1

7

2

1

5

2

1

1

2

1

2

7

1

1

7

1

2

4

8

8

7

0

6

2

6

8

6

4

7

5

7

4

8

7

9

6

2

6

3

4

3

3

0
1

3

6

3

8

7

1

3

5

1

8

6

1

4

1

1

8

5

1

6

5

1

2

5

1

3

9

1

2

8

1

3

5

9

8

7

8

7

4

8

2

7

7

8

7

8

7

1

0

0

1

0

9

3

9

3

8

2

9

1

3

0
6

8

9

0

1

3

6

1

8

6

1

4

8

1

4

7

1

6

0

1

2

4

1

5

5

1

4

8

1

5

6

1

3

0

1

2

2

9

6

8

6

6

8

6

2

7

1

9

3

9

3

6

8

3

0

4

6

6

3

6

8
0

2

6

7

7

1

2

8

8

0

1

5

7

1

8

0

1

4

7

1

8

0

1

7

3

1

8

1

1

5

6

1

4

8

1

2

2

1

1

1

9

2

8

3

9

3

1

1

6

1

1

3

9

4

5

3

6

4

8

7

9

0

2

6
0

5

0

1

0

2

6

5

1

8

5

2

2

3

1

9

3

2

2

8

2

2

2

2

3

0

2

0

6

1

9

8

1

7

2

1

6

0

1

4

0

1

2

9

1

4

0

1

6

3

1

5

8

1

4

4

1

0

2

1

0

7

1

3

5

1

3

6

7

7

5

0
0

5

1

6

4

2

2

0

2

6

8

2

4

1

2

7

8

2

7

2

2

8

0

2

5

7

2

5

0

2

2

3

2

1

0

1

9

0

1

7

8

1

8

9

2

1

2

2

0

5

1

9

6

1

5

4

1

5

7

1

8

6

1

8

6

1

2

8

1

0

2

5

1

0

9

3

XXV

1

2

7

1

7

9

1

5

7

1

9

7

1

9

4

2

0

2

1

8

8

1

8

8

1

5

5

1

3

6

1

1

6

1

0

0

1

1

1

1

3

2

1

2

2

1

3

9

1

0

9

1

2

5

1

4

1

1

4

8

8

0

6

5

6

4

9

3

0

Dataset 2 for 25 cities problem

0

1

4

6

1

4

5

1

8

1

7

7

1

4

7

7

6

1

0

0

1

9

5

1

5

1

4

9

8

4

6

4

1

1

4

2

9

1

0

8

1

3

5

3

2

6

4

8

8

1

8

1

5

3

1

4

5

3

9

1

8

8

1

4

6

0

3

5

4

0

8

0

4

0

1

4

8

5

1

6

7

3

0

1

0

9

9

9

1

1

2

3

3

1

6

5

6

5

5

2

1

5

4

9

2

7

4

1

6

1

2

0

5

0

1

1

3

4

3

1

4

5

3

5

0
6

9

6

9

5

1

2

9

4

5

1

0

0

6

6

1

0

0

7

9

9

7

5

2

1

5

8

4

3

1

9

1

6

0

1

0

4

6

0

1

6

2

2

0

1

5

1

1

9

6

6

1

8

1

4

0

6

9

0

1

2

0

7

3

1

8

9

9

1

3

1

3

3

1

4

9

1

4

0

1

5

2

6

7

2

0

3

1

0

5

8

8

1

8

5

1

2

2

1

1

5

1

9

5

4

9

8

4

1

4

6

1

3

7

7

8

0

6

9

1

2

0

0

7

1

7

0

2

9

1

4

1

9

6

3

1

2

7

3

2

5

7

8

9

3

1

5

8

9

7

5

7

1

1

9

4

8

1

6

8

6

0

1

2

3

1

4

7

4

0
5

7

3

7

1
0

1

2

8

4

8

1

0

4

7

1

1

0

2

7

9

9

7

5

7

1

6

0

4

3

1

7

1

6

3

1

0

7

6

1

1

6

4

2

4

1

0

1

2

2

6

9

7

6

1

4

8

1

2

9

1

8

9

7

0

1

2

8

0

9

8

2

1

2

1

6

7

5

0

5

0

3

8

1

2

8

6

1

8

6

1

1

2

1

0

9

1

0

9

7

4

9

2

1

4

6

1

2

1

9

5

1

9

0

1

0

0

5

1

4

5

9

1

2

9

4

8

9

8

0

1

1

4

6

9

5

9

5

0

6

1

3

2

1

1

6

2

6

4

0

1

1

5

6

1

2

4

1

1

7

5

3

4

9

7

4

9

4

1

9

5

6

7

1

0

0

3

1

1

4

1

1

0

4

2

1

2

1

1

4

0

4

5

1

6

8

1

6

4

1

7

4

8

5

2

1

9

1

3

2

1

1

8

1

9

3

1

3

2

1

3

8

2

0

6

7

9

1

1

4

1

5

7

4

1

1

5

1

3

0

6

6

3

3

9

6

7

1

1

6

7

6

9

4

5

0

1

2

3

1

2

0

1

2

9

3

9

1

7

4

9

0

8

2

1

5

2

9

0

9

4

1

6

3

5

0

8

1

1

1

4

4

4

XXVI

4

9

1

0

9

1

0

0

1

4

9

3

1

1

0

2

5

0

5

9

1

6

8

1

2

3

0

3

5

1

8

8

3

5

8

6

0

8

8

7

6

5

9

4

0

6

8

1

1

2

9

8

4

8

1

5

2

8

4

9

9

7

9

1

4

0

2

7

7

9

5

0

5

0

1

6

4

1

2

0

3

5
0

2

1

8

2

8

7

3

6

6

3

1

1

1

8

2

2

5

1

0

2

9

6

7

3

8

0

1

4

0

6

4

1

1

2

9

7

1

5

2

3

2

9

7

3

8

6

1

1

7

4

1

2

9

1

8

2

1
0

9

0

6

5

5

4

8

2

9

3

7

5

3

8

8

2

1

1

1

9

2

6

6

1

5

5

1

1

4

3

3

5

2

6

7

5

7

5

7

1

2

8

3

2

8

5

3

9

8

3

8

2

9

0

0

1

3

6

5

7

5

9

1

2

0

5

9

5

6

1

2

8

4

8

6

4

8

0

7

3

2

9

1

6

5

1

5

8

2

0

3

8

9

1

6

0

6

1

1

1

6

2

1

9

1

7

4

5

8

8

7

6

5

1

3

6

0

1

1

7

1

4

6

5

8

9

1

9

8

3

5

1

7

0

1

5

6

6

7

2

0

8

1

0

8

6

5

4

3

1

0

5

3

1

4

3

8

6

2

6

1

3

2

9

0

6

0

3

6

5

4

5

7

1

1

7

0

2

8

1

2

8

8

2

1

9

1

2

6

6

0

3

8

9

0

1

0

5

1

3

5

5

2

1

9

8

8

5

8

1

7

1

1

2

4

0

1

1

8

8

2

8

8

6

3

8

2

5

9

1

4

6

2

8

0

1

5

4

1

0

2

4

7

1

5

3

3

9

1

0

1

1

4

8

5

3

2

1

5

4

1

6

0

1

8

5

9

7

1

6

3

1

0

9

1

1

5

1

9

3

1

5

2

7

6

1

1

1

9

3

1

2

0

5

8

1

2

8

1

5

4

0
6

2

1

0

9

2

3

1

6

5

1

6

3

4

1

1

9

3

6

4

9

2

1

0

4

1

2

2

5

7

1

0

7

1

0

9

6

1

1

3

2

9

0

5

9

8

2

7

5

5

9

9

1

8

2

1

0

2

6

2
0

6

7

7

3

1

0

5

1

1

0

2

5

1

3

1

8

8

7

4

6

0

1

1

5

1

1

6

1

7

4

2

4

1

3

8

9

4

4

0

2

5

3

8

5

6

9

8

1

9

4

7

1

0

9

6

7
0

1

0

6

7

3

5

8

7

1

1

1

7

1

8

1

6

1

1

6

2

1

9

5

9

4

1

6

4

9

2

1

1

7

2

0

6

1

6

3

6

8

1

0

2

8

2

1

2

8

3

5

1

2

6

1

5

3

2

3

7

3

1

0

6

0

1

6

9

1

6

3

4

9

2

0

2

1

5

3

2

0

2

0

4

9

8

1

2

4

1

4

6

5

3

7

9

5

0

1

1

2

9

6

1

1

1

4

8

1

7

0

6

0

3

9

1

6

5

1

0

5

7

3

1

6

9

0

3

4

1

2

4

4

6

XXVII

1

4

5

5

0

1

5

8

4

6

8

1

0

1

2

1

4

9

1

1

4

8

1

9

8

7

3

9

2

6

4

1

5

6

3

8

1

0

1

6

3

1

1

0

5

8

1

6

3

3

4

0

1

2

3

7

9

3

9

1

1

3

1

1

9

1

4

6

6

0

1

2

2

9

5

7

4

1

5

7

1

1

4

4

8

8

0

6

6

8

0

6

7

9

0

1

1

4

4

1

2

5

7

1

4

9

1

2

4

1

2

3

0

1

5

3

1

8

8

4

3

6

6

1

3

1

2

3

6

9

1

9

0

9

4

4

1

4

4

1

5

2

1

4

0

1

5

5

7

3

2

0

8

1

0

5

8

5

1

9

3

1

3

1

1

1

7

2

0

2

4

6

7

9

1

5

3

0

Dataset 3 for 25 cities problem

0

6

8

1

3

3

5

7

2

5

1

2

1

5

6

5

7

2

1

0

1

3

2

5

3

7

2

2

2

7

3

3

1

2

1

1

1

7

5

1

3

7

1

6

9

7

1

9

0

4

6

2

2

0

2

3

0

5

1

8

4

6

1

3

1

9

2

9

4

9

2

3

9

2

9

6

6

0

6

8

1

0

6

7

5

1

5

2

1

5

3

7

1

0

8

0

8

8

6

1

4

9

4

6

9

4

4

5

4

7

0

0

5

6

0

8

1

0

1

4

3

5

8

9

2

7

0

9

4

1

7

6

0

5

7

5

5

2

0

9

9

8

2

8

5

1

0

3

9

9

3

1

6

6

8

5

3

3

5

6

7

5

0

8

2

7

1

5

4

7

4

0

5

3

6

4

1

6

6

0

7

0

4

5

1

8

3

5

5

4

1

2

1

4

2

2

1

6

8

9

1

0

3

2

5

2

2

7

5

3

5

3

7

8

0

2

1

7

8

1

5

0

3

5

8

5

1

0

7

4

7

9

3

9

5

1

7

2

5

1

5

2

8

2

7

0

1

4

7

0

1

2

3

2

9

3

0

1

3

7

3

6

5

7

4

9

8

7

4

4

6

0

4

6

5

8

1

2

9

4

8

2

5

7

5

3

3

6

5

6

0

5

9

0

7

1

9

8

9

6

7

6

5

0

1

2

4

7

4

3

0

6

0

4

1

2

1

5

1

5

3

7

1

5

4

7

1

4

7

0

0

1

8

2

5

1

3

7

8

5

8

0

8

4

3

1

1

3

6

1

1

9

2

1

1

7

2

1

1

7

2

6

8

1

6

7

2

1

1

3

6

1

1

3

5

1

0

1

8

1

5

1

7

6

3

1

1

4

1

4

1

0

2

7

1

4

5

2

1

8

5

3

9

3

7

6

5

7

1

0

8

0

4

0

5

1

2

3

2

1

8

2

5

0

4

4

7

1

9

4

9

9

8

2

8

7

9

6

3

3

7

7

3

1

8

2

7

1

9

9

5

1

3

2

1

6

9

9

1

1

1

4

8

5

3

4

0

2

2

4

5

6

1

9

0

8

9

4

6

1

4

7

9

1

1

9

8

1

3

1

2

XXVIII

2

1

0

8

8

6

3

6

4

9

3

0

1

3

7

8

4

4

7

0

1

5

0

2

5

3

5

4

3

2

1

8

6

3

2

6

1

3

8

0

1

5

4

8

8

7

4

2

5

2

6

6

7

4

0

6

2

8

4

2

0

0

9

1

5

2

4

4

9

9

1

1

2

8

1

1

1

3

8

6

5

1

3

2

5

1

4

9

4

1

6

6

0

1

3

7

3

5

8

0

1

9

4

9

1

5

0

2

0

9

6

7

1

2

0

4

1

3

1

6

1

2

6

8

8

8

5

1

0

1

6

2

8

1

2

6

0

1

1

0

7

1

1

2

3

1

6

3

0

7

1

2

1

1

2

7

1

0

9

5

1

2

9

6

1

8

0

3

8

0

9

3

7

2

6

9

4

7

0

4

6

5

7

8

4

3

9

8

2

5

3

5

9

6

7

0

2

9

3

3

4

9

3

2

9

9

3

7

1

0

1

3

3

3

9

2

9

3

2

9

2

1

7

5

6

7

4

1

4

7

4

1

0

9

4

1

8

4

7

5

1

1

0

1

0

3

9

3

2

2

7

4

5

4

5

1

8

4

9

8

1

1

3

6

8

7

9

4

3

2

1

2

0

4

2

9

3

0

2

4

6

1

0

6

9

8

3

1

2

1

3

5

7

6

2

5

5

2

3

6

1

5

1

4

8

8

1

7

6

7

1

0

9

3

1

0

9

6

9

6

7

7

0

4

6

8

3

3

7

0

0

3

5

5

7

4

4

1

1

9

2

6

3

3

1

8

6

1

3

1

6

3

4

9

2

4

6

0

1

4

0

1

1

9

4

1

3

6

2

6

8

8

1

6

7

4

8

1

2

2

0

3

2

5

1

8

2

3

1

3

3

8

3

1

3

9

4

2

9

6

2

6

7

9

1

2

1

5

6

0

4

1

2

6

0

4

1

1

7

2

7

7

3

3

2

6

1

2

6

8

3

2

9

1

0

6

1

4

0

0

1

0

5

4

1

2

7

7

6

4

0

1

8

5

3

4

1

1

5

4

3

8

2

1

8

0

3

1

1

9

8

1

7

3

8

0

2

8

5

9

5

3

9

1

1

7

5

8

1

0

1

4

2

2

6

5

8

1

1

7

2

1

8

2

7

1

3

8

0

8

8

5

9

3

7

9

8

3

1

1

9

4

1

0

5

4

0

7

8

4

7

3

1

1

1

6

4

7

4

9

9

9

7

1

4

3

6

1

5

9

7

2

4

2

8

8

1

4

1

1

1

0

0

7

5

6

2

1

3

7

1

1

4

3

5

1

6

8

9

1

2

9

4

6

8

1

1

9

9

5

1

5

4

8

1

0

1

1

0

1

3

1

2

1

3

1

3

6

2

1

2

7

7

7

8

4

0

6

7

4

1

3

0

6

1

0

4

8

1

1

6

9

1

6

5

9

8

1

3

1

0

2

6

1

1

0

4

1

1

9

5

1

7

2

4

7

5

0

6

9

7

8

9

2

1

0

3

2

8

2

5

6

7

2

1

3

2

1

8

7

4

6

2

8

3

3

9

5

7

6

6

8

8

6

4

0

7

3

1

6

7

4

0

6

3

2

5

0

5

4

9

5

1

0

0

2

1

2

0

7

9

7

3

4

6

7

8

3

4

1

2

0

8

2

7

1

XXIX

1

9

0

7

0

9

5

2

2

7

5

3

1

1

3

6

6

9

9

2

5

2

1

2

6

0

2

9

3

2

5

5

1

6

7

1

8

5

1

1

6

4

1

3

0

6

6

3

2

0

4

5

1

1

6

7

4

9

2

1

7

6

7

1

3

0

8

2

8

3

9

4

1

1

0

2

5

6

4

3

4

6

2

4

1

7

7

5

3

3

6

5

1

1

3

5

1

1

1

4

6

6

7

1

1

0

7

2

9

2

2

3

6

4

8

1

3

4

1

7

4

9

1

0

4

8

5

0

5

4

5

1

0

2

8

4

7

2

3

1

7

1

2

8

5

7

1

6

8

4

9

0

7

3

3

2

9

8

2

0

2

6

0

5

5

3

7

6

0

5

1

0

1

8

8

5

3

4

0

6

1

1

2

3

1

7

5

1

5

1

2

2

0

1

5

4

9

9

7

1

1

6

9

4

9

5

1

6

7

2

8

4

0

5

0

7

1

6

4

9

1

1

4

1

1

1

6

7

7

4

9

2

1

4

7

6

3

0

5

7

5

5

8

0

9

0

7

1

5

1

7

4

0

2

2

8

4

1

6

3

0

6

7

4

4

8

8

3

2

5

3

8

2

1

4

3

6

1

6

5

9

1

0

0

2

4

9

2

7

2

3

5

0

7

0

2

1

4

8

1

5

8

0

5

5

5

1

1

5

4

8

7

3

9

2

1

1

8

4

6

2

0

9

9

2

1

7

8

1

9

8

9

6

3

1

2

4

5

6

2

0

0

9

7

1

2

1

4

7

4

1

7

6

7

1

8

2

3

1

8

0

3

1

5

9

7

8

1

3

1

2

0

7

1

7

6

7

1

7

1

2

1

6

4

9

2

1

4

8

0

1

8

3

9

1

6

5

8

1

9

4

0

2

4

1

5

1

4

2

5

1

3

1

9

8

2

8

1

5

0

3

6

7

6

1

4

1

4

1

9

0

8

1

5

2

4

1

1

2

7

1

0

9

4

1

0

9

3

1

3

3

8

1

1

9

8

2

4

2

1

0

2

6

9

7

3

1

3

0

8

8

5

7

1

1

4

1

1

5

8

0

1

8

3

9

0

1

0

2

5

4

2

9

9

2

3

8

0

4

2

9

4

5

1

0

5

8

5

5

0

1

1

0

2

7

9

4

6

4

9

9

1

0

9

5

1

8

4

1

0

9

3

1

3

1

7

3

8

8

1

1

1

0

4

4

6

7

2

8

3

1

6

8

1

1

6

5

5

5

1

6

5

8

1

0

2

5

0

6

5

8

8

2

6

3

6

6

9

2

3

3

9

9

1

0

7

4

2

4

7

1

4

5

2

1

4

7

9

1

1

2

8

1

2

9

6

7

5

1

6

9

6

9

4

2

8

0

2

4

1

1

1

1

9

5

8

3

4

9

4

1

4

9

0

7

7

4

1

1

5

4

1

9

4

0

4

2

9

6

5

8

0

5

9

6

5

6

3

9

2

9

3

1

6

7

9

3

4

3

0

1

8

5

3

1

1

9

8

1

1

1

3

1

8

0

3

1

0

1

0

7

7

0

9

6

2

8

5

9

1

0

0

7

1

7

2

4

1

2

0

8

1

0

2

5

7

3

3

9

2

1

8

7

3

2

4

1

5

9

2

3

8

2

6

5

9

6

0

1

0

0

1

XXX

6

6

0

6

8

5

9

5

1

6

0

4

9

3

7

1

3

1

2

8

6

5

8

0

9

3

9

3

4

6

8

6

7

9

5

3

9

5

6

2

7

5

0

2

7

1

6

4

3

2

9

8

4

7

6

9

2

1

1

4

2

5

8

0

4

3

6

6

5

6

3

1

0

0

1

0

XXXI

Appendix C: Raw Data Tables

Table C.1: Execution time for 5 cities datasets

For 5 cities Dataset 1 [ns] Dataset 2 [ns] Dataset 3 [ns]

Branch and Bound 194.400 183.400 59.500

223.000 171.500 132.500

134.000 158.900 74.300

130.300 166.300 68.100

103.700 156.000 91.900

Greedy 26673.400 31479.400 22900.800

28784.600 27000.100 27029.200

24204.100 30058.700 27804.000

25795.200 24730.900 27396.300

31906.500 27571.800 31047.700

Christofides' 86633.700 53487.800 57711.300

88809.100 51471.500 61522.000

67883.700 58842.500 44465.700

75021.400 52108.600 78825.400

79499.600 59324.400 51810.400

Table C.2: Execution time for 10 cities datasets

For 10 cities Dataset 1 [ns] Dataset 2 [ns] Dataset 3 [ns]

Branch and Bound 10615.900 2404.400 5880.600

8711.900 2260.600 6846.100

6532.200 1984.900 6455.400

XXXII

8301.900 2568.900 6950.700

8217.900 3327.000 6493.200

Greedy 39850.000 27820.800 34472.000

31839.500 27435.500 27422.900

34083.500 25443.900 30412.400

27501.200 29586.600 27898.300

27076.400 26681.400 24315.800

Christofides' 78907.500 92093.400 66730.800

84158.200 74781.500 59165.400

84910.300 82083.900 63720.200

67502.100 85253.400 72450.600

63661.500 78856.600 68284.800

Table C.3: Execution time for 15 cities datasets

For 15 cities Dataset 1 [ns] Dataset 2 [ns] Dataset 3 [ns]

Branch and Bound 29420.000 141492.100 1127321.300

24925.800 151618.200 1116487.200

27818.600 140057.100 1078828.600

25152.200 136331.400 1075252.900

27336.700 131035.400 1077210.100

Greedy 30412.800 34184.300 29985.500

31361.400 28867.800 33465.700

31635.800 26841.000 29038.500

36072.800 33101.500 37826.400

XXXIII

37281.300 29945.100 25253.900

Christofides' 76245.800 72271.300 81706.100

64483.300 73846.100 81223.900

78416.400 79065.100 100042.600

69372.500 55722.300 72376.600

71426.800 78178.900 84742.700

Table C.4: Execution time for 20 cities datasets

For 20 cities Dataset 1 [ns] Dataset 2 [ns] Dataset 3 [ns]

Branch and Bound 10265884.500 1284115.000 3416386.000

9896777.400 1256880.500 3353258.200

10062314.000 1300893.400 3385011.400

9949965.200 1251569.200 3563624.100

9975528.300 1263951.900 3521932.700

Greedy 29410.700 24944.000 28944.300

30436.600 29621.300 31052.900

35510.600 34741.200 38610.200

34822.100 31258.600 42995.000

42919.200 43578.200 37572.400

Christofides' 75347.800 74532.400 97315.200

85982.200 79440.900 63186.000

67654.900 70260.800 65660.500

65193.900 80358.300 80174.700

79809.500 90503.900 90770.400

XXXIV

Table C.5: Execution time for 25 cities datasets

For 25 cities Dataset 1 [ns] Dataset 2 [ns] Dataset 3 [ns]

Branch and Bound 35605942.600 no data no data

33783605.200 no data no data

34211855.800 no data no data

32453998.500 no data no data

34324620.800 no data no data

Greedy 41037.800 40994.300 33195.700

47728.400 40201.500 35287.100

49821.700 43434.700 35546.600

52225.800 32861.800 34650.000

31193.600 35627.700 34396.800

Christofides' 68726.800 83356.200 63665.800

92017.800 83038.500 91585.000

72834.200 76036.100 76473.800

76135.900 61849.200 107655.200

77515.200 53797.300 92974.000

Table C.6 Tour lengths and accuracy for 5 cities datasets

For 5 cities Dataset 1 Dataset 2 Dataset 3

Branch and Bound 19 67 1209

Greedy 21 69 1209

XXXV

Christofides’ 21 69 1209

Table C.7 Tour lengths and accuracy for 10 cities datasets

For 10 cities Dataset 1 Dataset 2 Dataset 3 Ratio 3

Branch and Bound 135 1435 6811 1

Greedy 153 1744 7463 0.912635669

Christofides’ 144 1513 6811 1

Table C.8 Tour lengths and accuracy for 15 cities datasets

For 15 cities Dataset 1 Dataset 2 Dataset 3

Branch and Bound 291 1194 1908

Greedy 291 1260 2091

Christofides’ 325 1411 2030

Table C.9 Tour lengths and accuracy for 20 cities datasets

For 20 cities Dataset 1 Dataset 2 Dataset 3

Branch and Bound 769 23339 444

Greedy 973 26564 456

Christofides’ 867 24076 504

Table C.10 Tour lengths and accuracy for 25 cities datasets

For 25 cities Dataset 1 Dataset 2 Dataset 3

XXXVI

Branch and Bound 902 No data No data

Greedy 953 796 9100

Christofides’ 981 787 8842

