
1

Computer Science Extended Essay
Investigating the efficiency of pathfinding algorithms

for solving the shortest path problem based on a

geographical map.

Research question:

How far does Dijkstra’s search algorithm compare to

A* search algorithm for finding the shortest path in a

graph as the size of the graph increases by number of

vertices?

Essay word count: 3994

CS EE World
https://cseeworld.wixsite.com/home
May 2021
22/34
B
Submitter Info: Discord: sid_#6681

2

Table of Contents

1) Introduction ... 3

1.1) Personal interest in this essay……………………………………………….3

1.2) Aims of this essay………………………………………………...…………...3

1.3) The need for research in pathfinding algorithms……………...…………...4

1.4) Need for efficient algorithms and algorithmic complexity………….……...4

1.5) Use of pathfinding algorithms in satellite navigation and others……..…..4

1.6) Primary research being used…………..………………………...…………..5

1.7) Secondary research in the essay…………………..…………...…………...5

2) Research findings and analysis of both algorithms.………………….…….7

2.1) Graph Theory – Theory behind route planning in satellite navigation…...7

2.1.1) Implementation of my data set (graph)……….....…………...…………...9

2.2) Shortest Path Problem – Theory behind route planning in satellite

navigation…9

2.3) Algorithm Analysis and complexity…..……………..…………...……… .10

2.3.1) Need for analyzing algorithms……......…………..…………...…………10

2.3.2) Big O notation and its relation to time complexity ...………...…………11

2.4) Explanation and use of Dijkstra’s algorithm in pathfinding…...………….11

2.5) Explanation and use of A* algorithm in pathfinding…………...………….18

2.5.1) Heuristics in A* algorithm …………………….…..…………...………….19

3) Conducting the experiment………………………….…………………………20

3.1) Aim of experiment…………………………………………………………….20

3.2) Hypothesis ……………………………………………………………………20

4) Experiment Methodology……………………………………………………….21

4.1) Independent Variable ……………………………………………………..…21

4.2) Dependent Variable …………………………………………………………21

4.3) Control Variables …………………………………………………………….21

4.4) Method ………………………………………………………………………..22

5) Findings of the experiment...…………………………………………………..24

5.1) Results………………………………………………………………………...24

5.2) Graphs of the results…….…………………………………………………..25

6) Analyzing the experiment data……………………………………………… 27

7) Experiment Analysis……………………………………………………………..28

5.2) Strengths………………….…………………………………………………...28

5.2) Limitation………………….…………………………………………………...28

5.2) Improvements…………….…………………………………………………...29

8) Conclusion…………………………………………………………………………30

8.1) Summary of the essay….……………….…………………………………...30

8.2) Conclusion for the findings……………...………………………………….. 30

8.3) Way forward…………….……………………………………………………..31

9) Appendices……………………..…………………………………………………32

Appendix A – Graphs and implementation……………………………………...32

Appendix B – Dijkstra’s algorithm code ………………………………………...46

Appendix C – A* algorithm code………………………………………………... 47

3

Appendix D – Raw data of experiment …………….…………………………...51

Appendix E – Permission to use the code (in appendix C).…………………..52

Appendix F – Evidence of subject expert…………………………………….....53

Appendix G – Survey and results…...…..…………………………………….....55

Appendix H– Course completion evidence…………………………………......57

10) Works Cited…………………………………………………………………….…59

4

1) Introduction

Pathfinding is an important aspect of Computer Science, where it’s a solution that aims to

solve the shortest path problem in a graph data structure. Pathfinding is the plotting of the

shortest route between two points. This has various applications in fields such as

Artificial Intelligence, Network Theory and Game Development. For instance,

pathfinding can be used in mapping applications like Google Maps to find the best route

between origin and destination or it can used to send packets across a computer

network by finding the shortest route between start and end.

1.1) Personal interest in this essay

I’m interested in this particular aspect because during my Personal project journey at

Middle Years Programme, I developed a game, which utilized artificial intelligence.

However, the AI in my game wasn’t complex because it didn’t have proper pathfinding

and I wasn’t able to implement pathfinding because of my limited understanding then.

Therefore, I’m using this essay to develop my understanding of pathfinding.

1.2) Aims of this essay

 Moreover, I explored this essay by investigating how the algorithms perform

(efficiency) when finding routes on maps. For example, finding the shortest distance

between two cities. This topic also links to IB Computer Science as it utilized abstract

data structures and computational thinking. Moreover, I applied my knowledge from

my course to this essay for instance I used lists and queues in my implementation which

we learnt in IB Computer Science.

1.3) The need for research in pathfinding algorithms

This essay explored the efficiency of the algorithms behind pathfinding by looking at

certain algorithms which are the Dijkstra’s algorithm and A* algorithm. The algorithms

5

were implemented because I want to investigate these particular algorithms in a practical

environment. Consequently, the research question is: How far does Dijkstra’s search

algorithm compare to A* search algorithm for finding the shortest path in a graph as the

size of the graph increases by number of vertices?

1.4) Need for efficient algorithms and algorithmic complexity

This essay investigated the relationship between time taken for an entire operation

with respect to the increase in size of the relevant dataset. There is a need for this

research and an important part of algorithms is efficiency. Algorithms are solved by

programmers and understanding the efficiency of algorithms is important in programming

as it allows for growth. Since programmers think in terms of maintaining code in the long

term. Therefore, creating efficient algorithms is about decreasing the amount of

recursive operations that is required to complete the task with respect to the size of

dataset.1 Furthermore, this implicates to pathfinding as it’s important to quickly

calculate the shortest path with larger datasets.

1.5) Use of pathfinding algorithms in satellite navigation and others

In the real world, pathfinding algorithms have various uses. For instance, take the internet

and a pathfinding algorithm could be used in finding the shortest path between a server

and a node. Another real-world application is in satellite navigation, in which pathfinding

algorithms could be used to calculate the shortest route from current location to the desired

destination. Google implements a pathfinding in some form by turning a geographical

map into a mathematical graph and using Dijkstra’s algorithm using map data to

find the shortest distance between two places.2

1 Choudry, Humzah., 2017. Understanding Algorithm Efficiency And Why It’S Important. [online] Medium.

2 Lanning, D. R., Harrell, G. K., & Wang, J. (2014). Dijkstra’s algorithm and Google maps.

6

1.6) Primary research being used

For the research I collated data from primarily from my own experiment3 because it

would lead to authentic results. The sources for my primary research was a subject expert

who is a software engineer with 15 years of experience with algorithms in general. The

subject expert served as guidance4 and consultation for the direction of my research.

Additionally, I gathered data from a survey to establish the need and verify it.5

1.7) Secondary research in the essay

 The secondary research which is a range of sources includes books, research articles,

lecture notes and web articles was there to help my understanding and give direction to

my experiment. Additionally, completing a course on graph theory to build my

foundational understanding.6 With these many sources, I minimized bias in my research,

and it gave a balanced review.

2) Research findings and analysis of both algorithms

2.1) Graph Theory – Theory behind route planning in satellite navigation78

A graph G = {V, E} is a data structure which is a set of points called vertices (V) (vertices

are also known as nodes) which are connected by a set of lines called edges (E). In

essence it is a set of objects (vertices) where there are relationships between pairs of

objects, for instance a graph of road networks could represent cities (as nodes) and show

the roads/highways between cities (as edges). Example of a graph is shown below:

3 See section 5.1 and appendix D
4 See appendix F
5 See appendix G
6 Refer to appendix H
7 Kulikov, Alexander S. “Introduction to Graph Theory.” University of California San Diego, National
Research University Higher School of Economics.
8 Quinn, Catherine, et al. Mathematics for the international student: mathematics HL (option)

7

This is a graph that I made, where the circles (A, B, C, D, E, F) are the vertices and the

lines that connect them are the edges. This shows how the objects relate to each other.

For example, node A is directly connected (adjacent) to node B and node C but there is

no direct connection with node F.

The edges can be weighted, meaning it can be assigned a value, for example the length

of a road. The graph above shows an unweighted graph.

Definitions:9

Path: A path is a series of distinct edges such that each edge (other than initial edge)

starts with a vertex where the prior edge ended. A simple path is when all vertices are

distinct.

9 Appendix A for additional definitions

8

Weight: The weight is a number that’s associated with an edge. The quantity can

represent anything such as distance, cost and etc. The weight of a path is sum of all edge

weights from start vertex to end vertex. The shortest path is path with minimum weight

between two vertices.

9

2.1.1) Implementation of my data set (graph)

For my experiment I created graphs using adjacency tables and implemented the graphs

in the code and calculated heuristics.10 This served as the dataset for my experiment. I

trained the data to verify if everything in the graph is correct.

2.2) Shortest Path Problem – Theory behind route planning in satellite navigation11

The shortest path problem in graph theory is finding a path between two vertices such that

the weight of the path is minimized. As said earlier the shortest path is the path where the

sum of all edges between the two vertices are minimum. To find the shortest path, a search

algorithm needs to be implemented, there are two kinds of search algorithm. Uninformed

search is when the program has no information about cost from start node to goal node.

An example of uninformed search algorithm is Dijkstra’s algorithm created by Edsger

Dijkstra in 1959. Informed search also known as heuristics search are when algorithms

use heuristics (estimate) using given information in order to find the shortest path.

2.3) Algorithm Analysis and complexity

When analyzing algorithms, an important aspect that is to be considered is the

computational complexity. Computational complexity has two parts, time complexity and

space complexity. Time complexity is a measure of runtime as the input increases and

space complexity is measure of memory usage as the input increases.12 This essay will

only focus on time complexity. Each function in programming has a runtime. Time

complexity determines how the runtime of the function grows as the number of elements

in that function grows. For example, if an 1D array is given and a function related to that

10 See appendix A
11 Russell, Stuart J, and Peter Norvig. Artificial intelligence: a modern approach.
12 Sharma, Akash. “Time and Space Complexity Tutorials & Notes | Basic Programming.” HackerEarth

10

array is given. Thus, the time complexity is the runtime of the function as the number of

elements in that array increases.

2.3.1) Need for analyzing algorithms

The most important reason for analyzing algorithms is to find characteristics in order to

evaluate the suitability for many applications or in order to compare to a similar algorithm

used in the same program. The primary goal for analyzing algorithms is to accurately

predict the performance of algorithms when implemented in programming in order to

determine the resource usage, set parameters and compare similar algorithms. We use

the analysis to build mathematical models to describe the performance of real-world

implementations of algorithms.13 This leads to us having an informed understanding of the

particular algorithm and suggest informed improvements. In the real world, programmers

have to deal with the limitations of resources such as memory and time, there is a need

for efficient algorithms because programmers keep scalability in mind when implementing

algorithms into their programs. For instance, in satellite navigation implementing

pathfinding algorithms is increasing complex compared to a simple graph with a few

nodes.

2.3.2) Big O notation and its relation to time complexity

The big O is a mathematical notation to express time complexity of a function in worst

case. For example, if a function shows a linear relation between number of elements and

runtime [f(n)=mn+c] then the big O notation for the time complexity is O(n). O(1) implies

that there is no change in runtime as number of elements increases (constant time). The

big O notation only uses terms with the highest degree ignoring any constants. For

13 Sedgewick, Robert and Philippe Flajolet. An introduction to the analysis of algorithms Second Edition.

11

instance, if the function has a time complexity of 3n2+100n+5 then the time complexity in

terms of big O is O(n2).14

2.4) Explanation and use of Dijkstra’s algorithm in pathfinding

Dijkstra’s search algorithm is one of the search algorithms that has applications in finding

the shortest path in a graph. The general algorithm is[15][16][17]:

1. Let d(v) be the path cost of neighboring vertices v from starting node s.

2. d(v) = ∞ for a neighboring node as we don’t know the value of it yet, moreover d(s) = 0

as it is the starting node.

3. From the current vertex check the weight of neighboring nodes and calculate a

temporary value of d(v). Compare all the values and assign the smallest value. For

instance, if our current node is node N and with distance of 4 from starting node and the

edge connecting its unvisited neighbor M has value of 2. Then d(v) will be 4+2 = 6. If M

was marked with a value greater than 6 then assign it to 6.

4. After checking all the neighboring nodes from the current node, mark them as visited

such that those vertices won’t be checked again.

5. If the goal node has been marked visited or if the smallest d(v) = ∞, then end algorithm.

Explaining this with an example. Assuming a weighted graph with the starting vertex as A

and let the goal, vertex be F:

14 Adamchik, Victor S. Algorithmic Complexity, Carnegie Mellon University, 2009
15 Cormen, Thomas H. et al. Introduction to Algorithms, 3rd ed.
16 Pound, Mike. “Dijkstra’s Algorithm - Computerphile.”
17 Quinn, Catherine, et al. Mathematics for the international student: mathematics HL (option)

12

Set each node to infinity for the total distance as they haven’t been visited yet. Initialize

the starting distance from start node as 0.

13

With the current node check its adjacent nodes, if the current value of node (it will be

infinity at first) is higher than value at current node plus the value of the connecting edge,

then update the value of adjacent with current plus weight of the connecting edge and add

neighbour with the minimum value to become part of shortest distance list.

14

15

In the current node choose the neighbour with the minimum distance and set it as current

node.

Keep iterating this process until all nodes have been marked visited.

After all nodes have been visited and the target has been reached, we will get the shortest

distance from A to F. The shortest distance here is 14.

16

17

Below is a pseudocode18 of the Dijkstra search algorithm using this pseudocode and the

information above I was able to implement this algorithm in python 3.8.19

2.5) Explanation and use of A* algorithm in pathfinding

A* algorithm works on the same principles as Dijkstra’s algorithm.20 Except it utilizes

heuristics to make decisions when choosing a path.21 Therefore A* search is considered

to be an informed search algorithm. Although it tends to use more memory per node

18 “Dijkstra Algorithm: Example: Time Complexity.” Gate Vidyalay, 2020
19 See Appendix B which has comments that explain each part of the code
20 Pound, Mike. “A* (A Star) Search Algorithm - Computerphile.”
21 Russell, Stuart J, and Peter Norvig. Artificial intelligence: a modern approach.

18

compared to Dijkstra’s. In A* we assign f(n) a cost evaluation function to all the nodes,

thus22:

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

Where f(n) is the total cost of the neighboring node, g(n) is the actual cost to travel from

current node to the adjacent node and h(n) is a heuristics value from that node to the goal

node. So, referring to graph in the previous section going from A to B or A to D will cost

the weight of the connecting edge plus some assigned heuristics. This would lead to the

algorithm going down path (A->D->E->F) first before exploring (A->B->C->D) because the

heuristic value for B would likely be high. This will lead the algorithm to find the path faster.

For my experimentation I borrowed the code with permission for the A* search algorithm.23

2.5.1) Heuristics in A* algorithm

The heuristics value is mainly arbitrary and dependent on context. For instance, if the

problem was based on geographical map then a heuristic could be calculated by

finding the straight-line between two points. A heuristic is considered admissible when

the estimated heuristics cost is never higher than the actual cost from the current node to

the goal node. Moreover, if heuristics always underestimate, then A* is guaranteed to find

a solution.24

3) Conducting the experiment

3.1) Aim of experiment

This experiment aimed to investigate the efficiency of Dijkstra’s search algorithm and

A* search algorithm in terms of time complexity by finding the shortest path

22 Hart, P., Nilsson, N., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum
Cost Paths.
23 Refer to appendix C
24 Kask, Kalev. Lecture 4: Optimal and heuristic search, 2016

19

between real life cities in a geographical region. The cities were represented as an

undirected weighted graph with the weight representing the quantity of distance. The

algorithms were executed in repeated trials and it complete the solution and return the

shortest path between two cities in a given time.

3.2) Hypothesis

My first hypothesis for Dijkstra’s algorithm was as the number of nodes in graph increases

then the time taken for executing the algorithm will increase by polynomial order of 2

because the theoretical time complexity for Dijkstra using a simple list or array is

O(n2log(n)) where n is the number of nodes . My hypothesis for A* search algorithm

was as the number of nodes in graph increases then the time taken would increase

however it would increase at a slower rate compared to Dijkstra’s because the

theoretical time complexity which is dependent on optimal heuristics will be

O(log(n)) meaning it would be linear.

4) Experiment Methodology

4.1) Independent variable

In the experiment for both algorithms the independent variable that was being changed to

produce a result was the number of nodes (vertices) in graph. I chose to use real life cities

to be represented as nodes in a graph data structure. Moreover, I used a weighted graph

where the edge weight was representing the distances between the cities in kilometers.

After repeated executions of the algorithms, I would adjust the graph by adding cities in

increments of one.

4.2) Dependent variable

The dependent variable that was measured is the time taken for the particular algorithm

to run in nanoseconds. I chose this particular unit of time because modern computers

20

are extremely fast at making calculations, so to observe the changes I needed to use a

precise unit of time. This was done to operationalize to see the time complexity of the

algorithms empirically.

4.3) Control Variables

Variable Description Justification

Computer system The computer system and

the OS for each algorithm

program remained same.

Specs:

- 8th gen i7 6 core

processor

- 16GB DDR4

3000Mhz RAM

- Windows 10 OS

ver. 10.0.18362

The system remained

same for algorithm

operation time to be not

affected by hardware such

as primary memory.

Same IDE (Integrated

Development

Environment)

The programs ran in the

same IDE.

Using a different IDE for

program might affect

runtimes of the program

Same graph type The graph characteristics

remained same, meaning

it’ll be undirected,

weighted, and finite

graphs.

Features of the graph

must remain same to give

fairness to the algorithms.

Same start and end nodes The graphs that will be

traversed by the

algorithms will have the

same start and end node

in every case (Berlin and

Paris).

To keep consistency

between graphs because

changing the start and end

node might affect times to

calculate path.

4.4) Method

1. Implemented the Dijkstra’s algorithm and the a* search algorithms in separate .py files.

2. Took two European cities, Berlin and Paris as the start and goal node respectively.

21

3. Using mapping software pinned the cities between Berlin and Paris and found distance

from particular city to Paris (for heuristics values in A*) using longitudes and latitudes.25

4. Using the mapping software found the actual distances between cities and using this

data created 20 different graphs26 in excel as a list of pair of cities (one column is the node

and the second column is the child node and third column is cost between cities).

5. Configured both algorithms for the particular graph, then ran each algorithm 10 times

and recorded the execution timings each time it ran for both algorithms.

6. Repeated step 5 for all 20 graphs (from 4 nodes to 23 nodes that’s 20 datapoints in

total).

7. Collated data into excel and calculated averages and made graphs.

5) Findings of the experiment

5.1) Results

Table i. These are the results of mean execution time of Dijkstra’s algorithm in

nanoseconds against

the number of vertices

in graph.

25 Appendix A
26 Refer to Appendix A

22

Table ii. These are the results of mean execution time of A* algorithm in nanoseconds

against the number of vertices in graph.

5.2) Graphs of the results

Graph i. Line graph of table i.

y = 14963e0.1061x

0

25000

50000

75000

100000

125000

150000

175000

200000

225000

250000

275000

300000

325000

350000

375000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

E
x
e

c
u
ti
o

n
 t

im
e

 i
n

 n
a

n
o
s
e

c
o
n

d
s

No. of vertices in graph

Average execution time of Dijkstra againt no. of nodes

23

Graph ii. Line graph of table ii

6) Analyzing the experiment data

From the data above we can observe that the data from Dijkstra’s algorithm shows a

positive correlation between the execution timings and the no. of vertices in a graph, same

with A* algorithm. Initially, from the data I can observe that the performance of A* is

somewhat identical to Dijkstra’s. However, after 19 nodes the difference in performance is

observed and very noticeable and Dijkstra’s algorithm search time is growing very quickly

in comparison to A* algorithm. I believe that more data points would be needed to observe

this quick change more precisely. I applied linear regression model for data in graph ii. to

check if it fits the linear model. Moreover, I tested the graph i. for exponential growth.

Additionally, put the values in y-axis on a logarithmic scale (in base 2):

y = 9130.2x - 19035

0

25000

50000

75000

100000

125000

150000

175000

200000

225000

250000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

E
x
e
c
u
ti
o
n
 t

im
e
 i
n
 n

a
n
o
s
e
c
o
n
d
s

No. of vertices in graph

Average execution time of A* against no. of nodes

24

7) Evaluating the experiment

7.1) Strengths of the experiments

A strength of this experiment was the accuracy of the data that is collected. As for each

value of the independent variable, there were 10 repeated measurements taken (trials).

This helps with the accuracy of the data because the unit of measurements in

nanoseconds, which is very small and therefore sensitive, so data would be less concise.

Thus, it’s balanced out by the repeated trials measurements. Another strength of this

experiment was the method of measurement for the execution time, a built-in function

called perf_counter_ns() was used. This is more precise than using the system clock

to measure time and it returns integer values in nanoseconds.

7.2) Limitations of the experiments

I believe that there were limitations to my experiment were that in the first instance, I

believe the data wasn’t large enough to show the full extent of the algorithms and I

should’ve used graphs with 100 or even 1000 nodes. But I wasn’t able to do that because

I didn’t know how to implement and generate graphs this large. Another limitation, albeit a

y = 0.1531x + 13.869

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Lo
ga

ri
th

m
ic

 s
ca

le
 o

f
ex

ec
u

ti
o

n
 t

im
e

in

b
as

e
2

Number of vertices in graph

Logarithmic scale of graph i. against the number of nodes

25

minor one is that both algorithms don’t have the same implementation of the graph data

structure. In Dijkstra’s algorithm an adjacency list is used to generate the graph, whereas

in the A* algorithm the graph is created as an object from the class graph. This shouldn’t

affect the results as much since the time measured is starting from when the search

algorithm in the main method is executed and not when the graph is generated

however there should be a level of consistency.

7.3) Improvements to possible future experiments

To make improvements for further experimentation. I could start by learning how to

implement very large graphs using databases, I could use a map application

programming interface for my database and use it to automatically generate. Although

it would be very challenging, it’s feasible. The second improvement to experiment would

be much easier and it would be to implement the algorithms using a consistent data type

like an adjacency list using a list data type.

8) Conclusion

8.1) Summary of the essay

To conclude this essay, the overall aim of this experiment was to measure the efficiency

of algorithms. Efficiency of algorithms is measured by analyzing algorithm complexities.

This essay focused on time complexity as an aspect of algorithm complexities. Time

complexity is measure of an algorithm where it shows how the runtime increases

with respect to the sample size of data that it’s being applied on. In this essay I choose

pathfinding algorithms as a basis for this because they were complex and had many

real-life applications. Pathfinding algorithms are a building block of machine learning and

AI. Within this essay I explored pathfinding in relation to the shortest path problem Then I

26

recontextualized the shortest path problem in terms of navigation and mapping where in

my experiment I found the shortest route between two real cities.

For my experiment I chose Dijkstra’s algorithm which is one of the more popular one in

pathfinding. Then I chose A* algorithm which is an extension to Dijkstra except it’s a

informed search which uses heuristics. In fact, as stated earlier Dijkstra is A* with

heuristics value of 0 for all nodes. For my heuristics I took the straight-line distance

between a node to the goal node. My overall hypothesis was that Dijkstra would increase

at a faster rate in execution time as the size of the graph increases than A*.

8.2) Conclusion for the findings

The data from experiment shows them near identical for many graphs however there is a

noticeable difference for the final few datasets (graphs) and it shows Dijkstra

quickly growing compared to A*. Thus, to answer the research question there is no

noticeable difference between the two algorithms in smaller graphs but A* is generally

more efficient in terms of timing.

8.3) Way forward

This experiment should be replicated for very large graphs to observe the difference in

more clarity. A future scope for this investigation could be explore the facet of space

complexity which is another metric for algorithmic complexity which measures how much

memory is used rather than execution time of an algorithm. Pathfinding is fundamental

part of AI and it has potential to be utilized in many facets such as machine learning,

robotics, using AI for mathematical problems, computational biology and medicine.

27

Appendix A – Graphs and implementation

These graphs serve as the datasets for my experiment

Additional definitions:

Adjacent: Adjacent means that when a node is connected to another node by an edge, it

is said to adjacent to that particular node.

Degree: Degree of a vertex is the number of

nodes connected through incident edges.

Direction: A graph is said to be directed when

the edges have direction to them, to represent

a one-way relationship. An undirected graph is

when the edge incident to two adjacent

vertices goes both ways.

Heuristics table of values (values are meant to

be representative of kilometers):

For the heuristics in my experiment I

calculated heuristics between Paris and a city

using the straight-line distance using

coordinates in terms longitude and latitude.

Graph 1 (4 nodes)

Current node Child node Cost (actual)

Berlin Cologne 559

Berlin Brussels 775

Cologne Brussels 225

Cologne Paris 495

Brussels Paris 327

Nodes Heuristics value

Berlin 881

Leipzig 768

Hamburg 745

Brunswick 692

Hanover 650

Kassel 578

Munster 509

Stuttgart 500

Frankfurt 480

Amsterdam 430

Cologne 405

Strasbourg 399

Eindhoven 364

Antwerp 300

Luxembourg 288

Nancy 282

Metz 281

Brussels 266

Namur 256

Verdun 225

Reims 130

Amiens 115

Paris 0

28

The table can interpret as showing adjacent nodes to a node and the cost (which is in

kilometers). For example, Berlin is connected to Cologne by a cost of 559 and it is also

other way around since it is an undirected graph.

Graph 2 (5 nodes)

Graph 3 (6)

Graph 4 (7)

Graph 5 (8)

Current node Child node Cost (actual)

Berlin Leipzig 181

Berlin Brussels 775

Leipzig Cologne 497

Cologne Brussels 225

Cologne Paris 495

Brussels Paris 327

Current node Child node Cost (actual)

Berlin Leipzig 181

Berlin Cologne 559

Leipzig Cologne 497

Leipzig Luxembourg 631

Cologne Brussels 225

Cologne Luxembourg 207

Brussels Paris 327

Luxembourg Paris 366

Current node Child node Cost (actual)

Berlin Leipzig 181

Berlin Cologne 559

Leipzig Stuttgart 474

Leipzig Cologne 497

Cologne Luxembourg 207

Cologne Brussels 225

Cologne Stuttgart 373

Brussels Paris 327

Luxembourg Paris 366

Stuttgart Paris 611

29

Graph 6 (9)

Graph 7 (10)

Current node Child node Cost (actual)

Berlin Hanover 286

Berlin Leipzig 181

Hanover Cologne 293

Leipzig Cologne 497

Leipzig Stuttgart 474

Cologne Stuttgart 373

Cologne Brussels 225

Cologne Luxembourg 207

Stuttgart Paris 611

Brussels Paris 327

Luxembourg Paris 366

Current node Child node Cost (actual)

Berlin Leipzig 181

Berlin Hanover 286

Leipzig Frankfurt 396

Leipzig Stuttgart 474

Hanover Cologne 293

Cologne Brussels 225

Cologne Luxembourg 207

Frankfurt Luxembourg 239

Brussels Paris 327

Luxembourg Paris 366

Stuttgart Paris 611

Current node Child node Cost (actual)

Berlin Hanover 286

Berlin Leipzig 181

Hanover Cologne 293

Hanover Amsterdam 375

Leipzig Frankfurt 396

Leipzig Stuttgart 474

Cologne Luxembourg 207

Cologne Brussels 225

Frankfurt Luxembourg 239

Amsterdam Brussels 203

Stuttgart Paris 611

Luxembourg Paris 366

Brussels Paris 327

30

Graph 8 (11)

Graph 9 (12)

Current node Child node Cost (actual)

Berlin Hanover 286

Berlin Leipzig 181

Hanover Cologne 293

Hanover Amsterdam 375

Leipzig Frankfurt 396

Leipzig Stuttgart 474

Frankfurt Luxembourg 239

Frankfurt Metz 247

Stuttgart Metz 285

Cologne Luxembourg 207

Cologne Brussels 225

Amsterdam Brussels 203

Metz Paris 330

Luxembourg Paris 366

Brussels Paris 327

Current node Child node Cost (actual)

Berlin Hanover 286

Berlin Leipzig 181

Leipzig Frankfurt 396

Leipzig Stuttgart 474

Frankfurt Luxembourg 239

Frankfurt Metz 247

Stuttgart Metz 285

Hanover Amsterdam 375

Hanover Cologne 293

Cologne Luxembourg 207

Cologne Brussels 225

Amsterdam Brussels 203

Metz Verdun 70

Luxembourg Verdun 89

Verdun Paris 260

Brussels Paris 315

31

Graph 10 (13)

Graph 11 (14)

Current node Child node Cost (actual)

Berlin Hanover 286

Berlin Leipzig 181

Leipzig Frankfurt 396

Leipzig Stuttgart 474

Frankfurt Metz 247

Frankfurt Luxembourg 239

Luxembourg Verdun 89

Metz Verdun 70

Stuttgart Strasbourg 147

Hanover Cologne 293

Hanover Amsterdam 375

Amsterdam Brussels 203

Cologne Brussels 225

Cologne Luxembourg 207

Verdun Paris 260

Strasbourg Paris 491

Brussels Paris 315

Current node Child node Cost (actual)

Berlin Hanover 286

Berlin Leipzig 181

Hanover Cologne 293

Hanover Amsterdam 375

Amsterdam Antwerp 158

Cologne Brussels 225

Cologne Luxembourg 207

Antwerp Brussels 45

Leipzig Frankfurt 396

Leipzig Stuttgart 474

Frankfurt Luxembourg 239

Frankfurt Metz 247

Stuttgart Strasbourg 147

Metz Verdun 70

Luxembourg Verdun 89

Strasbourg Paris 491

Verdun Paris 260

Brussels Paris 315

32

Graph 12 (15)

Graph 13 (16)

Current node Child node Cost (actual)

Berlin Hanover 286

Berlin Leipzig 181

Hanover Cologne 293

Hanover Amsterdam 375

Hanover Hamburg 151

Hanover Eindhoven 364

Amsterdam Antwerp 158

Antwerp Brussels 45

Cologne Eindhoven 146

Cologne Luxembourg 207

Eindhoven Brussels 129

Leipzig Frankfurt 396

Leipzig Stuttgart 474

Frankfurt Luxembourg 239

Frankfurt Metz 247

Stuttgart Strasbourg 147

Metz Verdun 70

Luxembourg Verdun 89

Strasbourg Paris 491

Verdun Paris 260

Brussels Paris 315

Current node Child node Cost (actual)

Berlin Hanover 286

Berlin Leipzig 181

Hanover Cologne 293

Hanover Amsterdam 375

Hanover Eindhoven 364

Amsterdam Antwerp 158

Antwerp Brussels 45

Cologne Eindhoven 146

Cologne Luxembourg 207

Eindhoven Brussels 129

Leipzig Frankfurt 396

Leipzig Stuttgart 474

Frankfurt Luxembourg 239

Frankfurt Metz 247

Stuttgart Strasbourg 147

Metz Verdun 70

Luxembourg Verdun 89

Strasbourg Paris 491

Verdun Paris 260

Brussels Paris 315

33

Graph 14 (17)

Current node Child node Cost (actual)

Berlin Hanover 286

Berlin Leipzig 181

Hanover Cologne 293

Hanover Amsterdam 375

Hanover Hamburg 151

Hanover Eindhoven 364

Amsterdam Antwerp 158

Antwerp Brussels 45

Cologne Eindhoven 146

Cologne Luxembourg 207

Cologne Namur 184

Eindhoven Brussels 129

Leipzig Frankfurt 396

Leipzig Stuttgart 474

Frankfurt Luxembourg 239

Frankfurt Metz 247

Stuttgart Strasbourg 147

Metz Verdun 70

Luxembourg Verdun 89

Strasbourg Paris 491

Verdun Paris 260

Brussels Paris 315

Namur Paris 321

34

Graph 15 (18)

Current node Child node Cost (actual)

Berlin Hanover 286

Berlin Leipzig 181

Hanover Cologne 293

Hanover Amsterdam 375

Hanover Hamburg 151

Hanover Eindhoven 364

Amsterdam Antwerp 158

Antwerp Brussels 45

Cologne Eindhoven 146

Cologne Luxembourg 207

Cologne Namur 184

Eindhoven Brussels 129

Brussels Amiens 229

Leipzig Frankfurt 396

Leipzig Stuttgart 474

Frankfurt Luxembourg 239

Frankfurt Metz 247

Stuttgart Strasbourg 147

Metz Verdun 70

Luxembourg Verdun 89

Strasbourg Paris 491

Verdun Paris 260

Amiens Paris 142

Namur Paris 321

35

Graph 16 (19)

Current node Child node Cost (actual)

Berlin Hanover 286

Berlin Leipzig 181

Hanover Kassel 168

Hanover Amsterdam 375

Hanover Hamburg 151

Hanover Eindhoven 364

Kassel Cologne 243

Kassel Frankfurt 185

Amsterdam Antwerp 158

Antwerp Brussels 45

Cologne Eindhoven 146

Cologne Luxembourg 207

Cologne Namur 184

Eindhoven Brussels 129

Brussels Amiens 229

Leipzig Frankfurt 396

Leipzig Stuttgart 474

Frankfurt Luxembourg 239

Frankfurt Metz 247

Stuttgart Strasbourg 147

Metz Verdun 70

Luxembourg Verdun 89

Strasbourg Paris 491

Verdun Paris 260

Amiens Paris 142

Namur Paris 321

36

Graph 17 (20)

Current node Child node Cost (actual)

Berlin Brusnwick 235

Berlin Leipzig 181

Berlin Hanover 286

Brusnwick Kassel 154

Hanover Amsterdam 375

Hanover Hamburg 151

Hanover Eindhoven 364

Kassel Cologne 243

Kassel Frankfurt 185

Amsterdam Antwerp 158

Antwerp Brussels 45

Cologne Eindhoven 146

Cologne Luxembourg 207

Cologne Namur 184

Eindhoven Brussels 129

Brussels Amiens 229

Leipzig Frankfurt 396

Leipzig Stuttgart 474

Frankfurt Luxembourg 239

Frankfurt Metz 247

Stuttgart Strasbourg 147

Metz Verdun 70

Luxembourg Verdun 89

Strasbourg Paris 491

Verdun Paris 260

Amiens Paris 142

Namur Paris 321

37

Graph 18 (21)

Current node Child node Cost (actual)

Berlin Brusnwick 235

Berlin Leipzig 181

Berlin Hanover 286

Brusnwick Kassel 154

Hanover Amsterdam 375

Hanover Hamburg 151

Hanover Munster 193

Munster Eindhoven 203

Kassel Cologne 243

Kassel Frankfurt 185

Amsterdam Antwerp 158

Antwerp Brussels 45

Cologne Eindhoven 146

Cologne Luxembourg 207

Cologne Namur 184

Eindhoven Brussels 129

Brussels Amiens 229

Leipzig Frankfurt 396

Leipzig Stuttgart 474

Frankfurt Luxembourg 239

Frankfurt Metz 247

Stuttgart Strasbourg 147

Metz Verdun 70

Luxembourg Verdun 89

Strasbourg Paris 491

Verdun Paris 260

Amiens Paris 142

Namur Paris 321

38

Graph 19 (22)

Current node Child node Cost (actual)

Berlin Brusnwick 235

Berlin Leipzig 181

Berlin Hanover 286

Brusnwick Kassel 154

Hanover Amsterdam 375

Hanover Hamburg 151

Hanover Munster 193

Munster Eindhoven 203

Kassel Cologne 243

Kassel Frankfurt 185

Amsterdam Antwerp 158

Antwerp Brussels 45

Cologne Eindhoven 146

Cologne Luxembourg 207

Cologne Namur 184

Eindhoven Brussels 129

Brussels Amiens 229

Leipzig Frankfurt 396

Leipzig Stuttgart 474

Frankfurt Luxembourg 239

Frankfurt Metz 247

Stuttgart Strasbourg 147

Metz Verdun 70

Luxembourg Verdun 89

Strasbourg Nancy 149

Nancy Paris 336

Verdun Paris 260

Amiens Paris 142

Namur Paris 321

39

Graph 20 (23)

Current node Child node Cost (actual)

Berlin Brusnwick 235

Berlin Leipzig 181

Berlin Hanover 286

Brusnwick Kassel 154

Hanover Amsterdam 375

Hanover Hamburg 151

Hanover Munster 193

Munster Eindhoven 203

Kassel Cologne 243

Kassel Frankfurt 185

Amsterdam Antwerp 158

Antwerp Brussels 45

Cologne Eindhoven 146

Cologne Luxembourg 207

Cologne Namur 184

Eindhoven Brussels 129

Brussels Amiens 229

Leipzig Frankfurt 396

Leipzig Stuttgart 474

Frankfurt Luxembourg 239

Frankfurt Metz 247

Stuttgart Strasbourg 147

Metz Verdun 70

Luxembourg Verdun 89

Luxembourg Reims 218

Namur Reims 189

Strasbourg Nancy 149

Nancy Paris 336

Verdun Paris 260

Amiens Paris 142

Reims Paris 144

40

Appendix B – Dijkstra’s algorithm code

41

Appendix C – A* algorithm code27

Note: I replaced the graphs and heuristics in the main() method with my own data.

27 Code Taken from AnnyTab; refer to appendix E for permission of code

42

43

44

45

Appendix D – Raw data of experiment

Values in trials columns are in nanoseconds

Dijkstra’s Algorithm:

Vertices Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

4 48000 28900 27100 30000 28300 28800 28800 28400 32900 28800

5 32700 37700 32400 30000 33900 30000 30500 31200 33100 37300

6 31100 31900 31700 32600 34800 30300 31900 30600 32500 34800

7 33500 34300 31600 31700 34200 32900 33700 32000 34000 35900

8 34600 45100 36100 35900 36500 35700 35300 34900 36000 35300

9 38000 39300 35600 35800 37100 36000 36600 47500 36500 36800

10 39500 38700 38400 40100 40000 40900 38000 89800 40100 39200

11 54000 45100 41000 45000 41700 41100 40100 43400 43200 47000

12 43000 42600 43000 42900 43100 44200 44100 43900 44100 48400

13 47500 44900 47700 43600 46400 45600 46100 46600 51100 159000

14 46600 47900 47700 87000 46700 46800 47100 48900 46000 48400

15 49900 50300 48800 50500 51400 53400 51400 51200 57700 48400

16 52600 51200 52000 50900 52100 54700 52100 51500 53100 51400

17 99400 108200 110700 98500 97900 102600 104100 109500 99700 102400

18 68500 67200 56700 59900 68000 66400 66900 58400 80900 62500

19 58100 71100 83000 83200 62000 59500 83900 71900 62400 75700

20 104200 84900 95400 117700 125300 172100 107200 122200 172100 125000

21 174200 173800 171100 186400 105500 133400 174600 177900 177000 175200

22 208000 267000 280000 195000 281800 269400 281300 278000 250800 196600

23 402700 420700 311700 306400 305700 311600 321400 371900 411800 304700

46

A* algorithm:

Vertices Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

4 44500 43700 46200 43100 46500 44200 44600 41900 42300 42800

5 49200 46300 44500 47200 49300 47600 46500 48300 47600 46800

6 49400 50800 50000 50000 49500 49100 49900 49100 48600 51100

7 45900 46100 46300 47200 46300 45800 4700 45800 48800 45800

8 52200 51100 51700 52200 52600 52800 52300 52200 52800 52500

9 56000 56200 57600 56800 56200 57300 57200 56300 57000 58400

10 65600 68000 66300 66700 68600 67400 68100 68600 66500 67800

11 80000 79700 81000 78800 79900 79000 81800 81100 79400 79700

12 89000 90000 89500 89900 89200 89500 89400 88900 91000 88100

13 91300 85700 86100 86900 86100 85200 115500 84500 84800 86300

14 97400 96500 96400 98000 96700 94400 100200 95900 96400 96300

15 104100 103500 102800 102700 102100 104800 102900 103100 105200 102800

16 111300 100100 108600 112300 112300 111600 114100 111300 112200 110300

17 76200 76300 75400 77100 74600 76300 75800 74700 75400 76600

18 76300 73800 75500 77800 77200 75100 76300 74500 76500 76400

19 179200 155800 165600 174600 168700 167000 169300 167500 169600 172400

20 199300 207600 208500 247700 206600 200100 207200 213500 211100 204000

21 203300 224500 207000 202900 204000 204100 207100 205700 202300 198600

22 205600 201100 206000 198300 201100 207300 202000 205900 198700 200900

23 213200 219200 212300 211800 216700 215900 219300 215200 214000 215500

47

Appendix E – Permission for the A* code28

I communicated with the owner of this code remotely.

28 “A* Search Algorithm in Python.” A Name Not Yet Taken AB, 22 Jan. 2020,

48

Appendix F – Evidence of subject expert29

Due to COVID-19 pandemic I couldn’t meet the subject expert in person. Therefore, we

communicated remotely.

29 Paria, Biswajit. Subject Expert, 2021

49

Appendix G – Survey and results

Survey questions

50

Survey results (15 responses):

Appendix H – Course completion evidence

51

52

Works Cited

“A* Search Algorithm in Python.” A Name Not Yet Taken AB, 22 Jan. 2020,

www.annytab.com/a-star-search-algorithm-in-python.

Choudry, Humzah., 2017. Understanding Algorithm Efficiency And Why Its’s Important.

[online] Medium. <https://medium.com/@humzah.choudry/understand-algorithm-

efficiency-and-why-its-important-89df0d5dfb64>.

Cormen, Thomas H. et al. Introduction to Algorithms, 3rd ed., MIT Press, 2009, pp. 589–

658.

“Dijkstra Algorithm: Example: Time Complexity.” Gate Vidyalay, 2020,

www.gatevidyalay.com/tag/dijkstra-algorithm-pseudocode/.

Hart, P., Nilsson, N., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination

of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2),

100–107. doi:10.1109/tssc.1968.300136

Kask, Kalev. Lecture 4: Optimal and heuristic search, lecture notes, ICS 271, University of

California, Irvine, 2016.

Kulikov, Alexander S. “Introduction to Graph Theory.” University of California San Diego,

National Research University Higher School of Economics. Coursera. Online Lecture

<https://www.coursera.org/learn/graphs>

Lanning, D. R., Harrell, G. K., & Wang, J. (2014). Dijkstra’s algorithm and Google maps.

Proceedings of the 2014 ACM Southeast Regional Conference on - ACM SE

’14. doi:10.1145/2638404.2638494

http://www.annytab.com/a-star-search-algorithm-in-python
https://www.coursera.org/learn/graphs

53

Paria, Biswajit. Subject Expert, 2021

Pound, Mike. “A* (A Star) Search Algorithm - Computerphile.” YouTube, uploaded by

Computerphile, 15 Feb. 2017, www.youtube.com/watch?v=ySN5Wnu88nE.

Pound, Mike. “Dijkstra’s Algorithm - Computerphile.” YouTube, uploaded by

Computerphile, 4 Jan. 2017, www.youtube.com/watch?v=GazC3A4OQTE.

Russell, Stuart J, and Peter Norvig. Artificial intelligence: a modern approach. Englewood

Cliffs, N.J: Prentice Hall, 1995. Print.

Adamchik, Victor S. Algorithmic Complexity, Carnegie Mellon University, 2009

Sedgewick, Robert and Philippe Flajolet. An introduction to the analysis of algorithms

Second Edition. Addision-Wesley, 2013.

Sharma, Akash. “Time and Space Complexity Tutorials & Notes | Basic Programming.”

HackerEarth, 30 Aug. 2016, www.hackerearth.com/practice/basic-

programming/complexity-analysis/time-and-space-complexity/tutorial.

Quinn, Catherine, et al. Mathematics for the international student : mathematics HL

(option) : discrete mathematics, HL topic 10, FM topic 6, for use with IB diploma

programme. Marleston, SA: Haese Mathematics, 2014. Print.

