

Computer Science Extended Essay

Investigating the time efficiencies of Prim’s and

Kruskal’s algorithms for minimum spanning

trees

Research question: How does Kruskal’s algorithm compare to Prim’s algorithm in finding a

minimum spanning tree in a graph in terms of running time across graphs with varying

densities?

May 2024

Word count: 4000

Anderson Addo
CS EE World
https://cseeworld.wixsite.com/home
24/34 (B)
May 2024

Submitter Info:
Name: Sofija Velkovska
Email: sofijavelkovska27 [at] gmail [dot] com

Table of contents
1 Introduction .. 1

2 Theory ... 1

2.1 Graph terminology .. 1

2.2 Prim’s algorithm .. 3

2.3 Kruskal’s algorithm .. 6

2.4 Time complexity analysis ... 10

3 Hypothesis .. 11

4 Methodology .. 11

4.1 Independent variable .. 11

4.2 Dependent variable ... 12

4.3 Controlled variables .. 12

5 Experimental data ... 13

5.1 Experiment 1 ... 13

5.2 Experiment 2 ... 14

6 Data analysis and discussion ... 14

6.1 Experiment 1 ... 14

6.2 Experiment 2 ... 18

6.3 Limitations... 19

7 Conclusion... 19

Bibliography .. 21

Appendices ... 22

Appendix I: Code for Prim’s algorithm .. 22

Appendix II: Code for Kruskal’s algorithm ... 22

Appendix III: Derivation of formula for time complexity ... 24

Appendix IV: Code for random connected graph generator .. 24

Appendix V: Procedure ... 26

Appendix VI: Test program .. 26

Appendix VII: Raw data from Experiment 1 .. 27

Appendix VIII: t-test results for Experiment 1 ... 29

Appendix IX: Raw data from Experiment 2 ... 30

Appendix X: t-test results for Experiment 2 .. 32

1

1 Introduction
The minimum spanning tree is a fundamental concept in graph theory. It’s directly present in

transportation, computer, telecommunication, and other types of networks (Graham & Hell, 1985).

Consider a set of terminals and connections between pairs of them with some cost attached to each

connection (the distance between them, the cost of building a connection between them, etc.). A

minimum spanning tree would be a subset of those connections such that all terminals are connected,

and the total cost is minimum.

Other than these networks, minimum spanning trees find application in many places ranging from

computer science – image segmentation (Felzenszwalb & Huttenlocher, 2004), natural sciences – studying

gene clusters (Xu et al., 2002), to social sciences – describing financial markets (Mantegna, 1999).

Two classic algorithms, by Prim (1957) and Kruskal (1956), offer a solution to this problem. Both algorithms

are similar in terms of time complexity; nonetheless, there is a common belief that Prim’s algorithm is

faster for dense graphs, while Kruskal’s is for sparse graphs.

This paper investigates exactly that. By collecting experimental data on the running times of Prim’s and

Kruskal’s algorithm on graphs with different densities, and analyzing and comparing this data, the research

question “How does Kruskal’s algorithm compare to Prim’s algorithm in finding a minimum spanning tree

in a graph in terms of running time across graphs with varying densities?” will be answered.

2 Theory

2.1 Graph terminology

A graph is a collection of nodes (vertices) and edges. A graph models pairwise relations (represented by

the edges) between objects (the nodes). Henceforth, 𝑉 and 𝐸 will be used to represent the number of

nodes and edges in a graph, respectively.

A path is a sequence of edges that joins a sequence of nodes in graph. The length of the path is the number

of edges it includes.

A cycle is a path whose first and last node are the same.

In a weighted graph, each edge is assigned a numeric value, a weight. Weights of edges are usually seen

as edge length. The length of a path in a weighted graph is the sum of the weights of the edges in it.

2

Figure 1: An example of a weighted graph. 1→6→4→3 is a path in this graph, and its weight is 8. 5→4→3 is a cycle.

A simple graph is a graph that does not have more than one edge between any two vertices and contains

no loops (an edge that connects a node to itself).

Graphs can be directed or undirected. In a directed graph, edges have a direction, so, an edge “leaves”

the first node and “enters” the second node. In an undirected graph, all edges are bidirectional.

In this paper, the term “graph” will indicate a simple, undirected, weighted graph.

We say that a graph is connected if, for every pair of nodes, a path exists between them.

A tree is a graph in which every two nodes are connected by exactly one path. Equivalently, a tree is

connected graph that contains no cycles. If a graph with 𝑉 nodes is a tree, it will have 𝑉 − 1 edges.

A spanning tree of a connected graph is a tree that contains all of the nodes of the graph and some of its

edges (consequently, there is a path between any two nodes).

A minimum spanning tree (MST) is a spanning tree that has the minimum possible sum of edge weights.

While a graph in which all edge weights are distinct only has one minimum spanning tree (Borůvka, 1926),

a graph that includes pairs of edges with equal weight could have an enormous number of MSTs (Gabow

& Myers, 1978). Usually, the objective of programs is to find one of these MSTs, as finding them all

wouldn’t be very useful, or is downright impossible. Accordingly, Prim’s and Kruskal’s algorithms focus on

finding one, not specifically chosen, MST.

3

Figure 2: A graph and its minimum spanning tree

2.2 Prim’s algorithm

Prim’s algorithm begins with the initialization of a tree consisting of a single, arbitrarily chosen, node. The

algorithm then builds the tree one node at a time. In each step, the edge with the minimum weight that

connects the tree to a node that hasn’t been already added, is added to the tree. When all nodes have

been added, the constructed tree will be an MST of the graph.
Consider the following graph. The node 9 is the starting node and it’s added to the tree. Any other node

could have been chosen as a starting node.

4

Figure 3: Finding an MST of a graph with Prim’s algorithm 1

The edges 9-1, 9-5 and 9-8 are edges that can be considered in the next step, since they would add a node

to the current tree. Out of them, 9-5 has the minimum weight, so it’s the next edge to be added.

Figure 4: Finding an MST of a graph with Prim’s algorithm 2

Now, 5-3, 5-8, 9-1 and 9-8 are possible next edges. 5-8 is the one with the minimum weight so it’s added

to the tree.

5

Figure 5: Finding an MST of a graph with Prim’s algorithm 3

Similarly, 9-1 is added.

Figure 6: Finding an MST of a graph with Prim’s algorithm 4

This step is repeated until all the nodes are part of the tree. The result is an MST of the initial graph.

Figure 7: Finding an MST of a graph with Prim’s algorithm 5

6

In each step, Prim’s algorithm should be able to identify the minimum weight edge that would add a new

node to the tree. Checking all of the appropriate edges to find the one with the smallest weight takes

linear time, and since this needs to be done for every addition of a new node to the tree it would result in

a quadratic time complexity. A priority queue is a data structure that maintains a set of elements in which

each element has a value assigned to it (a key), and enables access to the element with the highest priority

based on the keys of the elements (usually, the key with the highest/lowest value) (Kleinberg & Tardos,

2005). Due to its 𝑂(1) retrieval of the smallest element and 𝑂(log 𝑛) insertion and removal of elements

(Kleinberg & Tardos, 2005), using a priority queue would significantly improve the time complexity of

Prim’s algorithm. The implementation of Prim’s algorithm in C++ can be found in Appendix I.

During the execution of the algorithm, every edge will be processed once, and the new node it connects

the tree to needs to be added to the priority queue, or if its already in the priority queue, the value of its

key in the priority queue needs to be updated, if the weight of this edge is smaller than the current key –

both of these operations have a 𝑂(log 𝑉) time complexity. They will be executed 𝐸 times, leading to a

total of 𝑂(𝐸 log 𝑉). Additionally, every node will be removed from the priority queue exactly once, which

will take 𝑂(𝑉 log 𝑉) time. Therefore, the total time complexity is 𝑂(𝐸 log 𝑉 + 𝑉 log 𝑉). 𝐸 log 𝑉 is the

leading term here, since 𝐸 is usually significantly bigger than 𝑉 (𝑉 can be at most 𝐸 + 1), making time

complexity of Prim’s algorithm 𝑂(𝐸 log 𝑉).

2.3 Kruskal’s algorithm

In Kruskal’s algorithm, the first step is to sort the edges by weight. The sorted edges are looped through,

starting with the smallest weight, and an edge is added to the MST if it joins two different components,

i.e. if it doesn’t create a loop in the graph with the already chosen edges. Initially, every node is in its own

component. After all the edges are processed, the constructed graph is in fact an MST of the initial graph.

Consider the following graph. At first, all the nodes are in separate components.

Figure 8: Finding an MST of a graph with Kruskal's algorithm 1

The edge 3-7 is the first one to be considered, as it’s, with length 1, the shortest among all edges. 3 and 7

are in different components, so the edge is added. Now, 3 and 7 are in the same component.

7

Figure 9: Finding an MST of a graph with Kruskal's algorithm 2

The edges 7-10, 2-3, 5-8 and 5-9 are considered next, in that order. They are all added since they connect

two different components. It should be noted that when there are multiple edges of the same weight, it

doesn’t matter in what order they will be processed. After these operations, the graph consists of two

components.

Figure 10: Finding an MST of a graph with Kruskal's algorithm 3

Next, the edge 8-9 won’t be added since the nodes 8 and 9 are already in the same component. In other

words, adding this edge will create a loop (5-8-9).

8

Figure 11: Finding an MST of a graph with Kruskal's algorithm 4

The next four edges by weight, 5-10, 1-6, 6-10 and 1-9, are all added to the MST.

Figure 12: Finding an MST of a graph with Kruskal's algorithm 5

Then, the edge 3-5 won’t be added since the nodes 3 and 5 are already in the same component.

9

Figure 13: Finding an MST of a graph with Kruskal's algorithm 6

Similarly, the edge between 1 and 7 also won’t be added. 1-7 was the last egde to be processed because

it has the biggest weight. The algorithm comes to an end, with an MST formed by all the edges that were

added.

Figure 14: Finding an MST of a graph with Kruskal's algorithm 7

In one execution of the algorithm, a loop will go through all of the edges, and for each edge it needs to be

found out if the nodes on its end belong to the same component. One way to check this is to run a graph

traversal and check if a path exists between the two nodes. Graph traversal algorithms, like BFS and DFS,

have a linear time complexity, and a graph traversal should be made for every edge, resulting in a quadratic

time complexity. Thus, a more efficient way for checking if two nodes belong to the same component is

needed for big input data. This can be done with the help of a union-find data structure, making it possible

to check whether two nodes belong to the same component in 𝑂(log 𝑛) time complexity and uniting two

components in 𝑂(1) (Cormen et al., 2001). The implementation of Kruskal’s algorithm with a union-find

structure in can be found in Appendix II.

The sorting of the edges by weight that needs to be done before the algorithm starts building the MST can

be done in 𝑂(𝐸 log 𝐸) time complexity. With the use of a union-find structure, the construction of the

minimum spanning has a time complexity of 𝑂(𝐸 log 𝑉). Thus, the total time complexity is 𝑂(𝐸 log 𝐸 +

10

𝐸 log 𝑉). However, the maximum value that 𝐸 could obtain is
V(V−1)

2
≈ 𝑉2, in a graph where every pair of

nodes is directly connected. So, the time complexity can be described as 𝑂(𝐸 log 𝑉2 + 𝐸 log 𝑉). By the

properties of logarithms, 𝐸 log 𝑉2 is equal to 2𝐸 log 𝑉. We have 2𝐸 log 𝑉 + 𝐸 log 𝑉 = 3𝐸 log 𝑉, and since

3 is a constant, it shouldn’t be taken into account. Finally, the time complexity of Kruskal’s algorithm is

𝑂(𝐸 log 𝑉).

2.4 Time complexity analysis

The time complexity of Prim’s and Kruskal’s algorithms was discussed above – both algorithms have the

same time complexity of 𝑂(𝐸 log 𝑉). Thus, it’s expected that the algorithms will have similar running times

on the same input. Nevertheless, the Big O notation doesn’t give an exact running time for a particular

algorithm, it’s just an estimation of the number of elementary operations performed. Due to this, the

running time of Prim’s algorithm will differ from the running time of Kruskal’s algorithm, with one of them

being faster than the other in some cases, while the other is faster in other cases.

One trait of graphs that can be linked to the time performance of MST algorithms is the graph’s density.

The density of a graph can be defined as the number of its edges over the total number of possible edges

in that graph. Let 𝑑 denote the density of a graph; we have 𝑑 =
𝐸

𝑉(𝑉−1)

2

=
2𝐸

𝑉(𝑉−1)
 (Coleman & Moré, 1983).

Even though the terms dense graph and sparse graph are not strictly defined, it can be assumed that a

graph is dense if the number of its edges is about quadratic in its number of nodes, and a sparse graph is

a graph whose number of edges is about linear in its number of nodes (Diestel, 2018). The number of

edges in dense graphs is close to them maximal number of edges (𝑑 ≈ 1), while in sparse graphs it’s close

to the minimal number of edges (𝑑 ≈
1

𝑉
).

The density of a graph is dependent both on the number of nodes and the number of edges it consists of.

The time complexity of Prim’s and Kruskal’s algorithms can be represented as
𝑉(𝑉−1)

2
𝑑 log 𝑉 using the

number of nodes and the density of the graph. For a fixed number of nodes,
𝑉(𝑉−1)

2
log 𝑉 is constant over

all values of 𝑑. So, the expression is solely dependent on 𝑑. Specifically, since the time complexity can be

represented as 𝑘 ⋅ 𝑑, where 𝑘 is a constant factor, the running times of the algorithms will linearly increase

as 𝑑 increases.

Concerning the effect of density on the running time when the number of edges is fixed, it is expected

that the formula 𝐸 log √
2𝐸

𝑑
 will describe the time complexity of the algorithms (the derivation of this

formula can be found in Appendix III). Since 𝑑 acts as a denominator in this expression, the 𝐸 log √
2𝐸

𝑑
 term,

and therefore the running time, will logarithmically decrease as 𝑑 increases.

As previously mentioned, the total number of operations done by Prim’s algorithm can be more accurately

estimated by 𝐸 log 𝑉 + 𝑉 log 𝑉, in contrast to Kruskal’s 𝐸 log 𝐸 + 𝐸 log 𝑉. Consider the following two

cases:

1. A dense graph. By definition, 𝐸 ≈ 𝑉2. We have,

11

Prim’s algorithm:
𝐸 log 𝑉 + 𝑉 log 𝑉
≈ 𝑉2 log 𝑉 + 𝑉 log 𝑉
= 𝑉 log 𝑉 (𝑉 + 1)

Kruskal’s algorithm:
𝐸 log 𝐸 + 𝐸 log 𝑉
≈ 𝑉2 log 𝑉2 + 𝑉2 log 𝑉
= 2𝑉2 log 𝑉 + 𝑉2 log 𝑉
= 3𝑉2 log 𝑉
= 𝑉 log 𝑉 (3𝑉)

Thus, Prim’s algorithm will perform less elementary operations than Kruskal’s algorithm when

finding the MST of a dense graph, and therefore, have a faster running time. Since
𝑉 log 𝑉(𝑉+1)

𝑉 log 𝑉(3𝑉)
=

𝑉+1

3𝑉
≈

𝑉

3𝑉
=

1

3
 , Prim’s running time is expected to be three times faster than Kruskal’s.

2. A sparse graph. By definition, 𝐸 ≈ 𝑉. We have,

Prim’s algorithm:
𝐸 log 𝑉 + 𝑉 log 𝑉
≈ 𝑉 log 𝑉 + 𝑉 log 𝑉
= 2𝑉 log 𝑉

Kruskal’s algorithm:
𝐸 log 𝐸 + 𝐸 log 𝑉
≈ 𝑉 log 𝑉 + 𝑉 log 𝑉
= 2𝑉 log 𝑉

So, Prim’s and Kruskal’s algorithm will perform approximately the same number of operations

when finding the MST of a sparse graph.

3 Hypothesis
Using the presented theoretical background, a hypothesis can be formed to answer the research question.

For graphs with a fixed number of nodes and increasing density, the running time of both Prim’s and

Kruskal’s algorithms will linearly increase. For graphs with a fixed number of edges and increasing density,

the running time will decrease with a logarithmic rate. Furthermore, Prim’s algorithm will have a better

running time for dense graphs, while both algorithms will have similar running times for sparse graphs.

4 Methodology

4.1 Independent variable

The independent variable in this investigation will be the density of the graph that will act as an input for

the MST algorithms. The same data will be subjected to both Prim’s and Kruskal’s algorithm.

In Experiment 1, the number of nodes (1000 nodes) will be constant while the number of edges will be

changed to get a certain density. In particular, the densities from 0.05 to 1.00 in 0.05 increments will be

examined. These values were chosen because they cover the whole range of possible densities and there

are enough levels of the independent variable for the relationship between the independent and

dependent variable to be established.

In Experiment 2, the number of edges will be constant (500000 edges), while the number of nodes will be

changed. This experiment will specifically focus on graphs with extremely small densities, as the

12

hypothesis suggest they might be especially interesting for the comparison between Prim’s and Kruskal’s

time complexity. Graphs with densities ranging from 0.00005 to 0.001 with increments of 0.00005 will be

used.

For each case in both experiments, five different graphs with the given density will be tested. The graphs

used are randomly generated with a program written in C++, which can be found in Appendix IV.

4.2 Dependent variable

The dependent variable of the experiment is the time taken for the execution of the algorithm, whether

Prim’s or Kruskal’s. The runtime will be measured using high_resolution_clock from C++ STL’s chrono

header since it provides high precision (cppreference.com, n.d.). Three trials are conducted per graph,

with the arithmetic mean of their times being taken (the procedure and the test program are available in

Appendix V and VI, respectively). The measured times will be represented in seconds with up to 6 decimal

places. Even though the difference between running times is expected to be as small as microseconds in

some cases, the second will be used as it’s more comprehensible.

4.3 Controlled variables

Variable Description Importance

Number of nodes/edges The number of nodes in
Experiment 1 and the number
of edges in Experiment 2 are
kept constant (at 1000 and
500000, respectively).

This eliminates the possibility of
the number of nodes/edges int
the graph (not just its density)
being the cause of change in the
running time of the algorithm.

Program used All trials are done using the
same program.

Using even a slightly different
code will obviously have an
effect on the running time since
different number of lines of
code and different statements
have different running times.

Edge weights The edges in all of the
generated graphs had a natural
number between 1 and 1000,
inclusive, assigned to them as
their weight.

Limiting the maximum weight
to a relatively small number
prevents integer overflow and,
hence, uncontrolled behavior of
the program. Also, only integers
are used, instead of decimal
numbers, to avoid the effects of
floating-point arithmetic’s lack
of exactness.

How the graphs are spread out Since the graphs were randomly
generated, they were spread
out in various ways, i.e. the
graphs had different

The algorithms might perform
better on certain types of
graphs, which might lead to
incorrect assumptions about

13

distributions of node degrees
(the number of other nodes a
node is connected to (Diestel,
2018)) and different diameters
(the greatest shortest path
between any two nodes
(Diestel, 2018)).

the quality of their general
performance on any type of
graph.

Computer and operating system Computer: Lenovo IdeaPad Flex
5 14ARE05
Processor: AMD Ryzen 5 4500U
with Radeon Graphics 2.38 GHz
Memory: 8,00 GB RAM
Operating system: Windows 11
Home

All trials were run on the same
computer and operating
system, as hardware and the
software have a major effect on
the running time of a program.

Table 1: List of controlled variables

5 Experimental data

5.1 Experiment 1

In Experiment 1, the number of nodes in the test graphs was fixed to 1000. The number of edges was

changed to obtain the desired density. Raw data is available in Appendix VII. The mean of the running

times for the five different graphs per level of the independent variable for which the algorithms were run

was calculated. The results can be observed in Table 2.

Density Number of edges Prim’s running time Kruskal’s running time

0.05 24975 0.010039 0.010578

0.10 49950 0.015454 0.02219

0.15 74925 0.019895 0.037365

0.20 99900 0.026381 0.045986

0.25 124875 0.030275 0.053145

0.30 149850 0.029871 0.062808

0.35 174825 0.031759 0.074418

0.40 199800 0.035208 0.089974

0.45 224775 0.036766 0.093857

0.50 249750 0.039869 0.114746

0.55 274725 0.051094 0.122075

0.60 299700 0.054528 0.133555

0.65 324675 0.056439 0.149329

0.70 349650 0.055221 0.149402

0.75 374625 0.058067 0.161185

0.80 399600 0.060901 0.174256

0.85 424575 0.065921 0.188293

14

0.90 449550 0.067257 0.198209

0.95 474525 0.065314 0.203301

1.00 499500 0.067726 0.221975
Table 2: Prim's and Kruskal's average running times in Experiment 1

5.2 Experiment 2

In Experiment 2, the number of edges in the test graphs was fixed to 1000. The number of nodes was

changed to obtain the desired density. Raw data is available in Appendix IX. The mean of the running times

for the five different graphs per level of the independent variable for which the algorithms were run was

calculated. The results can be observed in Table 3.

Density Number of nodes Prim’s running time Kruskal’s running time

0.00005 141422 0.833602 0.264096

0.00010 100001 0.715338 0.263843

0.00015 81651 0.652133 0.248409

0.00020 70712 0.582783 0.282104

0.00025 63247 0.521185 0.268772

0.00030 57736 0.476734 0.260165

0.00035 53453 0.467139 0.278673

0.00040 50001 0.402542 0.232291

0.00045 47141 0.448252 0.239502

0.00050 44722 0.390707 0.232663

0.00055 42641 0.395231 0.244519

0.00060 40826 0.385441 0.260613

0.00065 39224 0.453120 0.264859

0.00070 37797 0.372805 0.266481

0.00075 36516 0.339085 0.259841

0.00080 35356 0.341841 0.246979

0.00085 34301 0.361435 0.236130

0.00090 33334 0.328125 0.234965

0.00095 32445 0.358975 0.240204

0.00100 31624 0.318995 0.256451
Table 3: Prim's and Kruskal's average running times in Experiment 2

6 Data analysis and discussion

6.1 Experiment 1

It can be inferred that Prim’s algorithm’s running time is generally smaller than Kruskal’s algorithm’s. To

test whether this hypothesis that Prim’s algorithm had lower running time than Kruskal’s algorithm is

15

statistically significant, a paired samples t-test was conducted on the results from each test graph for each

level of independent variable (Appendix VIII). An extremely statistically significant result with p<0.001 was

obtained on all levels except the first one where the density of the graphs is 0.05. So, Prim’s algorithm

was faster for graphs with 1000 nodes and a density between 0.10 and 1.00 than Kruskal’s algorithm. For

graphs with density of 0.05, both algorithms performed similarly. It’s possible that no difference was

observed for this density because of the relatively small input size (1000 nodes and 24975 edges), so the

timer wasn’t able to catch the small difference in time. Furthermore, constant factors might have played

a deciding role here – time complexity analysis focuses on asymptotic behavior, so it doesn’t predict the

behavior of small inputs whose running time can be strongly influenced by constants.

Additionally, the ratio of the average of Prim’s over Kruskal’s running times was calculated (Table 4).

Density
Ratio of average

running times

0.05 1.054

0.10 1.436

0.15 1.878

0.20 1.743

0.25 1.755

0.30 2.103

0.35 2.343

0.40 2.556

0.45 2.553

0.50 2.878

0.55 2.389

0.60 2.449

0.65 2.646

0.70 2.706

0.75 2.776

0.80 2.861

0.85 2.856

0.90 2.947

0.95 3.113

1.00 3.278
Table 4: The ratio of the average of Prim’s over Kruskal’s running times in Experiment 1

It can be noticed how the values of the ratio get closer to 3 as the density of the graphs gets closer to 1.00,

i.e. the graphs get denser. This is in line with the analytically derived prediction that Prim’s algorithm will

be three times faster than Kruskal’s algorithm for dense graphs.

The average running times of Prim’s and Kruskal’s algorithm for the different densities plotted on the

same set of axes can be observed in Figure 15.

16

Figure 15: A graph showing the running times of Prim's and Kruskal's algorithms for graphs with 1000 nodes and various
densities

Functions to describe the relationships between the density of the graphs and the running times of both

algorithms were developed. The functions were of the form 𝑓(𝑑) =
𝑉(𝑉−1)

2
𝑑 log2 𝑉. In this case, 𝑉 =

1000, therefore, we get 𝑓(𝑑) = 499500𝑑 log2 1000. To account for constants that are not included in

time complexity analysis, 𝑓(𝑑) will have the form 𝑎 ⋅ 499500𝑑 log2 1000 + 𝑏, where 𝑎 and 𝑏 are

constants. Finally, notice that this give us the total number of elementary operations that will be

performed. To get the running time of the algorithms the whole expression will be divided by 108. This

number was chosen as it’s approximately number of elementary operations that can be executed in a

second on the computer that the experiment was conducted. The final function is 𝑓(𝑑) =
𝑎⋅499500𝑑 log2 1000+𝑏

108 .

For Prim’s algorithm, the 𝑓1(𝑑) =
1.24⋅499500𝑑 log2 1000+1158068.63

108 , was developed as a fit for the data

points, with the help of a mathematics software. An R squared value of 𝑅2 = 0.97 was calculated,

suggesting that this function is a strong model for the data.

17

Figure 16: A graph showing Prim's running time for graphs with 1000 nodes and various densities, and f1

Similarly, the function 𝑓2(𝑑) =
4.39⋅499500𝑑 log2 1000+67087.5.

108 was developed for the data from Kruskal’s

algorithm. With 𝑅2 = 1.00, it’s a very good fit for the data.

Figure 17: A graph showing Kruskal’s running time for graphs with 1000 nodes and various densities, and f2

In this experiment, Prim’s algorithm had a better running time than Kruskal’s for graphs with density from

0.10 to 1.00 in 0.05 increments. For graphs with density of 0.05, no algorithm performed significantly

better. Also, a strong linear relationship was established between the running time and the density of the

graph. However, only graphs with 1000 nodes were considered in this experiment. These findings can’t be

accepted as universal rules for all graphs, as they might not be true for graphs with different number of

nodes.

18

6.2 Experiment 2

From the data in Table 3, it can be assumed that Kruskal’s algorithm had lower running times than Prim’s

for these graphs. A t-test was conducted, similarly to Experiment 1 (Appendix X). With p value less than

0.05 on all levels, the hypothesis that Kruskal’s algorithm has significantly lower running times was

accepted.

In this experiment, the densities of the graphs were extremely small. In the theoretical part of this paper,

it was hypothesized that Prim’s and Kruskal’s algorithms will have similar running times for sparse graphs,

but the experimental results showed otherwise. This could have happened due to various unaccounted

for reasons, like the difference between the time efficiency of the different data structures used.

The average running times of Prim’s and Kruskal’s algorithm for the different densities plotted on the

same set of axes can be observed in Figure 18. It was hypothesized that the relationship between the

density and the running time of the algorithms can be described by the formula 𝐸 log √
2𝐸

𝑑
. However, this

wasn’t the case, as it can also concluded from the visual representation of the data.

Figure 18: A graph showing the running times of Prim's and Kruskal's algorithms for graphs with 500000 edges and various
densities

19

The running time of Prim’s algorithm decreases at a rapid rate as the density of the graph increases.

Moreover, for very small densities, Prim’s running time is much bigger than Kruskal’s even though that

difference gets smaller as the density gets larger. With decreasing density, the number of nodes in the

graph increases. Recall that a 𝑉 log 𝑉 term is present in the expression for the number of operations in

Prim’s algorithm. So, it’s possible that the number of nodes has a big effect on the running time of Prim’s

algorithm.

The way the data points for Kruskal’s algorithm are spread out on the graph vaguely resembles a

horizontal line. This suggests a constant function for the relationship between graph density and the

running time for Kruskal’s algorithm. This indicates that density doesn’t have an effect on the running

time, i.e. the running time is only dependent on the number of edges, for graphs with very small density

and 500000 edges. 𝐸 log 𝐸 was another way to write down the time complexity of Kruskal’s algorithm –

it's possible that for graphs with many edges this term totally takes over the time complexity and, hence,

𝐸 determines the running time by itself, unaffected by 𝑉 and 𝑑.

6.3 Limitations

It was attempted to make the research as rigorous and controlled as possible; however, there were still

some flaws in the design and execution of the experiment. For example, the graphs used in the

experiment, that were generated by a random graph generating program, weren’t completely random.

Even though they program aims for randomness and succeeds in this to a sufficient extent, the way the

algorithm works makes the nodes that were first added more likely to have a large degree (number of

neighboring nodes). In a truly random graph, each node has the same probability of having a certain

degree. While less biased algorithms for generating graphs exist, they weren’t considered as they are very

complicated.

Moreover, C++’s rand() function that was used for generating the graphs doesn’t provide actual random

number but pseudo-random numbers (cppreference.com, n.d.). This could have had an uncontrolled

effect on the results.

Another limitation is the handling of the edge sorting part of Kruskal’s algorithm. This is a crucial part of

the algorithm and has a big role on the running time, so, choosing the appropriate sorting method is

important. An 𝑂(𝑛 log 𝑛) sorting algorithm was used, even though other sorting algorithms might have

been more suitable. For example, counting sort could have been a better choice with its 𝑂(𝑛) time

complexity, since all weights were integers from 1 to 1000.

7 Conclusion
This paper aimed to answer the research question “How does Kruskal’s algorithm compare to Prim’s

algorithm in finding a minimum spanning tree in a graph in terms of running time across graphs with

varying densities?”. Even though both algorithms have the same time complexity of 𝑂(𝐸 log 𝑉), two

experiments were conducted to investigate their running times, the first focusing on the effect of density

on the running times for graphs with fixed number of nodes, and the second, for fixed number of edges.

20

The results from Experiment 1 indicate a positive linear relationship between graph density and running

time of both algorithms. For graphs with densities from 0.10 to 1.00 and 1000 nodes, Prim’s algorithm was

faster. Furthermore, the results suggest that Prim’s algorithm is three times faster than Kruskal’s for very

dense graphs. Taking into consideration Experiment 2, it appears that Kruskal’s algorithm has significantly

lower running time for very sparse graphs than Prim’s algorithm. Moreover, the running time of Prim’s

algorithm rapidly decreases as graph density increase, while Kruskal’s appears to stay constant.

21

Bibliography
Borůvka, Otakar (1926). O jistém problému minimálním [About a certain minimal problem]. Práce

Moravské přírodovědecké společnost, 3, 37–58

Coleman, T. F., & Moré, J. J. (1983). Estimation of sparse Jacobian matrices and graph coloring blems.

SIAM Journal on Numerical Analysis, 20(1), 187–209. https://doi.org/10.1137/0720013

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms. MIT Press.

cppreference.com (n.d.). std::chrono::high_resolution_clock.

https://en.cppreference.com/w/cpp/chrono/high_resolution_clock

cppreference.com. (n.d.). rand. https://en.cppreference.com/w/c/numeric/random/rand

Diestel, R. (2017). Graph theory (5th ed.). Springer.

Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient Graph-Based image segmentation. International

Journal of Computer Vision, 59(2), 167–181. https://doi.org/10.1023/b:visi.0000022288.19776.77

Gabow, H. N., & Myers, E. W. (1978). Finding all spanning trees of directed and undirected graphs. SIAM

Journal on Computing, 7(3), 280–287. https://doi.org/10.1137/0207024

Graham, R. L., & Hell, P. (1985). On the History of the Minimum Spanning Tree Problem. IEEE Annals of

the History of Computing, 7(1), 43–57. https://doi.org/10.1109/mahc.1985.10011

Kleinberg, J., & Tardos, E. (2005). Algorithm Design. Pearson.

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem.

Proceedings of the American Mathematical Society, 7(1), 48–50. https://doi.org/10.1090/s0002-9939-

1956-0078686-7

Mantegna, R. N. (1999). Information and hierarchical structure in financial markets. Computer Physics

Communications, 121–122, 153–156. https://doi.org/10.1016/s0010-4655(99)00302-1

Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell System Technical

Journal, 36(6), 1389–1401. https://doi.org/10.1002/j.1538-7305.1957.tb01515.x

Xu, Y., Olman, V., & Xu, D. (2002). Clustering gene expression data using a graph-theoretic approach: an

application of minimum spanning trees. Bioinformatics, 18(4), 536–545.

https://doi.org/10.1093/bioinformatics/18.4.536

22

Appendices

Appendix I: Code for Prim’s algorithm

const int INF=1e9;

vector<pair<int, int> > prim(int n, int m, vector<pair<pair<int, int>, int> > &graph)
{
 vector<vector<pair<int, int> > > adj(n);
 for (auto edge : graph)
 {
 int from=edge.first.first;
 int to=edge.first.second;
 int weight=edge.second;
 adj[from].push_back({to, weight});
 adj[to].push_back({from, weight});
 }

 vector<pair<int, int> > minSpanningTree;
 set<pair<int, int> > q;
 vector<bool> visited(n, false);
 vector<pair<int, int> > minEdge(n, {INF, -1});

 minEdge[0]={0, -1};
 q.insert({0, 0});

 for (int i=0; i<n; i++)
 {
 int currentNode=(*q.begin()).second;
 q.erase(q.begin());
 visited[currentNode]=true;
 if (minEdge[currentNode].second!=-1)
 minSpanningTree.push_back({currentNode, minEdge[currentNode].second});
 for (auto edge : adj[currentNode])
 {
 int nextNode=edge.first;
 int weight=edge.second;
 if (!visited[nextNode] && weight<minEdge[nextNode].first)
 {
 q.erase({minEdge[nextNode].first, nextNode});
 minEdge[nextNode]={weight, currentNode};
 q.insert({weight, nextNode});
 }
 }
 }

 return minSpanningTree;
}

Appendix II: Code for Kruskal’s algorithm

vector<int> parent, componentSize;

23

int findComponent(int v)
{
 if (v==parent[v])
 return v;

 return parent[v]=findComponent(parent[v]);
}

void uniteComponents(int a, int b)
{
 a=findComponent(a);
 b=findComponent(b);
 if (a==b)
 return;
 if (componentSize[a]<componentSize[b])
 swap(a, b);
 componentSize[a]=componentSize[a]+componentSize[b];
 parent[b]=a;

 return;
}

vector<pair<int, int> > kruskal(int n, int m, vector<pair<pair<int, int>, int> >
&graph)
{
 vector<pair<int, pair<int, int> > > sortedEdges(graph.size());

 int i=0;
 for (auto edge : graph)
 {
 int from=edge.first.first;
 int to=edge.first.second;
 int weight=edge.second;
 sortedEdges[i]={weight, {from, to}};
 i=i+1;
 }

 sort(sortedEdges.begin(), sortedEdges.end());

 parent.resize(n);
 componentSize.resize(n);
 for (int i=0; i<n; i++)
 {
 parent[i]=i;
 componentSize[i]=1;
 }

 vector<pair<int, int> > minSpanningTree;

 for (auto edge : sortedEdges)
 {
 int from=edge.second.first;
 int to=edge.second.second;
 int weight=edge.first;

24

 if (findComponent(from)!=findComponent(to))
 {
 minSpanningTree.push_back({from, to});
 uniteComponents(from, to);
 }
 if (minSpanningTree.size()==n-1)
 break;
 }

 return minSpanningTree;
}

Appendix III: Derivation of formula for time complexity

𝑑 =
2𝐸

𝑉(𝑉−1)
 (by definition)

∴ 𝑉(𝑉 − 1) =
2𝐸

𝑑

∴ 𝑉2 − 𝑉 =
2𝐸

𝑑

∴ 𝑉 = √
2𝐸

𝑑
 (for simplicity, 𝑉2 − 𝑉 is approximated to 𝑉2)

∴ 𝑂(𝐸 log 𝑉) = 𝑂 (𝐸 log √
2𝐸

𝑑
) (the time complexity of Prim’s and Kruskal’s algorithms)

Appendix IV: Code for random connected graph generator

#include <bits/stdc++.h>
using namespace std;

int getRandom(int maxNumber)
{
 long long t=0;
 for (int i=0; i<17; i++)
 t=10*t+rand()%10;
 int random=t%(maxNumber+1);

 return random;
}

void makeGraph(int n, int m, vector<pair<pair<int, int>, int> > &graph)
{
 set<pair<int, int> > usedEdges;

 for (int i=1; i<n; i++)
 usedEdges.insert({getRandom(i-1), i});
 int numEdges=n-1;

 while (numEdges<m)

25

 {
 int x=getRandom(n-1);
 int y=getRandom(n-1);
 if (x==y)
 continue;
 if (y<x)
 swap(x, y);
 if (usedEdges.count({x, y}))
 continue;
 usedEdges.insert({x, y});
 numEdges=numEdges+1;
 }

 for (auto edge : usedEdges)
 {
 int x=edge.first;
 int y=edge.second;
 if (rand()%2==1)
 swap(x, y);
 graph.push_back({{x, y}, getRandom(999)+1});
 }

 random_shuffle(graph.begin(), graph.end());

 return;
}

int main()
{
 srand(time(0));

 string filepath="";
 ofstream fout(filepath);

 int n, m;
 cin >> n >> m;
 if (m<n-1 || m>(long long)n*(n-1)/2)
 {
 cout << "error: number of edges is out of range" << '\n';
 return 0;
 }

 vector<pair<pair<int, int>, int> > graph;
 makeGraph(n, m, graph);

 fout << n << " " << m << '\n' << '\n';
 for (auto edge : graph)
 fout << edge.first.first << " " << edge.first.second << " " << edge.second <<
'\n';

 fout.close();

 return 0;
}

26

Appendix V: Procedure

1. Generate 5 data sets for each level of the independent variable with the random graph

generator program.

2. Insert the file name where the appropriate test data is located as an input for the test program.

3. Compile the test program.

4. Run the test program. The time needed for the execution of Prim’s algorithm will be displayed.

5. Run the test program two more times and take the mean of the three recorded times.

6. Repeat steps 2-5 for all 5 data sets, for all 20 levels.

The same procedure is used for both Experiment 1 and Experiment 2. Repeat the procedure for Kruskal’s

algorithm.

Appendix VI: Test program

#include <bits/stdc++.h>
#include <chrono>
using namespace std;
using namespace chrono;

#include "prim.h"
#include "kruskal.h"

int main()
{
 string filepath="";
 ifstream fin(filepath);

 int n, m;
 fin >> n >> m;
 vector<pair<pair<int, int>, int> > graph(m);
 for (int i=0; i<m; i++)
 fin >> graph[i].first.first >> graph[i].first.second >> graph[i].second;

 auto startTime=high_resolution_clock::now();

 auto minSpanningTree=prim(n, m, graph);
 //auto minSpanningTree=kruskal(n, m, graph);

 auto endTime=high_resolution_clock::now();
 auto duration=duration_cast<microseconds>(endTime-
startTime).count()/(double)1000000;

 cout << << duration << '\n';

 fin.close();

 return 0;
}

27

Appendix VII: Raw data from Experiment 1

Density Graph Prim’s running time Kruskal’s running time

0.05 1 0.010369 0.009965
2 0.010542 0.010360
3 0.010009 0.010985
5 0.009543 0.011153
5 0.009730 0.010428

0.10 1 0.015170 0.021517
2 0.015866 0.022093
3 0.015041 0.022769
4 0.016013 0.022309
5 0.015179 0.022264

0.15 1 0.019710 0.037870
2 0.018543 0.038139
3 0.020351 0.037156
4 0.021649 0.037712
5 0.019223 0.035949

0.20 1 0.026176 0.045421
2 0.030359 0.046137
3 0.027302 0.046653
4 0.021990 0.046559
5 0.026079 0.045161

0.25 1 0.031143 0.053988
2 0.030409 0.053654
3 0.029749 0.052128
5 0.031007 0.053339
5 0.029067 0.052617

0.30 1 0.030609 0.060648
2 0.031975 0.062765
3 0.031242 0.060090
4 0.031562 0.060592
5 0.023969 0.069946

0.35 1 0.034686 0.073485
2 0.034559 0.072528
3 0.031190 0.077447
4 0.029457 0.073849
5 0.028903 0.074782

0.40 1 0.033101 0.077590
2 0.032096 0.079973
3 0.029826 0.086712
4 0.046447 0.125605
5 0.034568 0.079989

28

0.45 1 0.033426 0.095556
2 0.034616 0.094073
3 0.036986 0.093176
5 0.036417 0.094342
5 0.042386 0.092140

0.50 1 0.037584 0.102492
2 0.040056 0.106615
3 0.039941 0.104887
4 0.041755 0.154954
5 0.040011 0.104783

0.55 1 0.044275 0.118041
2 0.052401 0.117149
3 0.049378 0.118972
4 0.061758 0.141430
5 0.047659 0.114781

0.60 1 0.048371 0.124941
2 0.064916 0.146670
3 0.051924 0.137067
4 0.057537 0.130900
5 0.049892 0.128195

0.65 1 0.053244 0.140054
2 0.056773 0.139571
3 0.070912 0.184446
5 0.049739 0.140715
5 0.051528 0.141858

0.70 1 0.054068 0.147091
2 0.055750 0.149207
3 0.051697 0.151188
4 0.060022 0.149886
5 0.054566 0.149636

0.75 1 0.063972 0.159098
2 0.056923 0.160899
3 0.055303 0.160173
4 0.056694 0.163454
5 0.057441 0.162301

0.80 1 0.057637 0.167485
2 0.055932 0.174418
3 0.058263 0.171938
4 0.060652 0.176933
5 0.072019 0.180507

0.85 1 0.059276 0.186863
2 0.058740 0.182371
3 0.061146 0.185163

29

5 0.087206 0.192145
5 0.063236 0.194924

0.90 1 0.066657 0.204598
2 0.065972 0.193513
3 0.068042 0.199585
4 0.066778 0.195929
5 0.068838 0.197422

0.95 1 0.063332 0.204908
2 0.063850 0.206483
3 0.064643 0.203712
4 0.067003 0.200449
5 0.067741 0.200954

1.00 1 0.073282 0.234996
2 0.065499 0.216668
3 0.066072 0.217027
4 0.065271 0.219616
5 0.068508 0.221569

Appendix VIII: t-test results for Experiment 1

Density p value

0.05 0.11

0.10 <0.001

0.15 <0.001

0.20 <0.001

0.25 <0.001

0.30 <0.001

0.35 <0.001

0.40 <0.001

0.45 <0.001

0.50 <0.001

0.55 <0.001

0.60 <0.001

0.65 <0.001

0.70 <0.001

0.75 <0.001

0.80 <0.001

0.85 <0.001

0.90 <0.001

0.95 <0.001

1.00 <0.001

30

Appendix IX: Raw data from Experiment 2

Density Graph Prim’s running time Kruskal’s running time

0.00005 1 0.779130 0.247511
2 0.788520 0.249775
3 0.916635 0.245516
5 0.870522 0.247190
5 0.813202 0.330487

0.00010 1 0.819153 0.315070
2 0.664790 0.245197
3 0.606130 0.242087
4 0.740370 0.259857
5 0.746247 0.257003

0.00015 1 0.671313 0.242403
2 0.567663 0.241737
3 0.705953 0.240733
4 0.558857 0.237020
5 0.756877 0.280150

0.00020 1 0.642523 0.267413
2 0.540690 0.325660
3 0.536837 0.337637
4 0.592633 0.239120
5 0.601233 0.240690

0.00025 1 0.628367 0.235257
2 0.521110 0.245737
3 0.493220 0.329933
5 0.501583 0.239613
5 0.461643 0.293320

0.00030 1 0.534157 0.286173
2 0.432287 0.233957
3 0.539377 0.308580
4 0.452963 0.235297
5 0.424887 0.236820

0.00035 1 0.449327 0.241277
2 0.491447 0.328243
3 0.492283 0.235730
4 0.457010 0.233177
5 0.445630 0.354937

0.00040 1 0.402383 0.231797
2 0.425063 0.231720
3 0.399457 0.235413
4 0.400840 0.233437
5 0.384967 0.229087

31

0.00045 1 0.390613 0.233417
2 0.401243 0.260253
3 0.491610 0.232147
5 0.547057 0.237617
5 0.410737 0.234077

0.00050 1 0.382390 0.229340
2 0.383413 0.231380
3 0.373520 0.230257
4 0.440330 0.241337
5 0.373880 0.231003

0.00055 1 0.469747 0.235070
2 0.361093 0.231933
3 0.409217 0.293817
4 0.356873 0.231007
5 0.379223 0.230770

0.00060 1 0.333337 0.230773
2 0.377093 0.280720
3 0.396453 0.242963
4 0.426810 0.316490
5 0.393513 0.232117

0.00065 1 0.386010 0.232013
2 0.391497 0.359110
3 0.540297 0.251620
5 0.545043 0.234573
5 0.402753 0.246977

0.00070 1 0.356943 0.233553
2 0.402080 0.313447
3 0.353643 0.238677
4 0.317037 0.230180
5 0.434323 0.316550

0.00075 1 0.345540 0.235507
2 0.354307 0.235653
3 0.321097 0.230613
4 0.342067 0.240770
5 0.332417 0.356663

0.00080 1 0.317607 0.227723
2 0.318320 0.278447
3 0.346347 0.238843
4 0.398033 0.247990
5 0.328897 0.241893

0.00085 1 0.324487 0.231897
2 0.355953 0.238580
3 0.329073 0.235887

32

5 0.471100 0.239530
5 0.326563 0.234757

0.00090 1 0.331977 0.229553
2 0.311680 0.229147
3 0.324347 0.234333
4 0.337600 0.240133
5 0.335020 0.241657

0.00095 1 0.384483 0.238670
2 0.466873 0.247083
3 0.320467 0.241420
4 0.305433 0.230137
5 0.317617 0.243710

0.00100 1 0.308230 0.237497
2 0.341933 0.232213
3 0.321030 0.234663
4 0.338400 0.347513
5 0.285380 0.230370

Appendix X: t-test results for Experiment 2

Density p value

0.00005 <0.001

0.00010 <0.001

0.00015 <0.001

0.00020 <0.001

0.00025 0.002

0.00030 <0.001

0.00035 0.001

0.00040 <0.001

0.00045 0.001

0.00050 <0.001

0.00055 0.001

0.00060 <0.001

0.00065 0.01

0.00070 <0.001

0.00075 0.02

0.00080 0.003

0.00085 0.005

0.00090 <0.001

0.00095 0.007

0.00100 0.02

