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1 Introduction

As machine learning applications become more and more integrated into all the aspects of
our everyday lives, new methods for developing these artificial intelligence models are constantly
being discovered, with the goals of improving accuracy, speed, and ease of use. One of the best
examples of optimization in our world has to be the miracle of biological evolution, of how nature
was able to turn simple single-cell organisms into the complex multicellular plants and animals we
have today. This subsequently leads to the question of whether or not we can mimic evolution in
training artificial intelligence. This paper will explore the question: to what extent can the genetic

algorithm be applied in constructing decision trees for data classification?

2 Background Information

2.1 Machine Learning and its Applications

Machine learning (ML) is a branch of artificial intelligence that uses large datasets and algorithms
to mimic the way humans learn and improve accuracy over time (Education). Since its debut in
1952, it has been steadily gaining popularity for its abilities in recognizing patterns and continuous
learning. Machine learning powers many of the applications we use on a daily basis, including
chatbots, language translation tools, and social media feeds (Brown).

Where machine learning shines is in its ability to solve problems that would typically be either
impossible or impractical for traditional algorithms. Furthermore, machine learning models are
able to generalize these solutions and apply them to additional problems it has never encountered

before.



In short, machine learning is a combination of computer science, statistics, and optimization. It
uses knowledge from different fields to “teach” computers to complete tasks. As the model looks
at more and more data, it starts to recognize patterns among it and optimizes itself. The main
problem that data scientists are trying to solve with regard to machine learning is how we actually

optimize the algorithms.

2.2 Decision Trees

One of the most established and well known models under the domain of machine learning are
neural networks. These models, which are complex yet powerful algorithms, only make up one
branch of machine learning itself, called deep learning. Deep learning has built a reputation to be
extremely versatile and powerful, able to generalize any function across data. However, one of
its biggest drawbacks is that with the limits of our current technology and understanding of deep
learning, neural networks are often described as a “black box™ (Buhrmester et al.). In other words,
all we know is to give the network a set of inputs and outputs, and we have very little understanding
of its inner behavior or the interactions between neurons.

There exists another branch of machine learning, called supervised learning. This approach
aims to solve problems of data classification and regression (Delua). The data that it deals with
is still made of inputs and outputs. Each characteristic of the data is called a feature and the
outputs are called labels. One of the most well established models within supervised learning
is the decision tree. A common model in supervised learning are binary trees which employ a
straightforward if-else flow to classify or regress data. Contrary to neural networks, decision trees

are much easier to interpret for humans. This paper will focus on data classification rather than



regression with decision trees.
Binary trees are made up of nodes, which are connected by edges. As its name suggests, each
node is connected to two child nodes, which have their own respective child nodes, and so on.

Nodes at the bottom of the tree are called leaves, and do not branch out to any more children.

Parent
o node
o ° «—— Child node
«——— Edge

o o «— Leaf

Figure 1: Binary Tree Diagram

Decision trees use the structure of binary trees to classify data. Non-leaf nodes are referred to
as “split nodes.” Split nodes each have a feature and a split value. When data reaches that node, it
is passed on to the left child if the feature value is less than the split value, and to the right child if
otherwise. In dealing with categorical or qualitative features, such as color, they are each mapped
to an integer, so they can be treated the same as numerical or quantitative features. Leaf nodes each

contain a label. If data reaches a leaf node, it is classified as that label.
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Figure 2: Decision Tree Diagram

A simple decision tree can be used to predict whether it will rain based on other weather
conditions, as seed in Figure 1. Given a cloudy day with no sun, the model will predict that it will
rain, as outlined by the red lines on the diagram.

The standard way to generate a decision tree is to use a top-down greedy recursive algorithm
based on how many values are incorrectly classified at each node. This value is called the “gini-impurity”.
At each step of the tree, the split value is determined by testing out every single value of every
single feature, and seeing which one yields the lowest gini-impurity. The left child of the current
node is then built using the data that falls under the split value, and the right child is built using the
remaining data. This process continues until the gini-impurity is less than a preset value, or until
a certain depth is reached. Certain algorithms for decision tree generation also balance the binary

tree for reduced time complexity in testing (Pedregosa et al.).



2.3 Genetic Algorithm

Taking a page straight out of Darwin’s theory of evolution, genetic algorithms employ the
principle of “survival of the fittest”. Biological evolution has been able to produce billions (Sweetlove)
of different species of organisms that have all become very well adapted to their environments. It
does so by ensuring that only the individuals that are able to survive and thrive in their environments
the best are able to reproduce. Those that are unable to find food, get hunted easily by predators,
or are prone to catching diseases are unable to pass on their genes to the next generation. This also
ensures that only the strongest genes are kept from generation to generation.

Furthermore, evolution maintains diversity within species to ensure robustness and the potential
to introduce new strengths. This is done through mutations, where certain values of an individual’s
DNA sequence are changed, thereby altering their appearance or behavior. The mutations that turn
out to be beneficial can help the species in their specific environments. An example of mutations
can be found in different species of snakes. Both cobras and vipers evolved from the same ancestor;
however, venom from cobras attack the target’s nervous system while that from the viper attacks
the cardiovascular system.

It is through the combination of the principle of “survival of the fittest” promoting diversity
that biological evolution has produced so many species of organisms that are each so well adapted
to their environments. In short, evolution is very well versed in solving a complex optimization
problem.

The idea is to apply evolution to a subset of computational problems that would otherwise take
an unrealistic amount of computational resources to optimize by brute force, or where there lies

no straightforward path to a solution. The genetic algorithm aims to mimic biological evolution as



close as possible, seeing the potential for optimizing and solving such problems. It is composed
of six main steps: initialization, fitness evaluation, selection, crossover, mutation, and finally
termination. Each step of this process aims to mimic one part of what makes biological evolution
so effective and robust.

Initialization randomly produces the first generation of individuals. In the genetic algorithm,
each individual represents one possible solution to the final problem. These are usually represented
in the form of a data structure. Each individual data structure is composed of many smaller pieces
of data, which are analogous to the genes of a biological organism. Together, the data determine
the actions of the individual. The first generation is not expected to perform well, as all the genes
are randomly generated.

Fitness evaluation is the first step of the actual evolving or optimization process. Each individual
has their fitness assessed based on a set of criteria. Fitness is represented by a single number, which
can be determined by factors like performance, accuracy, or efficiency of the individual. The fitness
value given to each individual is to encourage better performing genes into being passed onto the
next generation, while preventing suboptimal solutions from lingering in the gene pool.

As “survival of the fittest” suggests, the selection step picks the best individuals based on fitness
to pass their genes onto the next generation. However, in order to maintain diversity, this step is
not as simple as just sorting the individuals by fitness and picking the best ones for reproduction.
Returning to the principle of diversity, there may be certain genes in the less fit individuals that can
be beneficial in certain cases, so it is important that we do not entirely wipe them out. At the same
time, those with higher fitness are more likely to contain more useful genes. Therefore, selection is
partially randomized, with the probability of each individual being selected being weighted based

on their fitness. This strikes a balance between optimization and diversity.



Crossover is analogous to reproduction. As with its biological counterpart, crossover can be
either sexual or asexual. For sexual crossover, two parent individuals are needed. A child is
produced by combining a subset of genes from one parent with a subset of genes from the other
parent. For asexual crossover, only one parent is needed. A child is produced by swapping specific
or a subset of genes’ order. After crossover, the child individual has traits of both its parents, and
its unique combination of genes can possibly explore further into the solution space.

Mutation is what introduces diversity into the population in the form of new genes, or possibly
new combinations of genes. Each individual has a random chance to be selected for mutation. In
mutation, a random gene is chosen, and its value is altered. This is the last step of the optimization
process.

The steps from fitness evaluation to mutation are repeated over a predetermined number of
generations, or until a stopping criterion is reached. This last step is called termination, which

determines when the main loop is to end.

3 Genetic Decision Tree

The genetic algorithm brings many benefits to the optimization of abstract problems. An
abstract problem with a near infinite number of possible solutions is decision tree structure construction.
There exists the potential to use the genetic algorithm to construct and optimize decision trees. For
the purpose of this paper, this method will be coined the “Genetic Decision Tree”.

A Genetic Decision Tree (GDT) uses a genetic algorithm to optimize decision trees. In theory,
it aims to take the benefits from both decision tree classifiers and random forests, while adding a

layer of the genetic algorithm that increases its accuracy with training.



From decision trees, the GDT takes the ability to generate a singular, human interpretable
tree as its final model. This can be useful in analysis, hyperparameter tweaking, or presentation.
And from random forests, it introduces a layer of randomness, which will be further harnessed by
the genetic algorithm. This allows the model to explore a larger solution space, and minimize the
chance of fitting into a suboptimal solution. In short, the GDT fitting algorithm aims to combine the
benefits of randomness in a random forest into a singular, or smaller subset of optimized decision

trees.

Suboptimal selution (stuck in local minimum)

Better solution (closer to global minimum)

Figure 3: The solution space, represented by the curve (lower is better).

3.1 Initialization

The GDT population is composed of n randomly generated decision trees, where n is the
population size. A randomly generated tree starts with a root node. Each of its children is then
either a split node or a leaf node, determined by a probability p. If a node is assigned as a split
node, it is randomly assigned a feature and a corresponding split value. Otherwise, if it is a leaf,
it is randomly assigned a label. Further restrictions are put in place to ensure that no branch of
the tree can only lead to a single label. This step is recursively repeated until a desired depth is
reached, or until all branches end in leaf nodes (Faik). Unlike a normal decision tree, there is no
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maximum depth with each individual in the GDT population. This is due to the fact that the depth

may grow in crossover. Rather, they will all be generated up to an optimal depth to begin.

3.2 Fitness Evaluation

The fitness, higher is better in this case, for each individual in the population will be measured

by the following formula (Faik):

Fi=c-a;—cy- (di - dopt>2

F;; is the fitness of the i-th individual.

a; 1s the accuracy of the i-th individual on the training data.

d; is the depth of the i-th individual.

dop 18 the optimal depth of the tree.
* (1, ¢y are predetermined constants.

The depth of each individual is extremely important. Trees that are smaller than the optimal
depth may yield suboptimal results. Those that are bigger may be detrimental to performance and
time complexity, especially if they reproduce and make even larger trees in future generations.
Therefore, the expression (d; — dop)? has been specially chosen to encourage individuals with the
optimal depth. It is an upwards opening parabola with a minimum when d; = d,, which increases
on either side. A value is subtracted from an individual’s fitness depending on its depth. Trees
that are either too big or small are punished with a decrease in fitness, and therefore have a lesser
chance of being selected for the next generation.
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The values of c; and ¢ are hyperparameters which can be adjusted according to performance
of the algorithm in testing. Together they make up a weighted mean of how much accuracy and

tree depth affect respectively the fitness.

3.3 Selection

The selection process will be a combination of two separate algorithms. The first of which
will be tournament selection. A random set of & individuals will be ranked by fitness, and the
highest score will be able to move on to the crossover stage. This process is repeated twice, once
for each parent in crossover. The random nature of this selection process ensures that diversity is
maintained between generations by giving all individuals a chance to evolve. It ensures that certain
traits will not be entirely lost (Blickle and Thiele).

The second selection process will be elitism. This is where the fittest individuals from the
previous generation will be moved directly on to the current generation, without crossover. This is
to ensure that the traits of the best individuals from the previous generation are not lost in selection
Of CrOSSOVET.

A total of ¢ individuals will be moved onto the next generation through elitism. The remaining

n — t spots will be filled through tournament selection and crossover.

3.4 Crossover

For crossover, two parent trees will produce two child trees in order to maintain the population
count. The first child will originally be a direct copy of the first parent. A random node is then

selected from each parent. The node from the first parent, and its entire subtree, will be replaced by

12



the node from the second parent and its subtree. The same process will be repeated for the second

child, except with the roles of the parents reversed.

Parent 1 Parent 2

N
heY
\
e H ° o
\ <
v .

Child

Figure 4: Decision tree crossover

3.5 Mutation

If a tree is chosen for mutation, it will have one of its value’s traits randomly chosen and altered.
If the node selected is a split node, its feature and split value will be randomly altered. Otherwise,
if the node selected is a leaf node, it will have its label randomly altered. Precautions will be put

in place to make sure that each subtree can still lead to more than one label.
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3.6 Termination

There are two conditions for termination. The first of which is when the number of generations
has reached a predetermined n. The other condition is when the average fitness does not improve
by a predetermined threshold for x generations. Which ever condition comes first is when the GDT

will terminate.

4 Mushroom Dataset

The dataset that will be used to train the GDT both in hyperparameter optimization and the
final results is the Mushroom Dataset from UC Irvine (Mushroom). It contains data about the
different physical features of thousands of wild mushrooms. Each instance in this dataset consists
of 22 different features to classify a mushroom as either poisonous or edible. In total, there are
8124 instances. Any missing data from the dataset is filled with the most common value from its

respective feature. Some examples of the features and its respective values are described below:

Feature Possible Values
cap shape bell, conical, convex, flat, knobbed, sunken
bruises yes, no
habitat grasses, leaves, meadows, paths, urban, waste, woods
color brown, buff, cinnamon, gray, green, pink, purple, red, white, yellow

This dataset does not come with a predetermined testing subset, so that will have to be done
manually. Furthermore, it may be useful to generate a third subset of the data, the validation
dataset. Validation is used to gauge the reliability of the model and possible overfitting. For

14
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example, if the training accuracy is much higher than the validation accuracy, this means that the
model may have “memorized” the patterns in the training set, but suffers in applying them to other

data.

5 Hyperparameter Optimization

Hyperparameters are the variables that initiate the GDT. They play a major role in determining
how well any machine learning algorithm will perform, so it is crucial to determine an optimal
combination of hyperparameters. In order to do this for the GDT algorithm, several test runs have
been performed. In each test, the independent variable is the hyperparameter in question, while the
dependent variables are training speed, test accuracy and how fast the model converges in terms
of accuracy. The other hyperparameters and variables are all controlled to make sure that only the
independent variable affects performance. Furthermore, each test was run three times, each with
a different random number generator seed to minimize the chances of a fluke in an individual run.
The error bars in the figures represent the standard deviation of the results.

The dataset will be randomly split into training and testing subsets according to a 3 : 1 ratio,
respectively.

The GDT is implemented in Python 3.10, and tests are run in parallel on separate cores on a

Ryzen 7 4700U processor. Individual tests are single-threaded.

5.1 Population Size

The independent variable in this test is the population size of each generation in the algorithm.

As can be determined in the graphs below, a population size of 400 balances training speed with

15



testing accuracy the best. This is likely due to the same reason why a random forest benefits from

a larger population. More individuals can more closely approximate the label and have fewer

discrepancies.
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Figure 5: How population size affects GDT performance.

5.2 Optimal Depth

The independent variable in this test is the optimal depth of each decision tree. The depths
follow a generally positive trend in both training time and testing accuracy. A deeper decision tree

means more space to include split nodes, which can be more specific in classifying data.
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Figure 6: How optimal tree depth affects GDT performance.

5.3 Fitness Constants

The independent variable in this test is the value of c; in the fitness equation. The value of ¢
will be equal to 1 — ¢;. The highest testing accuracy was achieved with ¢; = 0.7 and co = 0.3
with little cost in training time. It should only be among the best performing individuals in terms
of accuracy where depth is used as a deciding factor in selection. A higher c¢; value puts a greater

weight on accuracy, which promotes this selection pattern.
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Figure 7: How the value of ¢; affects GDT performance.

5.4 Selection Distribution

The independent variable in this test is the distribution of selection algorithms, between tournament
selection and elitism. The ratio of 3 : 1 for tournament selection to elitism yielded the fastest
training time, while being similar in testing accuracy to the other values. As previously mentioned,

tournament selection promotes greater diversity in the population and more opportunities to generate

unique solution combinations.
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Figure 8: How selection algorithm distribution affects GDT performance.

5.5 Mutation Probability

The independent variable in this test is the probability for an individual in the population to
be selected for mutation. A mutation probability of 0.25 converges the fastest, while having a
relatively low training time and high testing accuracy. While mutations are important, too high

a chance of mutation may replace optimized combinations in individuals with too many random

values, thereby harming accuracy.
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Figure 9: How mutation probability affects GDT performance.

6 Results

6.1 Running the Algorithm

The hyperparameters for the final model are a combination of the best values from each of the
individual tests in the above sections. The algorithm was run at with a population size of 400,a4 : 1
ratio of tournament selection to elitism with £ = 10 in tournament selection, mutation probability
of 0.1, optimal depth of 5, and values of 0.8 and 0.2 for ¢; and ¢, in fitness evaluation, respectively.

The dataset is randomly split into the training, testing, and validation subsets accordingtoa8: 1 : 1

ratio, respectively. The results are graphed:
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Figure 10: Average and maximum accuracy of individuals in the population.
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Figure 11: Average and maximum fitness of individuals in the population.

In each of these graphs, it can be seen that accuracy, fitness and validation accuracy all converge
over time. Throughout the training, the training accuracy mostly stays in line with the validation

accuracy, suggesting that the model is not overfitting with the current hyperparameters. Furthermore,
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here are how the fittest decision trees look like at generations 25, 50, 75 and 100. Keep in mind
that this is one of the main benefits of the GDT, being able to output a single human interpretable
decision tree. Note that the feature values have been mapped to numbers for the algorithm to
understand. The complete map of the categorical feature values and numbers can be found in
the appendix. If the inequality holds true for the node, the instance proceeds to the left child.

Otherwise, it proceeds to the right child.
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Figure 12: Fittest tree at generation 25.
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Figure 13: Fittest tree at generation 50.
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Figure 15: Fittest tree at generation 100.

In the earlier generations, the decision tree is not really balanced. For example at the 25th
generation, the left side of the root has many more nodes than the right side. This may be
detrimental to performance as the trees do not fully utilize all the space possible for classification.
As the generations progress, the decision trees begin to use more and more of the possible node
space, likely because those individuals score higher fitness. For example 100th generation has a
much more balanced decision tree with many more nodes, which may explain its higher training

accuracy.

6.2 Comparison With Other Algorithms

This experiment proves that the genetic algorithm is a viable way in constructing and optimizing

decision trees for data classification. But how does it stand up against other decision tree algorithms?
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The GDT was put up against three other decision tree algorithms, namely a vanilla decision tree
classifier, a random forest classifier, and a gradient boosting decision tree. Each algorithm was set
to have a maximum depth of 5 to match that of the GDT. They were also trained on the same subset

of the Mushroom Dataset. Here are the results, ranked by test accuracy:

Algorithm Test Accuracy | Training Time (s)
Gradient Boosting 100% 0.1234
Random Forest 99.75% 0.6847
Decision Tree 99.26% 0.004251
GDT 96.37% 189.5

Not only did the GDT have the lowest testing accuracy, it also took the longest time to train,
by over 1000 times compared to the next slowest algorithm. Granted the Light GBM (Ke et al.)
implementation of gradient boosting was written in C++, but the scikit-learn implementations of
the decision tree and random forest are both pure python (Pedregosa et al.). The GDT relies much
more on randomness and much less on theory. Therefore, although the GDT algorithm works in
fitting a model to a dataset, it is far from the most effective or the most efficient one compared to

alternatives.

7 Conclusion

Although a genetic algorithm works in decision tree construction, it relies too heavily on
random nature rather than theory and a mathematical backing. Furthermore, the genetic algorithm
has many hyperparameters which can all drastically affect the final performance of the GDT.
Therefore, it takes a lot of time to determine an optimal combination of hyperparameters for an
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optimally performant GDT. Although there exists approaches in automatic hyperparameter tuning
using another genetic algorithm, this is far from practical for the GDT. Each run of the GDT takes
around two minutes, and to add a layer of yet another genetic algorithm as an overhead would
exponentially increase the time complexity.

Genetic algorithms are extremely versatile and useful algorithms that can be used to solve
abstract optimization problems. But in a problem like decision tree construction where there exist
other approaches that are more heavily backed by theorems and mathematics, a solution rooted in
randomness may not be the most efficient. In short, GA’s can solve problems where no direct or

analytical approach exists, but prove to be inefficient otherwise.
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