
1 | P a g e

Computer Science Extended Essay

TOPIC: hashing algorithms for secure data transfer over a network.

Research Question: Which hashing algorithm out of MD5 and SHA -1

is the best in validating data transfer using SFTP (simple file transfer

protocol) over a network that implements SSH protocol in terms of

speed of data transfer and collision resistance?

Word count: 3144

CS EE World
https://cseeworld.wixsite.com/home
29/34 (A)
May 2022

Donor Info:
Discord: <3#7654

2 | P a g e

Table of Contents
Table of figures ... 2

Introduction .. 3

Background of the topic .. 3

What are hashing algorithms? .. 3

Terminology .. 4

Statistics .. 7

Primary Research .. 11

Methodology ... 11

Data ... 12

Analysis of the data ... 14

Conclusion ... 16

Evaluation ... 16

Limitations .. 16

Unanswered questions ... 16

Bibliography .. 17

Appendix 1 .. 18

Table of figures
Figure 1 Collision of MD5 .. 7

Figure 2 Collision of SHA-1 .. 8

Figure 3 Bits hashed per second for different algorithms .. 10

Figure 4 transfer rates for different file sizes ... 14

Figure 5 Differences of transfer rates for different file sizes .. 14

Figure 6 Transfer of 1 GB file .. 18

Figure 7 Transfer of 2 GB file .. 18

Figure 8 Transfer of 3 GB file .. 19

Figure 9 Transfer of 5 GB file .. 19

Figure 10 Transfer of 100 MB file ... 20

Figure 11 Transfer of 300 MB file ... 20

Figure 12 Transfer of 500 MB file ... 21

https://d.docs.live.net/8f89fb504ea16be1/Documents/ee/extended_esssay_draft.docx#_Toc96377701
https://d.docs.live.net/8f89fb504ea16be1/Documents/ee/extended_esssay_draft.docx#_Toc96377702

3 | P a g e

Introduction
By the early 1990s, secure transaction of data over the internet was a major concern. SSH (Secure

Shell Protocol), was a major contribution for the internet community, especially for web developers.

SSH guaranteed privacy for the users over the internet, allowing to transmit the data over networks

without the data being tampered by unauthorized individuals. how the validity of the data was

ensured? Validity is guaranteed using various techniques, but the core lies in hashing algorithms.

SSH-2.0 supports various hashing algorithms1, including MD5 and SHA 1. Various studies were

conducted in comparison of different hashing algorithms, which were implemented in

authentication systems like Simple-O2 , showing different advantages of the hashing algorithms in

different situations over a network. As different algorithms have different methods of hashing,

factor such as speed of data transfer is affected. Although the algorithms were studied deeply, the

cybersecurity scene is always changing, therefore making outdated research inaccurate. This

extended essay will compare the implications of SHA 1 and MD5 on SSH, therefore demonstrating

which hashing algorithm is more adequate for the implemented protocol. This extended essay will

first discuss about hashing algorithms and their implementations, leading into the primary research,

where data would be analyzed, therefore allowing to conclude which algorithm is viable for the SSH

protocol.

Background of the topic

What are hashing algorithms?
During the early days of the internet, checking authenticity of information was a major security

problem. To partially resolve this problem, hash functions were implemented and authentication

techniques were developed, based on multiple hashing algorithms. Hashing algorithms compress

input message of practically any length, into a “fingerprint” of a fixed length, without provision of

any secret parameter. Each output message has a unique fixed length, which is determined by the

algorithm used.

The principal security properties3 of hash functions are:

1.Pre-image resistance: It’s “computationally infeasible” to find the input message.

2. Second preimage resistance: It’s impossible to find an input, which gives a same output as any

specified input.

3.Colllision resistance: It’s hard to find 2 different inputs which give the same output.

1 SSH.COM Tectia SSH Client/Server - Secure File Transfer and Remote Access, SSH.COM,
www.ssh.com/products/tectia-ssh/.
2 A. A. Putri Ratna, P. Dewi Purnamasari, A. Shaugi and M. Salman, "Analysis and comparison of MD5 and SHA-
1 algorithm implementation in Simple-O authentication based security system," 2013 International Conference
on QiR.
3 Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography, chapter

Hash Functions and Data Integrity, pages 323–324. The CRC Press series on discrete mathematics and its

applications. CRC Press, 1997.

4 | P a g e

Modern hashes are based on an iterative construction proposed by Merkle4/Damgard5. Hashes

which obey properties 1 and 2 are called “one-way” hash functions, whereas hashes which obey all

the properties are called “collision resistant” hash functions. Hash functions have a widespread use,

starting in storage by the implementation of hash tables, to cryptocurrencies which use hash

functions to control the network.

Terminology
Over the years, the exponential rise of computational power6, leads to an increase of terminology as

new technology was developed. Terminologies which are frequently used in this work are explained

below.

MD5: A message digest developed by R. Rivest, in the year 1991. It’s a simple algorithm, allowing it

to effectively run on 32-bit machines. It’s generally used to get a checksum of a file to verify data

integrity, but its implementation is wide such as partition keys in a database.

The working of the algorithm7:

1. The input message bits are padded to be 64 bits short of a multiple of 512 bits. It’s done by

appending 1, and then 0 until the desired length is reached.

2. A 64-bit representation of the length of the original message is appended to the current

message.

3. The MD5 buffer is initialized, Containing 4 32-bit registers. The values initialized are

hexadecimal.

4. The message is processed in 16-Word blocks. It is done by initializing conditional functions

and performing mathematical operations

5. The final message can be combined using different variables, which values were found

during the previous step.

SHA-1: a hashing algorithm designed by the NSA (natural security agency), and was first published in

1993. This hashing algorithm had a myriad of applications, which included fingerprinting for data

verification and digital certification. It’s based on a similar structure, which was implemented in

MD5.

Working of the algorithm:

1. Input message is broken into 512-bit blocks.

2. If the message isn’t divisible by 512, the message is padded to be divisible by 512.

3. The SHA 1 buffer is initialized, containing five 32-bit registers. The values initialized are

hexadecimal.

4. The message is processed in a 160-bit state. Each 32-bit block goes through 80 operations

formed upon non-linear functions, left rotations and modular addition.

4 Ralph C. Merkle. One way hash functions and DES. Lecture Notes in Computer Science, 435:428–446, 1990.

5 I.B. Damgard. A design principle for hash functions. Lecture Notes in Computer Science, 435:416–427, 1990.

6 Moore, Gordon E. (1965-04-19). "Cramming more components onto integrated circuits" (PDF). intel.com.

Electronics Magazine. Retrieved July 14, 2021.

7 Rivest, R. (April 1992). "MD5 Algorithm Description Blocks". The MD5 Message-Digest Algorithm. IETF. p. 5.

sec. 3.4. doi:10.17487/RFC1321. RFC 1321. Retrieved 14 July 2021.

5 | P a g e

5. The processed chunks are combined into a 160-bit string, which is the output value of the

hash.

SSH: SSH is a software package that enables secure system administration and file transfers over

insecure networks.8 The protocol uses a client- server model between the SSH client and the SSH

server. It was developed by Tatu Ylönen, as a response to a packet-sniffing attack at his university.

Working of the protocol:9

1. The client establishes a connection with the server.

2. Server sends its public RSA host key and another RSA public key, which is then compared to

the host keys stored in a database on the client’s machine.

3. Using a cryptographic number generator, the client generates a 256-bit random number.

The client chooses a cryptographic algorithm supported by the server. The client encrypts

the number, which would be used as the session key, using the host key and the server key

and sends the key to the server.

4. The server decrypts the session key, and sends an encrypted confirmation to the client. The

connection between the server and the client is encrypted by the session key.

5. The client undergoes authentication from the server. It can be done using a username and

password, or using an RSA-based host authentication.

6. Client sends request to set up the type of session needed, such as TCP-IP forwarding, X11

forwarding, etc.

7. The client and the server exchange packet asynchronously. To end the connection, the client

sends a termination message to the server, which is replied by a termination message from

the server. The client closes the connection.

SFTP: Secure file transfer protocol, which runs over SSH, therefore inheriting all the security and

authentication features of SSH.10 The protocol was developed by the Internet Engineering Task Force

in the year 1997. The protocol allows the user to access, browse, transfer and manage data on a

remote machine.

HMAC:11 keyed-hash message authentication code allows us to validate data which has been

transmitted between devices over a network. The algorithm allows us to validate data without

significantly loosing performance, and has cryptographic functions which can run on most devices

currently implemented. The algorithm also allows us to use different hashing algorithms, in case

security vulnerabilities are found in outdated algorithms, and new hashing functions become

available.

8 “SSH Secure Shell Home Page, Maintained by SSH Protocol Inventor Tatu Ylonen. SSH Clients, Servers,
Tutorials, How-Tos.” SSH Secure Shell Home Page, Maintained by SSH Protocol Inventor Tatu Ylonen. SSH
Clients, Servers, Tutorials, How-Tos., www.ssh.com/academy/ssh.
9 Ylonen, Tatu. "SSH–secure login connections over the Internet." Proceedings of the 6th USENIX Security
Symposium. Vol. 37. 1996.
10 “SFTP Protocol, Clients, Servers Etc.. Page by the Original Author of SFTP.” SFTP Protocol, Clients, Servers Etc.
Page by the Original Author of SFTP., https://www.ssh.com/academy/ssh/sftp.
11 Krawczyk, Hugo, Mihir Bellare, and Ran Canetti. "HMAC: Keyed-hashing for message authentication." (1997).

6 | P a g e

The code is calculated using this function:

H(K XOR opad, H(K XOR ipad, data))

Explanation of the variables:

• H: the hashing algorithm

• K: the authentication key. The key’s length is limited by the byte length of the outputs from

the hashing algorithms (16 for MD5 and 20 for SHA-1)

• opad : the byte 0x5C repeated 64 times

• ipad : the byte 0x36 repeated 64 times

Working of the function:

1. Zeroes are appended to K, to ensure that it matches the byte length of the cryptographic

function implemented.

2. XOR is computed between the value from step 1 and ipad.

3. The data is appended to the value from step 2.

4. The cryptographic function is applied to the value generated from step 3.

5. XOR is computed between the value from step 1 and opad

6. The result from step 4 is appended to the result from step 5

7. Cryptographic function H is applied to the value generated in step 6 to generate the output

7 | P a g e

Statistics
Several previous researches compared SHA 1 and MD5 in different environments. The studies are

shown below. The hashes were compared in terms of collisions, hash rate and effectiveness in

different authentication systems.

Collisions: two distinct points in the domain of a hash function that hash to the same range point.12

This has several implications, as data can be altered without changing the output hash.

MD513: In 1996, Dobbertin14 was able to demonstrate that collisions in MD5 were theoretically

possible. The requirement was that initialization vector should be chosen, but in practice the

initialization vector is set, therefore not posing a severe threat towards the hash. In the year 2004,

wang et al. discovered collisions with the standard initialization vectors. A MD5 collision is

demonstrated in table 1.

12 Rogaway, Phillip, and Thomas Shrimpton. "Cryptographic hash-function basics: Definitions, implications, and
separations for preimage resistance, second-preimage resistance, and collision resistance." International
workshop on fast software encryption. Springer, Berlin, Heidelberg, 2004.
13 Thompson, Eric. "MD5 collisions and the impact on computer forensics." Digital investigation 2.1 (2005): 36-
40.
14 Dobbertin, Hans. "Cryptanalysis of MD5 compress." rump session of Eurocrypt 96 (1996): 71-82.

02DD31D1C4EEE6C5 069A3D69 5CF9AF98 87B5CA2F AB7E4612

3E580440 897FFBB8 0634AD55 02B3F409 8388E483 5A417125

E8255108 9FC9CDF7 F2BD1DD95B3C3780

D11D0B96 9C7B41DC F497D8E4 D555655A C79A7335 0CFDEBF0

66F12930 8FB109D1 797F2775 EB5CD530 BAADE8225C15CC79

DDCB74ED6DD3C55F D80A9BB1E3A7CC35

02DD31D1C4EEE6C5 069A3D69 5CF9AF98 87B5CA2F AB7E4612

3E580440 897FFBB8 0634AD55 02B3F409 8388E483 5A417125

E8255108 9FC9CDF7 72BD1DD95B3C3780

D11D0B96 9C7B41DC F497D8E4 D555655A 479A7335 0CFDEBF0

66F12930 8FB109D1 797F2775 EB5CD530 BAADE8225C154C79

DDCB74ED6DD3C55F 580A9BB1 E3A7CC35

8D5E7019 6324C015 715D6B58 61804E08

Message 1

Message 2

MD5 Hash

1st block

2st block

1st block

2st block

Figure 1 Collision of MD5

8 | P a g e

SHA 1: In 1997, Wang15 demonstrated the first attacks on the SHA archetype. Presently, collisions

can be found if the initialization vector is chosen. Once near- collisions are found, two block

collisions can be constructed. Even through collisions are possible, the time complexity is very high.

For example, 10 days of calculation by 64 GPUs is required to find a viable collision, making 257.5 calls

to the SHA hash function. 16 Collisions of the sha-1 function is demonstrated in table 2.

Several other comparative studies were conducted. As shown below, a comparative study between

the hashing algorithms demonstrating difference in hashing rates and bits per second.17 Different

strings were used.

15 X. Y. Wang. The Collision attack on SHA-0. In Chinese, to appear on
www.infosec.edu.cn, 1997.
16 Stevens, M., Lenstra, A., Weger, B.: Chosen-prefix collisions for MD5 and colliding X.509 certificates for
different identities. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007).
17 Long, Sihan. "A Comparative Analysis of the Application of Hashing Encryption Algorithms for MD5, SHA-1,
and SHA-512." Journal of Physics: Conference Series. Vol. 1314. No. 1. IOP Publishing, 2019.

Input 4e a9 62 69 7c 87 6e 26 74 d1 07 f0 fe c6 79 84 14 f5 bf 45

7f 46 dc 93 a6 b6 7e 01 3b 02 9a aa 1d b2 56 0b

45 ca 67 d6 88 c7 f8 4b 8c 4c 79 1f e0 2b 3d f6

14 f8 6d b1 69 09 01 c5 6b 45 c1 53 0a fe df b7

60 38 e9 72 72 2f e7 ad 72 8f 0e 49 04 e0 46 c2

output 8d 64 d6 17 ff ed 53 52 eb c8 59 15 5e c7 eb 34 f3 8a 5a 7b

30 57 0f e9 d4 13 98 ab e1 2e f5 bc 94 2b e3 35

42 a4 80 2d 98 b5 d7 0f 2a 33 2e c3 7f ac 35 14

e7 4d dc 0f 2c c1 a8 74 cd 0c 78 30 5a 21 56 64

61 30 97 89 60 6b d0 bf 3f 98 cd a8 04 46 29 a1

output 1e ac b2 5e d5 97 0d 10 f1 73 69 63 57 71 bc 3a 17 b4 8a c5

input 4e a9 62 69 7c 87 6e 26 74 d1 07 f0 fe c6 79 84 14 f5 bf 45

73 46 dc 91 66 b6 7e 11 8f 02 9a b6 21 b2 56 0f

f9 ca 67 cc a8 c7 f8 5b a8 4c 79 03 0c 2b 3d e2

18 f8 6d b3 a9 09 01 d5 df 45 c1 4f 26 fe df b3

dc 38 e9 6a c2 2f e7 bd 72 8f 0e 45 bc e0 46 d2

output 8d 64 c8 21 ff ed 52 e2 eb c8 59 15 5e c7 eb 36 73 8a 5a 7b

3c 57 0f eb 14 13 98 bb 55 2e f5 a0 a8 2b e3 31

fe a4 80 37 b8 b5 d7 1f 0e 33 2e df 93 ac 35 00

eb 4d dc 0d ec c1 a8 64 79 0c 78 2c 76 21 56 60

dd 30 97 91 d0 6b d0 af 3f 98 cd a4 bc 46 29 b1

output 1e ac b2 5e d5 97 0d 10 f1 73 69 63 57 71 bc 3a 17 b4 8a c5

1st Block

2nd block

Message 2

Message 1

1st Block

2nd block

Table 1 collisions of SHA -1 Figure 2 Collision of SHA-1

9 | P a g e

MD5:

Character string “abc”

Hash Value 900150983cd24fb0d6963f7d28e17f72

Average Running Time 3.08556 ms

Bits per second 0.97227 bit/ms

Character string “followingabcdefghijklmnopqrstuvwxyz”

Hash Value 21bb14b92f9d6f6205868eedeefcd4da

Average Running Time 5.37620 ms

Bits per second 6.51017 bit/ms

Character string “qwertyuiopasdfghjklzxcvbnmpoiuytrewqasdfghjklmnbvcxzmnbvcxzasdf
ghjklpoiuytrewq”

Hash Value 779290ab2fb7ebc2aa91805df8559b39

Average Running Time 7.75992 ms

Bits per second 10.05168 bit/ms

SHA-1:

Character string “abc”

Hash Value a9993e364706816aba3e25717850c26c9cd0d89d

Average Running Time 8.87031 ms

Bits per second 0.33821 bit/ms

Character string “followingabcdefghijklmnopqrstuvwxyz”

Hash Value 916e4febe8aae0e2438846d26db0dc2333f90ba6

Average Running Time 9.22622 ms

Bits per second 3.79353 bit/ms

Character string “qwertyuiopasdfghjklzxcvbnmpoiuytrewqasdfghjklmnbvcxzmnbvcxzasdf
ghjklpoiuytrewq”

Hash Value c200f0c3a9a671388a65c8f7546376cafa575fac

Average Running Time 15.60673 ms

Bits per second 4.99784 bit/ms

As shows above, there is a large difference between the running time between SHA and MD5. The

number of bits per second for MD5 is larger in comparison to SHA 1, showing the capability of MD5

in processing large strings without the loss of efficiency.

10 | P a g e

Figure 3 Bits hashed per second for different algorithms

Time complexities:

MD5:

= T(n) =(n + n(16 +1692 +167 +168) + 4 + 3) =(N)

SHA-1:

= T(n) =(n + n(16 + 644 + 2015 + 20132 + 2016) + 5+ 4) =(N)

The time complexities of the algorithms are the same.

Comparison of the algorithms:

Algorithm Output size
in characters

Time
Complexity

Running
Time(relatively)

Bits per
hash

Block Size Security

MD5 32 (N) Fast High 512 Weak

SHA-1 40 (N) Slow Low 512 Strong

0

2

4

6

8

10

12

String 1 string 2 String 3

Bits per second

MD5 SHA-1

11 | P a g e

Primary Research

Methodology
To measure the rates of data transfer, files were transferred over sftp protocol from an Ubuntu

21.10 to a windows server 2016. The operating systems were hosted on Virtual box 6.1. The

operating systems were given the following resources:

• RAM: 10 000 MB

• Chipset: PIIX3

• Processors: 4 @ 0.35 (Intel® core™ i7-7700HQ CPU)

• Video memory: 128 mb

• Network adapter: Intel PRO/1000 MT Desktop (82540EM)

• Drive: 40 GB Virtual Hard disks, allocated on an SSD.

The operating systems were connected using a bridged adapter, to provide the most optimal

networking conditions for the protocols. The operating systems used the following clients for the

SSH connections: V8.6.0.0p1-Beta OpenSSH for the windows server and OpenSSH 8.6 for the ubuntu.

Additionally, I used the following file sizes to determine the effect of transfer rate in respect to the

file size: 5GB, 3GB, 2GB, 1GB, 500mb, 300mb and 100mb. The dummy files were created on the

windows server using the following command:

fsutil file createnew <filename> <length>

The size of the file was specified in bytes.

To establish the SFTP connection between the devices, the following commands were executed on

the ubuntu terminal

1. sftp -oMACs=hmac- <sha1 or md5> ADMINISTRATOR@192.168.1.107
2. cd /C:/OHNO
3. get <filename>
4. exit

Explanation of the procedure:

1. calling the sftp program in terminal. Setting the HMAC method as SHA1 or MD5. Specifying

the username and host ip address, for establishing the ssh connection.

2. Navigating to the folder on the remote machine, to find the files required to be transferred.

3. Telling the SFTP protocol to copy the file from the remove machine into the directory from

which the terminal was active.

4. Terminating the SFTP connection between the devices.

The following commands were used several times to acquire the primary data, transferring files. The

average rate of the data transfer was shown at the end of each transfer.

12 | P a g e

Data
The data used to test the transfer rates are dummy files. Files of different sizes are used to

investigate the potential effectiveness of a hashing algorithm for a particular file size. The files were

transferred over a virtual network, providing perfect network conditions, minimizing packet routing

and latency issues. To account for potential packet routing and buffer issues, the file transfer was

executed five times. The data represented in megabytes per second, which can be found by dividing

the data transferred by the amount of time taken to transfer the data. This method won’t be

required as the average rate of transfer would be shown by the SFTP client (Appendix 1). The data

demonstrated below displays the transfer rates obtained for each algorithm in respect to each file

size.

5 GIGABYTES

MD5(MB/s) SHA – 1(MB/s)

91.5 79.1

76.1 74.1

85.7 76.0

71.2 84.2

70.2 75.7

3 GIGABYTES

MD5 (MB/s) SHA – 1(MB/s)

76.4 80.8

62.7 77.9

75.5 74.1

72.4 80.1

71.8 72.7

2 GIGABYTES

MD 5 (MB/s) SHA-1(MB/s)

66.6 75.1

78.6 69.1

86.1 70.2

71.8 74.1

82.5 71.6

1 GIGABYTE

MD 5(MB/s) SHA -1(MB/s)

74.3 65.3

70.5 66.00

79.8 67.4

72.2 66.2

68.0 64.9

13 | P a g e

500 MEGABYTES

MD 5 (MB/s) SHA 1(MB/s)

86.4 64.3

80.3 65.2

77.8 70.4

91.0 73.9

70.9 71.5

300 MEGABYTES

MD 5 (MB/s) SHA 1(MB/s)

79.6 73.7

82.8 72.5

70.2 69.2

68.0 72.3

81.4 86.7

100 MEGABYTES

MD 5 (MB/s) SHA 1(MB/s)

91.2 64.5

90.9 65.1

75.1 70.1

68.9 66.7

83.4 66.5

As we can see from the previous data, the transfer rates varied due to several factors. Finding an

average takes the variance into account, showing the overall potential transfer rates. The average

was found by adding all the data transfer values for a particular algorithm and file size and divided

by 5. The table shown below displays the averages found:

File size MD5(MB/s) SHA -1(MB/s)

5 GIGABYTES 78.94 72.82

3 GIGABYES 71.8 77.12

2 GIGABYES 77.12 72.02

1 GIGABYTE 72.96 65.96

500 MEGABYTES 81.28 69.06

300 MEGABYTES 76.4 75.04

100 MEGABYTES 81.9 66.58

14 | P a g e

Analysis of the data
As demonstrated in the previous section, the data shows various trends. The trend influenced

towards MD5, showing a slightly different trends for different situations.

Figure 4 transfer rates for different file sizes

Shown above is a graphical representation for the averages of the data collected. The data transfer

rates are represented in megabytes per second. As seen from the graph, the data transfer rates vary

for different file sizes. Although MD5 provides faster data transfer for most file sizes, SHA-1 has a

slight edge for 3 gigabytes. To give a better insight into the differences, a graph can be shown.

Figure 5 Differences of transfer rates for different file sizes

0 10 20 30 40 50 60 70 80 90

5 GIGABYTES

3 GIGABYES

2 GIGABYES

1 GIGABYTE

500 MEGABYTES

300 MEGABYTES

100 MEGABYTES

Transfer rates for different file sizes

SHA -1 MD5

6.09

-5.32

5.01

7

12.22

1.36

15.32

-10 -5 0 5 10 15 20

5 GIGABYTES

3 GIGABYTES

2 GIGABYTES

1 GIGABYTE

500 MEGABYTE

300 MEGABYTE

100 MEGABYTE

DIFFERENCE

15 | P a g e

The difference was calculated using the Formula:

Difference = Average rate of transfer for MD5 – Average rate of transfer for SHA 1

The positive difference demonstrates the higher transfer rates for MD5. The highest difference

demonstrated by MD5 was for 100 MB. This demonstrates the ability of the algorithm to churn small

data blocks faster, due to the difference in buffer sizes.

At 300 megabytes and 3 gigabytes, sha 1 performs considerably better. We can conclude that SHA 1

has an anomalous performance increase with file sizes which have the largest place value starting

with 3. Such an anomaly is caused due to the algorithms initializations vectors being able to process

these numbers with a higher efficiency.

The performance gap has a noticeable decrease for larger file sizes. Even through the SHA 1

performs well for 3GB, the performance metrics for large files such as 2 GB and 5 GB are clearly in

favor of MD5. As we saw previously in the statistics portion of this work, MD5 has a higher hash rate

than SHA -1, possibly leading us to a conclusion that transfer for large data files should be

exponentially faster. Although the data doesn’t show the trend, pointing us towards other limiting

factors for the data transfer, such as the SSH protocol.

The SSH 2 protocol enforces multiplexing over a single Transmission control protocol window. To

integrate the SSH protocol with minimal collisions with different protocols, the SSH receive window

configuration is similar to the TCP receive window configuration. This results in an application

receive window on top the TCP receive window. This effectively limited the application receive

window towards the size of the TCP receive window. Although the receive window is dynamically

allocated in the operating system used for this work (Ubuntu 21.10), the default window size set is

64 kb18. This severely impacts the performance of the algorithm in terms of data transfer of large

files. At a point where large data transfers are performed, most of the buffer space is used up. At

this point, most modern processors can perform cryptographic operations fast enough to keep up

with the data transfer rate, having a lesser impact on the overall transfer speed. A possible solution

is to increase the TCP window size, but such an action might cause over buffering issues, negatively

impacting the transfer rate of the SSH algorithm.

The data transfer is further limited by the SFTP protocol. SFTP transfers the data in 32kb blocks,

which are considered as requests. Since the flow control is imposed on SFTP, a limited amount of

data blocks can be present in transit between the client and the server. SFTP allows the client to

have 16 data requests, which in total give us a transfer window of 512 kb (16 x 32). This creates a

severe bottleneck for the protocol, hampering the efficiency of MD5 in transferring large files.

18 Canonical. Ubuntu Manpage: TCP - TCP Protocol,
http://manpages.ubuntu.com/manpages/bionic/man7/tcp.7.html.

16 | P a g e

Conclusion

Evaluation
In terms of data transfer, MD5 demonstrated higher performance over different file sizes, expect for

a few anomalies, which aren’t viable enough for general use. These tests were conducted in perfect

network conditions, to reduce impacts of factors such as packet routing, reaching the bottleneck for

the algorithm. Although secondary data demonstrated that MD5 has higher executing speeds,

processing more data per second, therefore having significant runtime difference with larger files.

Such a correlation was not demonstrated in case of transferring large files with the implementation

of MD5, demonstrating a smaller transfer difference. This was due to the limitations of the TCP

transfer window, leading to limitations in the SFTP transfer window. This ensured the algorithms

bottleneck was reached with the data transfer of large files.

As demonstrated in the secondary research, MD5 has certain security concerns due to the simplicity

of the algorithm. It was demonstrated that collisions for MD5 are easier to find in comparison to SHA

1, due to different number of initialization buffers. This could bear various security implications, as

data can be manipulated during the process of transfer, which would result in altered data getting

validated, as the resulting output hash of the colliding bytes would be the same. Although such

attacks are still unviable, as finding a suitable collision for MD5 would take years, rendering it

unviable. Although, taking into account that computational power is increasing exponentially, future

attacks on the hashing algorithm might become viable. As collisions for MD5 and SHA 1 have been

proven, these hashing algorithms aren’t viable for validating sensitive data over a network, as the

systems based on these validation methods would be targeted if a severe vulnerability would be

found in the future. Benefits of MD5 could be reaped on networks which involves data transfer of

files below 1GB, giving the most optimal performance. For files larger than 1 GB, implementation of

MD5 wouldn’t significantly affect the data transfer rates, as the algorithm reaches its bottleneck

capacity.

Limitations
This research provided perfect networking conditions for the data transfer algorithm. Such

environment isn’t applicable pratically over WAN, as WAN has several data transfer limitations such

as packet routing.

The research provided abundant system resuources for the system to operate with. Such system

resources arent always available.

The algorithm reached its bottleneck transfer capacity while transfering files over 1 GB, due to the

limitations of the TCP transfer window, which affected the transfer window and the amount of

transfer requests preseft for the SFTP protocol.

Unanswered questions
Although this research observed several aspects of the algorithm, but alas, some questions couldn’t

be answered. The limitation of the TCP transfer window severely impacted the data transfer rates

for large files. With sufficient calculations, custom TCP frame sizes large enough for data transfers

involving large files could be configured. How would larger TCP frame sizes affect the transfer rates

of the STFP algorithm and the overall functioning of the SSH protocol? This issue could be

investigated, as it would be impacting in scenarios where large files need to be transferred over a

network.

17 | P a g e

Bibliography
• “SFTP Protocol, Clients, Servers Etc.. Page by the Original Author of SFTP.” SFTP Protocol,

Clients, Servers Etc. Page by the Original Author of SFTP.,

https://www.ssh.com/academy/ssh/sftp.

• “SSH Secure Shell Home Page, Maintained by SSH Protocol Inventor Tatu Ylonen. SSH

Clients, Servers, Tutorials, How-Tos.” SSH Secure Shell Home Page, Maintained by SSH

Protocol Inventor Tatu Ylonen. SSH Clients, Servers, Tutorials, How-Tos.,

www.ssh.com/academy/ssh.

• A. Putri Ratna, P. Dewi Purnamasari, A. Shaugi and M. Salman, "Analysis and comparison of

MD5 and SHA-1 algorithm implementation in Simple-O authentication based security

system," 2013 International Conference on QiR.

• Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of Applied

Cryptography, chapter Hash Functions and Data Integrity, pages 323–324. The CRC Press

series on discrete mathematics and its applications. CRC Press, 1997.

• Canonical. Ubuntu Manpage: TCP - TCP Protocol,

http://manpages.ubuntu.com/manpages/bionic/man7/tcp.7.html.

• Dobbertin, Hans. "Cryptanalysis of MD5 compress." rump session of Eurocrypt 96 (1996): 71-

82.

• I.B. Damgard. A design principle for hash functions. Lecture Notes in Computer Science,

435:416–427, 1990.

• Krawczyk, Hugo, Mihir Bellare, and Ran Canetti. "HMAC: Keyed-hashing for message

authentication." (1997).

• Long, Sihan. "A Comparative Analysis of the Application of Hashing Encryption Algorithms for

MD5, SHA-1, and SHA-512." Journal of Physics: Conference Series. Vol. 1314. No. 1. IOP

Publishing, 2019.

• Moore, Gordon E. (1965-04-19). "Cramming more components onto integrated circuits"

(PDF). intel.com. Electronics Magazine. Retrieved July 14, 2021.

• Ralph C. Merkle. One way hash functions and DES. Lecture Notes in Computer Science,

435:428–446, 1990.

• Rivest, R. (April 1992). "MD5 Algorithm Description Blocks". The MD5 Message-Digest

Algorithm. IETF. p. 5. sec. 3.4. doi:10.17487/RFC1321. RFC 1321. Retrieved 14 July 2021.

• Rogaway, Phillip, and Thomas Shrimpton. "Cryptographic hash-function basics: Definitions,

implications, and separations for preimage resistance, second-preimage resistance, and

collision resistance." International workshop on fast software encryption. Springer, Berlin,

Heidelberg, 2004.

• SSH.COM Tectia SSH Client/Server - Secure File Transfer and Remote Access, SSH.COM,

www.ssh.com/products/tectia-ssh/.

• Stevens, M., Lenstra, A., Weger, B.: Chosen-prefix collisions for MD5 and colliding X.509

certificates for different identities. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.

1–22. Springer, Heidelberg (2007).

• Thompson, Eric. "MD5 collisions and the impact on computer forensics." Digital investigation

2.1 (2005): 36-40.

• X. Y. Wang. The Collision attack on SHA-0. In Chinese, to appear onwww.infosec.edu.cn,

1997.

• Ylonen, Tatu. "SSH–secure login connections over the Internet." Proceedings of the 6th

USENIX Security Symposium. Vol. 37. 1996.

18 | P a g e

Appendix 1

Figure 6 Transfer of 1 GB file

Figure 7 Transfer of 2 GB file

19 | P a g e

Figure 8 Transfer of 3 GB file

Figure 9 Transfer of 5 GB file

20 | P a g e

Figure 10 Transfer of 100 MB file

Figure 11 Transfer of 300 MB file

21 | P a g e

Figure 12 Transfer of 500 MB file

