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1 Introduction 

Genetic Algorithms are extremely useful in narrowing down a vast search space and 

finding near-optimal solutions quickly. They can be used even when there is a lack of mathematical 

representation for the problem being solved, which is why they are used in a variety of 

reinforcement learning applications. One such application is in creating intelligent agents to play 

games autonomously. 

This helps us in our broader goals for AI as games are closed and controlled environments, 

free of real-world constraints, thus providing the perfect sandbox to gain a deep understanding of 

the behaviour of machine learning algorithms. They are quantifiable and provide us with numerical 

data (scores) to evaluate how our algorithm performs, which might be difficult or infeasible to 

gather in the real world.  

They could also be used by game developers to understand their game’s difficulty level 

and find bugs that could be exploited by players. For instance, an evolutionary algorithm was able 

to find two bugs in the game Qbert which allowed users to gain endless points (Chrabaszcz et al. 

1423). 

A neural network can be used as the “brain” of an intelligent agent, to evaluate the actions 

to be taken by the player based on its inputs. However, the parameters of neural networks must be 

trained for them to function effectively. Genetic algorithms can be used to optimally tune these 

parameters to create an efficient intelligent agent. 

However, an agent that can only function in situations similar to the training environment 

has minimal real-life applications. Machine learning algorithms are often trained on a small subset 

of all the scenarios they encounter and are expected to generalise their learning to tackle new 

situations. This behaviour is known as transfer learning. The architecture of the neural network 
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and the training parameters govern how it learns and therefore can be varied to extend its 

capabilities.  

Flappy Bird was chosen to be the game to evaluate this research as it is simplistic, allowing 

the configuration of the game to be easily changed. It circumvents the additional complexities 

associated with various inputs, numerous possible actions by the player, and complex relationships 

between them. 

Therefore, the research question this paper seeks to answer is “To what extent is the ability 

of an intelligent agent to operate in unfamiliar scenarios affected by the number of hidden-layer 

neurons in its neural network and the number of generations it is trained for?” 
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2 Theoretical Background 

2.1 Genetic Algorithms (GAs) 

Genetic Algorithms are heuristic search algorithms which use the principles of natural 

evolution to identify optimal solutions for the given problem. They are particularly useful in 

solving problems with a large search space, lack of mathematical representation, or having a large 

number of parameters. They yield competent solutions in short durations of time, although usually 

not the best possible solution (Wirsansky 9, 19).  

The generic pseudocode for GAs is as follows (Mallawaarachchi): 

Generate the initial population 

Compute fitness 

REPEAT 

   Selection 

   Crossover 

   Mutation 

   Compute fitness 

UNTIL population has converged 

 

These function by maintaining a fixed-size population of individuals which are evaluated 

at every iteration. These individuals represent candidate solutions as chromosomes, which are 

arrays of genes. Each gene can be a binary digit, integer, or real number (Refer to Figure 1). 
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Figure 1. Population of individuals with binary-coded chromosomes. 

(Made by Candidate using Google Drawings) 

The initial population is generated by randomising the genes of each individual and is 

likely to contain inefficient solutions. Once the population is generated, a fitness score—a measure 

of the effectiveness of a candidate solution—is evaluated for each individual. 

Weighted by their fitness scores, some individuals are chosen to advance to the next 

generation with no modification, as part of a process known as selection. The genes of a few 

individuals are crossed over or swapped between chromosomes to create new individuals inserted 

into the next generation. Finally, certain chromosomes are randomly reassigned genes in a process 

named mutation to introduce new genes into the population, thus preventing a homogenous 

aggregation of individuals. The chances that mutation or crossover occur in individuals are 

controlled by the specified mutation rate and crossover rate. 

Once these three operations are conducted, the fitness of the population is computed again, 

and the process repeats until the population satisfies a predetermined stopping condition 

(Wirsansky 11-13). 
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2.2 Artificial Neural Networks (ANNs) 

 

Figure 2. Simple ANN architecture with three inputs and one output, having a single hidden layer. 

(Made by Candidate using Google Drawings) 

Artificial Neural Networks, shown in Figure 2, consist of three primary layers- the input 

layer, which takes in the data, the output layer, which forms the final output, and the intermediary 

hidden layers which can be as many as required. Each layer consists of multiple neurons, and 

each neuron is connected to every neuron in the next layer. In other words, the outputs of each 

neuron in an 𝑛𝑡ℎ layer are the inputs to every neuron in the (𝑛 + 1)𝑡ℎ layer (Mueller and Massaron 

274-275).  

The function of each neuron is to compute a weighted sum of its inputs using the weights 

and biases assigned to the neuron for each input during training, pass it through an activation 

function which transforms the output into a specific range, and output to the next layer (Mueller 

and Massaron 272-273). 
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The weights and biases of each neuron are known as the parameters of the ANN and 

determine the magnitude to which each input influences the output. These are tuned during the 

training process through methods such as stochastic gradient descent or using genetic algorithms.  

The activation function, the number of neurons in each layer, and the network architecture 

are known as hyperparameters of the ANN, whose values are determined based on the 

application of the ANN.  

2.3 Flappy Bird 

Flappy Bird is a popular side-scroller arcade game, where players have to control a bird 

using flapping actions to fly through pipes without hitting the pipes, ground or ceiling. Therefore, 

the flaps have to be timed correctly so that the bird passes through the pipe since flapping is the 

only available method to control the vertical position of the bird. The game requires a sense of 

when to flap, which is acquired as players play the game. An intelligent agent will be used to do 

this artificially on a clone of the game. 

 

Figure 3. Screenshot of the original Flappy Bird game (Brustein). 
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3 Experimental Methodology 

3.1 Tuning the parameters of an Artificial Neural Network using a Genetic 

Algorithm 

For the ANN to produce an effective output, the weights and biases of each neuron has to 

be optimally tuned. Since we do not have a differentiable fitness function, which is a requirement 

to use stochastic gradient descent, we use a GA to tune the parameters instead (Kwiatkowski). 

Each gene would represent either the weight or bias of a neuron and a chromosome would 

represent all the weights and biases of the network. The GA would be used to determine the optimal 

weights and biases for the ANN, and the ANN would be used to play the game once trained. The 

outcome of the game played using each individual’s genes will enable the GA to evaluate its fitness 

score and judge its effectiveness relative to other individuals. 

The GA is enumerated through numerous generations until the ANN reaches a 

predetermined condition of accuracy and consequently, the ANN is considered trained and can be 

used as an intelligent agent to play the game.  
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3.2 Architecture of the Artificial Neural Network controlling the bird 

 

Figure 4. Architecture of the ANN used to control the actions of the bird (Candidate). 

The ANN controlling the actions of the bird will take five inputs as shown in Figure 4, 

which correspond to the distances labelled in Figure 5. 
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Figure 5. Annotated screenshot representing the inputs of the Artificial Neural Network (Candidate). 

The sole output of the ANN will be a floating-point value between 0 and 1. If the 𝑜𝑢𝑡𝑝𝑢𝑡 >

 0.5, the bird will flap, and if 𝑜𝑢𝑡𝑝𝑢𝑡 <=  0.5, no action will be taken. To prevent extremely large 

outputs, we use the sigmoid activation function, which takes in the output of the neuron and 

manipulates it to satisfy the constraint 0 <  𝑜𝑢𝑡𝑝𝑢𝑡 <  1. 

Overfitting is when a machine learning model “memorises” how to react to the training 

data and is unable to replicate its ability during testing despite performing exceptionally with the 

training data because its output is completely based on its memorization (Mueller and Massaron 

161). The network will only have one hidden layer to avoid overfitting since the scenario is not 

complex enough to justify the use of multiple hidden layers, which would also increase the time 

and resources required to train and execute the network. 
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3.3 Parameters of the Genetic Algorithm 

The game score, which increases when an agent successfully passes through a pipe pair, 

will be weighted the highest in the fitness equation to reward the agent as maximising this value 

is our primary goal. However, the distance travelled by the bird will also be factored into the 

equation, although weighted lesser, to differentiate between birds with the same score but reaching 

a higher distance before colliding with an object. Hitting a pipe, the ground, or the ceiling result 

in an immediate termination of a game. Hence, we impose a penalty on these to reduce the fitness 

value to disincentivize the agent from repeating actions that lead to this state. 

Therefore, the fitness of the bird is given by the equation: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = (3 ×  𝑆𝑐𝑜𝑟𝑒) + (0.1 ✕ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑏𝑦 𝑏𝑖𝑟𝑑) − 𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠  

We will be having a constant population size of 90 individuals for every generation, to 

avoid lag on the system as the individuals will be evaluated concurrently. Elitism will be 

implemented to preserve the best individuals in the population, although only one individual will 

remain unchanged across generations to allow for greater variance within the population. 

The selection method being used will be Rank-Based Selection, where individuals are 

ordered by their fitness values, and the probabilities of each individual being selected are 

calculated based on their rank, instead of their raw fitness values. This selection method will ensure 

that some individuals with abnormally large fitness values will not overshadow the other 

individuals and dominate the population, instead providing a substantial opportunity for all 

individuals to be selected. 

A normally distributed, also known as Gaussian mutation, will be used since the genes 

representing the weights and biases of the neurons are real numbers and Gaussian mutation is 

compatible with real-encoded genes. It generates a pseudorandom number following a normal 
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distribution (Wirsansky 46). An advantage of this method is that the generated genes are close to 

the original gene, preventing the pre-existing gene from being completely eliminated from the 

population. The mutation rate is set to a relatively high value here, 0.4, to allow new genes to 

enter the population, thus preventing convergence at less-efficient local maxima.  

 

Figure 6. Visual representation of Blend Crossover (Wirsansky 43) 

Blend Crossover will be used as the crossover method. Using this method, the resultant 

gene will be randomly generated from an interval derived from its parents’ genes. The alpha (ɑ) 

value is used to control how wide this interval is. The higher the alpha value, the wider the interval. 

Figure 6 represents this, where p1 and p2 are the genes of the two parents. The green region 

represents the interval which the gene will be randomly chosen from. We will be using ɑ = 𝟎. 𝟓 

to allow for greater variance in the population (Wirsansky 42). The crossover rate will also be set 

at 0.4 for the same reason, as it allows for more variance across generations. 
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3.4 Experimental Design  

3 Trials will be conducted and averaged for each experiment with different random seeds 

(namely 14, 4, and 26) to prevent the state of the randomly-generated initial population from 

skewing the results. The same 3 random seeds will be used for all the experiments for uniformity, 

since repeating the experiment specifying the same seed will yield identical results. A cap of score 

100 will be kept for each generation as without it, some excellent candidates will fly almost 

infinitely, blocking the program from advancing to the next generation. 

3.5 Experimental Procedure 

3.5.1 Experimental Setup 

The algorithm will be trained on the original version of the game, and then tested on both 

the original version and altered version where the height of the gaps between the pipes is reduced 

from 120 units which it was trained on to 110 and 105 units, to examine how the intelligent agent 

functions. The number of generations the GA is allowed to run for and the number of hidden-

layer neurons will be varied separately to observe their impact on its performance in the altered 

version of the game. 

3.5.2 Experiment 1: Varying the number of neurons in the hidden layer 

The neural network saved at generation 200 of each trial will be used to compare. The 

neural networks used will be from the same generation for all the trials. The 200th generation was 

selected to ensure the individual being evaluated is already trained so the results are not skewed 

by a partially-trained agent. 
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3.5.3 Experiment 2: Varying the number of generations trained 

Although the number of hidden-layer neurons is kept constant within an experiment, we 

will conduct three distinct experiments with different numbers of hidden-layer neurons—one low 

(2), one medium (15), and one high (30)—so that we can observe trends, if any, between the 

different neural network architectures in the effect of varying the number of generations trained. 

We start at the 150th generation as all different hidden neuron configurations chosen have 

converged by this point. 
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4 Hypothesis 

From my theoretical knowledge, I hypothesize that a higher number of hidden-layer 

neurons should result in the agent gaining a deeper learning of the game. Therefore, the agent is 

more likely to perform better when placed in different game settings. It will be able to model more 

complex relationships and may be more accurate in its outputs. However, the performance of the 

agent in both the original and the modified game settings may be adversely affected if the number 

of hidden-layer neurons is too high since overfitting may occur.  

Similarly, training for more generations should provide more individuals the opportunity 

to gain optimal genes through mutation and crossover, and therefore make them more likely to be 

high-performing individuals. Hence, these agents should perform better in the modified game 

settings. Due to the implementation of elitism, it is unlikely that optimal genes will inadvertently 

be eliminated in future generations. 
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5 Experimental Results and Analysis 

5.1 Experiment 1: The effect of varying the number of hidden-layer neurons 

5.1.1 Experimental Data 

 

Figure 7. Variation of the fitness values of the population over generations (1 hidden layer neuron)1 

In Figure 7, the max fitness shows the fitness of the best-performing individual in the 

population, and the median and mean fitness can be used to identify what proportion of the 

population is trained. Initially, the fitness values are clustered around zero. As mutation occurs, 

new genes are introduced into the population through a few individuals, shown by the observation 

that only the max fitness rises. This value fluctuates across generations, eventually reaches high 

 
1 Refer to Appendix 9.3.2 (page 52) 
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levels, signifying the tuning of the weights of the neural networks until it converges to a fitness 

value of approximately 400 which corresponds to a score of 100, which we limited the training 

until. Since we use elitism in the genetic algorithm to retain the best-performing bird without 

mutation, these genes are not eliminated and hence the max fitness curve remains constant from 

now.  

The mean and median curves show slow but steady increases, which illustrates the rest of 

the population being optimised through random mutation and crossover with the top-performing 

individuals. The median fitness reaching 400 represents the top 50% of the population being 

trained. However, this curve fluctuates slightly in later generations as mutation and crossover can 

cause the genes of optimal individuals to be overwritten, thus explaining the need to preserve 

optimal genes through elitism.  

 

Figure 8. Variation of the fitness values of the population over generations (15 hidden-layer neurons)2 

 

 
2 Refer to Appendix 9.3.3 (page 57) 
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Comparing Figures 7 and 8, it is immediately noticeable that it takes more generations for 

the max fitness to converge with 15 hidden-layer neurons (114), compared to with 1 hidden layer 

neuron (39). The max fitness in Figure 8 fluctuates considerably, with a generally increasing trend, 

until a sudden fluctuation causes it to converge. This could be because of a new set of genes 

introduced in the population through mutation, or through the crossover of two individuals creating 

an optimal individual. Similar to Figure 7, the mean and median fitnesses slowly approach the 

max fitness curve as the optimal genes spread across the population through crossover. 

 

 

Figure 9. Average number of generations required to train the ANN against the number of hidden-layer 

neurons.3 

Figure 9 represents the trend of how the average number of generations required to train 

the neural network is correlated with the number of hidden-layer neurons. The y-axis values are 

 
3 Refer to Appendix 9.3.1 (page 51) 
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obtained by observing when the max fitness curve converges to 400 for each number of hidden-

layer neurons. There is evidently a broader trend where neural networks with more hidden-layer 

neurons take longer to train since there are more genes that need to be optimised, as shown by the 

trendline in Figure 9. 

  

Figure 10. The correlation between the number of neurons in the hidden layer and the average score the 

agent attained in the modified game with a smaller pipe height of 110 units4 

In Figure 10, we see that the score initially begins high, but suddenly drops and gradually 

increases again as the number of hidden-layer neurons increases, reaching a peak at 25 hidden-

layer neurons, consequently falling rapidly again. This confirms our hypothesis that the score will 

increase as the number of hidden-layer neurons increases since the agent achieves deeper learning, 

but the scores remain low beyond 30 neurons.  

 
4 Refer to Appendix 9.3.4 (page 65) 
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Figure 11. The correlation between the number of neurons in the hidden layer and the average score the 

agent attained in the modified game with a smaller pipe height of 105 units5 

Figure 11 depicts the performance of the bird with the pipe height reduced further than in 

Figure 10. However, in the graph, we see no clear trend in scores. Therefore, the average scores 

are uniformly lower, reaching a maximum score of only 7, while in Figure 10, they reached a 

maximum average score of 41.  

5.1.2 Result Analysis 

It is clear from the collected data that the number of hidden-layer neurons corresponds to 

the number of generations required to train the network. This is because the number of possible 

combinations of neuron weights significantly rises with the number of neurons, thus complicating 

the process of finding an optimal configuration. 

 
5 Refer to Appendix 9.3.5 (page 65) 
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The initially high score with pipe height 110 occurs because the relationship between the 

inputs and the output is simple, allowing networks with lesser neurons to function effectively. 

However, this advantage disappears when the number of neurons increases. Following this, the 

upward trend validates our hypothesis, but the scores fall beyond 30 neurons as a result of 

overfitting—these networks memorised the original environment during training and therefore 

were unable to perform when the game settings are modified. 

However, there is no clear trend in scores with pipe height 105 since the testing 

environment is significantly modified from the training environment and thus is too difficult for 

the agent to operate in. We observe that the greater the extent to which the environment is 

modified, the lower the effectiveness of the agent is. 

5.1.3 Evaluation 

The data from at least two of the three trials were often similar for each case, thus 

enabling us to validate the reliability of the data. The data from pipe height 105 enabled us to 

realise the limits of transfer learning while the data from pipe height 110 illustrated the optimal 

range of neuron configurations to utilise. 

 

 

 

 

 

 

 



 

21 

5.2 Experiment 2: The effect of varying the number of generations trained 

5.2.1 Experimental Data 

 

Figure 12. Graph of the scores attained in the modified game settings when the number of generations is 

varied from 150 to 200, with three different hidden neuron configurations6 

In Figure 12, we see from the linear trendlines plotted that there is a universal tendency for 

the score to increase as we increase the number of generations trained, although the extent to which 

it varies differs. However, there are fluctuations due to large amounts of randomness propagating, 

despite the graph being plotted from an average of experiments using three different seeds to 

minimise this. 

 
6 Refer to Appendices 9.3.6, 9.3.7, 9.3.8 (pages 66, 68, and 71 respectively) 
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Although all three curves follow an increasing trend, there is a greater degree of fluctuation 

when 30 hidden-layer neurons are used, and the peaks are the tallest here. There are moderate 

fluctuations with 2 hidden-layer neurons and minimal fluctuations with 15 hidden-layer neurons. 

5.2.2 Result Analysis 

The score increases with the number of generations due to two reasons. Firstly, the optimal 

neurons crossover with other individuals to potentially form better individuals. Secondly, there is 

a higher chance that a mutation would provide optimal genes to a random individual to overtake 

the previous best individual. 

The greater degree of fluctuation with 30 hidden-layer neurons suggests that there is greater 

instability in their genes, which is expected as there are more possible combinations of weights 

and biases. There is a moderate degree of fluctuation with 2 hidden-layer neurons due to the greater 

relative importance of each weight, once again causing instability. The network with 15 hidden-

layer neurons shows minimal fluctuations due to striking a balance between these two behaviours. 

5.2.3 Evaluation 

Conducting the experiment with three different neuron configurations and attaining 

similar results indicating a direct correlation between the number of generations and the score 

validates our hypothesis for most ANNs. It also allows us to realise which situations the trade-off 

in training time is worth the gain in score resulting from better-optimised ANNs. 
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6 Limitations and Potential Improvements 

In this investigation, only three trials were used and their results averaged, which meant 

that extremely-large or extremely-small anomalies skewed the resultant data significantly. To 

counter this, a higher number of trials could be conducted and their median used instead of their 

mean to curb the effect of outliers and ensure a more accurate result. 

While the neural network saved at the 200th generation from each trial was compared in 

this investigation, this provides a slight advantage to networks with lesser hidden-layer neurons as 

their scores converge to 100 earlier, thus allowing them more opportunities to enhance their 

performance. Furthermore, the score cap of 100 for each generation could be increased since the 

agent attains this by chance rather than by skill in some trials. 

The mutation rate can be set lower to prevent useful genes from inadvertently being 

eliminated from the population. This, including increasing the number of individuals retained 

through elitism, would reduce the rapid fluctuations of the fitness in the graph, although the 

increase in score would take longer. 
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7 Conclusion 

This investigation successfully explored how varying the number of hidden-layer neurons 

and the number of generations trained affects the ability of an agent to adapt to a modified 

environment.  

Our hypothesis that the effectiveness of the agent in the modified environment improves 

as the number of hidden-layer neurons increases was true to some extent. Although this trend was 

upheld for small numbers, upon exceeding a certain limit, presumably determined by the 

complexity of the relation between the inputs and outputs, the effectiveness dropped due to 

overfitting. Furthermore, we observed that when the environment is modified to a greater extent, 

there is no clear trend since the effectiveness is low for all hidden-layer configurations. 

However, we also observed that as the number of hidden-layer neurons increases, the 

training time also increases multifold. This limitation could offset any potential gain provided by 

the marginal increase in effectiveness for some use cases. 

The second experiment validated our hypothesis that as the number of generations we train 

the neural network increases, its effectiveness in the modified environment improves. Yet, we 

noticed that the extent to which this matters is non-constant and varies based on the neuron 

configuration.  

However, one significant limitation of this investigation was that only one game was used 

and the environment was varied only by switching the height of the pipe gaps. In the case of Flappy 

Bird, even one hidden-layer neuron is sufficient for the neural network to operate as the 

relationship between the inputs and the output is simple, which means that increasing the number 

of hidden-layer neurons makes it more complex and could lead to worse performance as well. 

However, this may not be the case for games with greater complexity, and therefore further 



 

25 

experimentation is required before this finding can be generalised. Using more methods to vary 

the environment would also allow us to be more certain of our results.  

In this investigation, our inputs were limited to 5, and all the hidden-layer neurons were 

placed in one layer. Future exploration into how the quantity and nature of the inputs to the neural 

network or the number of hidden layers in the neural network affect its ability to perform in novel 

environments can prove beneficial. 

Therefore, the research question “To what extent is the ability of an intelligent agent to 

operate in unfamiliar scenarios affected by the number of hidden-layer neurons in its neural 

network and the number of generations it is trained for” can be concluded with this 

investigation, which exhibits that the hidden-layer neurons and the number of generations do 

affect the effectiveness of a neural network in new environments, although the degree of 

correlation varies in certain cases. 
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9 Appendix 

9.1 Screenshot of conducting the experiment 

 

Figure 13. Screenshot taken while conducting the experiment (Candidate). 

9.2 Codebase used for experiment 

(Adapted from https://github.com/cr00nkz/Sloppy-Block under the GPL3 licence by modifying 

the genetic algorithm and neural network, modifying the game code, and including logging of 

readings) 

 

main.py 

# System / External Library Imports 

import csv 

import sys 

https://github.com/cr00nkz/Sloppy-Block
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import copy 

import pygame 

import random 

import numpy as np 

from time import time 

 

# Local imports 

import bird 

from pipe import Pipe 

import cloud 

 

# Initialize constants 

WIDTH = 640  # Game window width 

HEIGHT = 480  # Game window height 

BLOCKSIZE = 20  # Size for bounding box 

VELOCITYGAIN = -13  # Downward acceleration of bird 

 

#  Game settings 

birdView = False  # Set to false, if you don't want to see what the birds see 

HIGHDETAILS = True  # Set to false for efficiently training. 

FPSSES = 1200  # Frames per second 

PIPEHEIGHT = 120  # Initially 120 (trained on this) but changed to 120 for 

new environment 

SCORE_CAP = 100  # Usually after a score of 100 the agent will go on playing, 

so we stop the execution here. 

GENERATION_LIMIT = 200  # Usually after 200 generations the fitness values 

stagnate and further progress is minimal. 

 

# Genetic algorithm parameters 
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BIRDS = 90  # Initial birds population size 

MUTATION_RATE = 0.4 

CROSSOVER_RATE = 0.4 

ELITISM = True 

SEED = None  # None (to prompt for the seed) or an integer (for preset seed) 

 

# Execution mode 

EVAL_MODE = False  # Whether you are evaluating a neural network architecture 

rather than training it 

GEN_MODE = False  # Whether number of generations experiment or number of 

hidden layers experiment is taking place 

 

# Setting Seeds for Random 

if not SEED:  # Random seed 

   SEED = int(input("Please enter seed: "))  # 14,4,26 

random.seed(SEED) 

np.random.seed(SEED) 

bird.random.seed(SEED) 

bird.np.random.seed(SEED) 

 

# Create csv files and enter headers 

run_time = int(time()) 

if EVAL_MODE: 

   with open(f"evaldata{run_time}.csv", "a") as f: 

       writer = csv.writer(f, delimiter=',') 

       writer.writerow( 

           ["Time", "Seed", "Number of hidden layer neurons", "Generation", 

"Pipe Height", "Score", "Best Fitness", 

            "Median Fitness", "Mean Fitness"]) 
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elif GEN_MODE: 

    with open(f"evaldata{run_time}.csv", "a") as f: 

       writer = csv.writer(f, delimiter=',') 

       writer.writerow( 

               ["Time", "Seed", "Number of hidden layer neurons", 

"Generation", "Pipe Height", "Score", "Best Fitness", 

                "Median Fitness", "Mean Fitness"]) 

else: 

   with open(f"data{run_time}.csv", "w") as f: 

       writer = csv.writer(f, delimiter=',') 

       writer.writerow( 

           ["Time", "Seed", "Number of hidden layer neurons", "Generation", 

"Score", "Best Fitness", "Median Fitness", 

            "Mean Fitness"]) 

   with open(f"players{run_time}.csv", "w") as f: 

       writer = csv.writer(f, delimiter=',') 

       writer.writerow(["Time", "Seed", "Number of hidden layer neurons", 

"Generation", "Score", "Best Input Weights", 

                        "Best Hidden Weights"]) 

 

# pygame initialization 

pygame.init() 

fps = pygame.time.Clock() 

window = pygame.display.set_mode((WIDTH, HEIGHT), 0, 32) 

pygame.display.set_caption('Flappy Bird') 

blockPic = pygame.image.load("./img/block.png") 

upperPipePic = pygame.image.load("./img/upperPipe.png") 

lowerPipePic = pygame.image.load("./img/lowerPipe.png") 

backgroundPic = pygame.image.load("./img/background.png") 
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cloudPic = pygame.image.load("./img/cloud.png") 

pygame.display.set_icon(blockPic)  # set Icon 

 

# GlobalVariable Setup 

 

player = None 

multiPlayer = [] 

pipes = [] 

clouds = [] 

score = 0 

running = True 

font = pygame.font.SysFont("comicsansms", 72) 

littlefont = pygame.font.SysFont("comicsansms", 16) 

generation = 1 

birdsToBreed = [] 

highscore = 0 

highgen = 0 

allTimeBestBird = None 

maxscore = 0 

singlePlayer = None 

globalFitness = 0.0 

respawn = False 

 

 

def init(): 

   """ Initialise the game. """ 

   global player, running, score, multiPlayer, singlePlayer, respawn 

 

   # Initialize Pipes 
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   while len(pipes) > 0:  # Reset existing pipes 

       pipes.pop(0) 

   init_pipe() 

   init_pipe(w=WIDTH + WIDTH / 2) 

 

   # Initialize clouds 

   while len(clouds) > 0:  # Reset existing clouds 

       clouds.pop(0) 

   init_cloud(w=0) 

   init_cloud(w=WIDTH / 2) 

   init_cloud(w=WIDTH) 

 

   # Reset some global variables 

   score = 0 

   running = True 

 

   if EVAL_MODE or GEN_MODE: 

       agent = bird.Bird(HEIGHT, num=len(evalHiddenWeights)) 

       agent.setWeights(evalInputWeights, evalHiddenWeights) 

       multiPlayer = [agent] 

       return 

   else: 

       singlePlayer = bird.Bird(HEIGHT, num=num) 

       if len(birdsToBreed) == 0:  # This is the first init. 

           for _ in range(BIRDS): 

               multiPlayer.append(bird.Bird(HEIGHT, num=num)) 

       else: 

           multiPlayer = [] 
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           if ELITISM:  # Keep the best bird of generation without mutation 

               _ = bird.Bird(HEIGHT, num=num) 

               _.setWeights(birdsToBreed[0].inputWeights, 

                            birdsToBreed[0].hiddenWeights) 

               multiPlayer.append(_) 

 

           # Rank-Based Selection 

           sortedPlayers = sorted(birdsToBreed, key=lambda player: 

player.fitness) 

           totRanks = len(sortedPlayers) * (len(sortedPlayers) + 1) / 2  # 

Sum of first N natural numbers formula 

           wheel = {"players": [], "probabilities": []} 

 

           for rank, player in enumerate(sortedPlayers, start=1): 

               probability = rank / totRanks  # Proportion of the wheel 

represented by this player. 

               wheel['players'].append(player) 

               wheel['probabilities'].append(probability) 

           selected_players = np.random.choice(wheel['players'], BIRDS - 

len(multiPlayer), p=wheel['probabilities']) 

           new_players = [] 

           for player in selected_players: 

               # Blend Crossover 

               if random.random() > CROSSOVER_RATE: 

                   player = bird.Bird(HEIGHT, player, 

np.random.choice(selected_players), num=num) 

               else: 

                   player = bird.Bird(HEIGHT, player, num=num) 

                   # Gaussian Mutation 
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                   if random.random() > MUTATION_RATE: 

                       player.mutate() 

               new_players.append(player) 

 

           multiPlayer.extend(new_players) 

 

 

def init_pipe(w=WIDTH): 

   """Initializes a pipe, which will scroll in from the right side of the 

screen. """ 

   dist = 0 

   for pipe in pipes: 

       dist = pipe.x 

   return pipes.append(Pipe(w, HEIGHT, dist, pipeheight=PIPEHEIGHT)) 

 

 

def init_cloud(w=WIDTH): 

   """ Initializes a cloud, which will scroll in from the right side of the 

screen. """ 

   return clouds.append(cloud.Cloud(w, HEIGHT)) 

 

 

def draw(window): 

   """ Drawws the game output """ 

 

   if HIGHDETAILS: 

       # print background 

       window.blit(backgroundPic, (0, 0)) 

 



 

35 

       # print clouds 

       for c in clouds: 

           window.blit(cloudPic, (c.x, c.y)) 

 

       # print pipes 

       for pipe in pipes: 

           window.blit(upperPipePic, (pipe.x, pipe.upper_y - HEIGHT - 160)) 

           window.blit(lowerPipePic, (pipe.x, pipe.lower_y)) 

   else:  # Low Detail mode. 

       pygame.draw.rect(window, (0, 0, 0), (0, 0, WIDTH, HEIGHT)) 

       for pipe in pipes: 

           pygame.draw.rect(window, (255, 0, 0), (pipe.x, 0, 30, 

pipe.upper_y)) 

           pygame.draw.rect(window, (255, 0, 0), (pipe.x, pipe.lower_y, 30, 

HEIGHT)) 

 

   drewBird = False 

   for player in multiPlayer: 

       if player.alive: 

           if HIGHDETAILS: 

               topleft = (BLOCKSIZE, player.y) 

               rot = player.velocity * -5 

               if rot < -90: 

                   rot = -90 

               rotated_block = pygame.transform.rotate(blockPic, rot) 

               new_rect = rotated_block.get_rect( 

                   center=blockPic.get_rect(topleft=topleft).center) 

 

               window.blit(rotated_block, new_rect.topleft) 
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               if birdView:  # Draw what the birds can see 

                   pygame.draw.line(window, (0, 255, 0), 

                                    (20 + BLOCKSIZE / 2, player.y + BLOCKSIZE 

/ 2), 

                                    (BLOCKSIZE / 2 + player.distanceX, 

                                     player.y + player.distanceTop)) 

                   pygame.draw.line(window, (0, 0, 255), 

                                    (20 + BLOCKSIZE / 2, player.y + BLOCKSIZE 

/ 2), 

                                    (BLOCKSIZE / 2 + player.distanceX, 

                                     player.y + player.distanceBot)) 

                   pygame.draw.line(window, (255, 255, 255), 

                                    (20 + BLOCKSIZE / 2, player.y + BLOCKSIZE 

/ 2), 

                                    (20 + BLOCKSIZE / 2, 

                                     player.y + BLOCKSIZE / 2 + 

player.velocity)) 

                   pygame.draw.line(window, (255, 255, 255), 

                                    (20 + BLOCKSIZE / 2, player.y + BLOCKSIZE 

/ 2), 

                                    (20 + BLOCKSIZE / 2, 

                                     player.y + BLOCKSIZE / 2 - 

player.velocity)) 

           elif (not HIGHDETAILS) and (not drewBird): 

               # Low detail mode - just one bird to draw 

               pygame.draw.rect(window, (0, 255, 0), 

                                (20, player.y, BLOCKSIZE, BLOCKSIZE)) 

               drewBird = True 
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def draw_text(alive, score, highscore, fitness=None, gen=None, maxGen=None, 

             noAlive=None, FPS=None): 

   """Draw text on the screen. """ 

 

   textColor = (0, 0, 128) 

   if not HIGHDETAILS: 

       textColor = (0, 128, 0) 

 

   if alive: 

       text = font.render("Score {}".format(score), True, textColor) 

       window.blit(text, (WIDTH / 2 - text.get_width() // 2, 0)) 

       text = littlefont.render("Fitness {}".format(round(fitness, 2)), True, 

                                textColor) 

       window.blit(text, (WIDTH - text.get_width(), 0)) 

       text = littlefont.render("Generation {}".format(gen), True, 

                                textColor) 

       window.blit(text, (WIDTH - text.get_width(), text.get_height())) 

       text = littlefont.render("Highscore {}".format(round(maxscore, 2)), 

                                True, textColor) 

       window.blit(text, (WIDTH - text.get_width(), text.get_height() * 2)) 

       text = littlefont.render("Best generation {}".format(maxGen), True, 

                                textColor) 

       window.blit(text, (WIDTH - text.get_width(), text.get_height() * 3)) 

       text = littlefont.render("Birds alive {}".format(noAlive), True, 

                                textColor) 

       window.blit(text, (WIDTH - text.get_width(), text.get_height() * 4)) 

       text = littlefont.render("Hidden Layer Neurons: {}" 
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                                .format(num), True, textColor) 

       window.blit(text, (WIDTH - text.get_width(), text.get_height() * 5)) 

       text = littlefont.render("Seed: {}".format(SEED), True, textColor) 

       window.blit(text, (WIDTH - text.get_width(), text.get_height() * 6)) 

       text = littlefont.render("Mutation Rate: {}".format(MUTATION_RATE), 

True, textColor) 

       window.blit(text, (WIDTH - text.get_width(), text.get_height() * 7)) 

       text = littlefont.render("Crossover Rate: {}".format(CROSSOVER_RATE), 

True, textColor) 

       window.blit(text, (WIDTH - text.get_width(), text.get_height() * 8)) 

   else: 

       text = font.render("Game over.", True, (128, 0, 0)) 

       window.blit(text, (WIDTH / 2 - text.get_width() // 2, 

                          HEIGHT / 2 - text.get_height() // 2)) 

       text = font.render("Score {}".format(score), True, (128, 0, 0)) 

       window.blit(text, (WIDTH / 2 - text.get_width() // 2, 0)) 

       text = littlefont.render("Highscore {}".format(round(highscore, 2)), 

                                True, (128, 0, 0)) 

       window.blit(text, (WIDTH - text.get_width(), text.get_height() * 2)) 

 

 

if EVAL_MODE: 

   filename = input("Enter path to players CSV file")  # CSV file where 

player details are stored. 

 

   with open(filename, "r") as f: 

       reader = list(csv.reader(f, delimiter=',')) 

       num = reader[1][2] 

       for row in reader[1:]: 



 

39 

           if str(row[3]) == "200":  # 200th generation 

               evalInputWeights = eval(row[5].replace("array", "np.array")) 

               evalHiddenWeights = eval(row[6].replace("array", "np.array")) 

               break 

elif GEN_MODE: 

   filename = input("Enter path to players CSV file")  # CSV file where 

player details are stored. 

   eval_individuals = [] 

 

   hundreds_in_a_row = 0 

   with open(filename, "r") as f: 

       reader = list(csv.reader(f, delimiter=',')) 

       num = reader[1][2] 

       for row in reader[1:]: 

           if hundreds_in_a_row >= 3:  # Make sure population has converged 

before evaluating it. 

               generation = int(row[3]) 

               evalInputWeights = eval(row[5].replace("array", "np.array")) 

               evalHiddenWeights = eval(row[6].replace("array", "np.array")) 

               eval_individuals.append((generation,evalInputWeights, 

evalHiddenWeights)) 

           if str(row[4]) == "100": 

               hundreds_in_a_row += 1 

 

else: 

   num = int(input("Enter number of neurons in hidden layer:"))  # Number of 

neurons in hidden layer 
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if not GEN_MODE: 

   eval_individuals = [None] 

 

for individual in eval_individuals: 

   if individual: 

       generation, evalInputWeights, evalHiddenWeights = individual 

 

   init() 

   while True:  # the game loop. 

       draw(window)  # Draw the fancy things. 

       currentfitness = 0.0 

 

       for event in pygame.event.get(): 

           if event.type == pygame.QUIT: 

               sys.exit() 

 

       if running:  # At least one bird is alive 

 

           # Move clouds 

           for c in clouds: 

               c.move_left() 

               if c.x < -140:  # Cloud out of screen. Spawn new cloud. 

                   init_cloud() 

                   clouds.pop(0) 

 

           # Pipe Handling including collision check 

           for p in pipes: 

               if p.x < -30:  # Pipe out of screen. Spawn new pipe. 

                   pipes.pop(0) 
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                   init_pipe() 

                   score += 1  # We passed a pipe 

                   for player in multiPlayer:  # Reward living birds 

                       if player.alive: 

                           player.fitness += 3 

 

               p.move_left()  # Move the pipe to the left 

 

           noAlive = 0 

           p = pipes[0]  # Closest pipe 

 

           for player in multiPlayer: 

               if player.alive: 

                   if not (EVAL_MODE or GEN_MODE): 

                       if score >= SCORE_CAP: 

                           player.alive = False 

                   player.velocity += 1 

 

                   player.handleCollision(HEIGHT, BLOCKSIZE, p)  # Did the 

bird collide with anything? 

                   if player.alive: 

                       player.y += player.velocity 

                       noAlive += 1 

 

                   # Update what the bird sees to make decisions 

                   player.processBrain(p.upper_y, p.lower_y, p.x) 

                   currentfitness = player.fitness 

                   globalFitness = player.fitness 
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                   # Jump or not? 

                   if player.thinkIfJump(): 

                       player.velocity = VELOCITYGAIN 

 

           if noAlive == 0: 

               running = False  # Game over. 

 

           # Report new high score if previous high score is exceeded 

           for i in range(len(multiPlayer)): 

               player = multiPlayer[i] 

               if (player.fitness > highscore) and (not player.bestReported): 

                   player.bestReported = True 

 

           # Draw score and information 

           draw_text(alive=True, fitness=currentfitness, gen=generation, 

                     maxGen=highgen, noAlive=noAlive, FPS=FPSSES, 

score=score, 

                     highscore=maxscore) 

 

       else:  # Player is dead 

           if EVAL_MODE or GEN_MODE: 

               time_ = int(time()) 

               fitness_values = [player.fitness for player in multiPlayer] 

               with open(f"evaldata{run_time}.csv", "a") as f: 

                   writer = csv.writer(f, delimiter=',') 

                   writer.writerow([time_, SEED, num, generation, PIPEHEIGHT, 

score, round(max(fitness_values), 2), 

                                    round(np.median(fitness_values), 2), 

round(np.mean(fitness_values), 2)]) 
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               break 

           if (score > 0) or (maxscore > 0) or (globalFitness > 0.2): 

               # Only if at least one bird made it through one pipe 

               birdsToBreed = [] 

               for h in range(2):  # Best two birds are taken 

                   bestBird = -1 

                   bestFitness = -10 

                   for i in range(len(multiPlayer)):  # Find the best bird 

                       player = multiPlayer[i] 

                       if player.fitness > bestFitness: 

                           bestFitness = player.fitness 

                           bestBird = i 

                           if bestFitness >= highscore: 

                               highscore = bestFitness 

                   if (h == 1) and (bestFitness >= highscore):  # New best 

performing bird 

                       allTimeBestBird = multiPlayer[bestBird] 

                       bestInputWeights = copy.deepcopy( 

                           multiPlayer[bestBird].inputWeights) 

                       bestHiddenWeights = copy.deepcopy( 

                           multiPlayer[bestBird].hiddenWeights) 

                       highscore = bestFitness 

                       highgen = generation 

                       maxscore = score 

 

               for j in range(len(multiPlayer)): 

                   birdsToBreed.append(copy.deepcopy(multiPlayer[j])) 

 

           time_ = int(time()) 
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           fitness_values = [player.fitness for player in multiPlayer] 

           with open(f"data{run_time}.csv", "a") as f: 

               writer = csv.writer(f, delimiter=',') 

               writer.writerow([time_, SEED, num, generation, score, 

max(fitness_values), np.median(fitness_values), 

                                np.mean(fitness_values)]) 

           with open(f"players{run_time}.csv", "a") as f: 

               writer = csv.writer(f, delimiter=',') 

               try: 

                   writer.writerow([time_, SEED, num, generation, score, 

repr(bestInputWeights), repr(bestHiddenWeights)]) 

               except: 

                   writer.writerow([time_, SEED, num, generation, score, 

repr(multiPlayer[0].inputWeights), repr(multiPlayer[0].hiddenWeights)]) 

 

           if generation == GENERATION_LIMIT: 

               print("Completed.") 

               break 

           generation += 1 

           init()  # Here we go again 

 

       # pygame updates 

       pygame.display.update() 

       fps.tick(FPSSES) 

 

bird.py 

import numpy as np 

import random 
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class Bird: 

   """ Models a bird/player, its attributes and its methods """ 

 

   def __init__(self, height, parent1=None, parent2=None, num=3): 

       """ Constructs a bird, with num as the number of hidden layer neurons. 

""" 

 

       self.bestReported = False 

       self.y = height / 2 

       self.velocity = 0 

       self.distanceBot = 0 

       self.distanceTop = 0 

       self.distanceX = 0 

       self.distanceGround = 0 

       self.distanceCeil = 0 

       self.fitness = 0 

       self.alive = True 

 

       if parent1 == None and parent2 == None:  # New Bird, no parents 

           self.inputWeights = np.random.normal(0, scale=0.1, size=(5, num)) 

           self.hiddenWeights = np.random.normal(0, scale=0.1, size=(num, 1)) 

       elif parent1 != None and parent2 == None:  # Duplicate the single 

parent 

           self.inputWeights = parent1.inputWeights 

           self.hiddenWeights = parent1.hiddenWeights 

       else:  # Two parents - Crossover. 

           self.inputWeights = np.random.normal(0, scale=0.1, size=(5, num)) 
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           self.hiddenWeights = np.random.normal(0, scale=0.1, size=(num, 1)) 

           self.crossover(parent1, parent2) 

 

   def processBrain(self, pipeUpperY, pipeLowerY, pipeDistance): 

       """ Updates what the bird sees. """ 

       self.distanceTop = pipeUpperY - self.y 

       self.distanceBot = pipeLowerY - self.y 

       self.distanceX = pipeDistance 

       self.fitness += 0.01 

 

   def handleCollision(self, HEIGHT, BLOCKSIZE, pipe): 

       """ Checks if the bird hits the upper bounds, lower bounds or a pipe. 

""" 

       # Check if player collided with upper or lower pipe 

       if ((pipe.x >= 20) and (pipe.x <= 20 + BLOCKSIZE)) or ((pipe.x + 20 >= 

20) and (pipe.x + 20 <= 20 + BLOCKSIZE)): 

           if self.alive and ((self.y <= pipe.upper_y) or (self.y + BLOCKSIZE 

>= pipe.lower_y)): 

               self.alive = False 

               self.fitness -= 1 

 

       # Check if bird collided with the ground/ceiling 

       if self.y + self.velocity > HEIGHT - BLOCKSIZE:  # LowerBounds 

           self.y = HEIGHT - BLOCKSIZE 

           self.alive = False 

           self.fitness -= 1 

       elif self.y + self.velocity < 1:  # UpperBounds 

           self.y = 0 

           self.velocity = 0 
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           self.alive = False 

           self.fitness -= 1 

 

   def thinkIfJump(self): 

       """Forward pass through neural network, giving the decision if the 

bird should jump. """ 

       X = [self.y, self.distanceBot, self.distanceTop, self.distanceX, 

            self.velocity] 

       hidden_layer_in = np.dot(X, self.inputWeights) 

       hidden_layer_out = self.sigmoid(hidden_layer_in) 

       output_layer_in = np.dot(hidden_layer_out, self.hiddenWeights) 

       prediction = self.sigmoid(output_layer_in) 

 

       if prediction > 0.5: 

           return True 

       else: 

           return False 

 

   def setWeights(self, inputWeights, hiddenWeights): 

       """ Overwrites the current weights of the bird's neural network. """ 

       self.inputWeights = inputWeights 

       self.hiddenWeights = hiddenWeights 

 

   def crossover(self, male, female, alpha=0.5): 

       """Generate a new neural network from two parent birds using Blend 

Crossover """ 

 

       for i in range(len(self.inputWeights)): 

           for j in range(len(self.inputWeights[i])): 
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               range_ = abs(female.inputWeights[i][j] - 

male.inputWeights[i][j]) 

               lower = min(female.inputWeights[i][j], 

male.inputWeights[i][j]) - alpha * range_ 

               upper = max(female.inputWeights[i][j], 

male.inputWeights[i][j]) + alpha * range_ 

               self.inputWeights[i][j] = lower + random.random() * (upper - 

lower) 

 

       for i in range(len(self.hiddenWeights)): 

           for j in range(len(self.hiddenWeights[i])): 

               range_ = abs(female.hiddenWeights[i][j] - 

male.hiddenWeights[i][j]) 

               lower = min(female.hiddenWeights[i][j], 

male.hiddenWeights[i][j]) - alpha * range_ 

               upper = max(female.hiddenWeights[i][j], 

male.hiddenWeights[i][j]) + alpha * range_ 

               self.hiddenWeights[i][j] = lower + random.random() * (upper - 

lower) 

 

   def mutate(self): 

       """ Mutate the neural network by randomly changing the individual 

weights """ 

 

       for i in range(len(self.inputWeights)): 

           for j in range(len(self.inputWeights[i])): 

               self.inputWeights[i][j] = 

self.getMutatedGene(self.inputWeights[i][j]) 

       for i in range(len(self.hiddenWeights)): 
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           for j in range(len(self.hiddenWeights[i])): 

               self.hiddenWeights[i][j] = 

self.getMutatedGene(self.hiddenWeights[i][j]) 

 

   @staticmethod 

   def sigmoid(x): 

       """ The sigmoid activation function for the neural network """ 

       return 1 / (1 + np.exp(-x)) 

 

   @staticmethod 

   def getMutatedGene(weight): 

       """ Apply Gaussian Mutation to a single weight """ 

 

       learning_rate = random.randint(0, 25) * 0.005 

       mutatedWeight = random.gauss(weight, learning_rate) 

 

       return mutatedWeight 

 

pipe.py 

import random 

 

 

class Pipe: 

  """ Models an in-game pipe pair. """ 

 

  def __init__(self, screen_width, screen_height, distanceToOldPipe, 

pipeheight): 
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     """The constructor of a pipe pair (the obstacle the bird has to fly 

through). """ 

     top = random.randint(0, screen_height - 100) 

     self.upper_y = random.randint(0, screen_height - 140) 

     self.lower_y = self.upper_y + pipeheight 

 

     # Randomize distance of pipes so the bird can learn better 

     self.x = distanceToOldPipe / 4 + screen_width + random.randint(0, 15) 

 

  def move_left(self): 

     """ Move the pipe to the left when a frame is processed. """ 

     self.x -= 4 

 

cloud.py 

import random 

 

 

class Cloud: 

  """ Models an in-game cloud. """ 

 

  def __init__(self, WIDTH, HEIGHT): 

     """ The constructor of a cloud """ 

 

     self.x = WIDTH + 140 + random.randint(0, 140) 

     self.y = random.randint(0, int(HEIGHT/2)) 

     self.TICKLIMIT = 5 

     self.moveTick = 0 
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  def move_left(self): 

     """ Move the cloud every five frames from right to left """ 

     if self.moveTick > self.TICKLIMIT: 

        self.x -= 1 

 

     self.moveTick += 1 

 

9.3 Data Tables 

9.3.1 Hidden-Layer Neurons vs Training Time 

Number of hidden layer 

neurons 

Average number of 

generations required to train 

 

Seed 1: 

4 

Seed 2: 

26 

Seed 3: 

30 

1 29 26 25 37 

2 49 44 45 59 

3 38 26 46 41 

5 86 77 68 114 

8 67 67 81 53 

10 66 46 53 100 

15 96 79 66 143 

20 142 109 161 156 

25 109 75 150 101 

30 141 162 94 167 

35 130 167 111 111 
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9.3.2 Max, Median and Mean Fitness for 1 Hidden Layer Neuron (Seed: 14) 

Generation Max Fitness Median Fitness Mean Fitness 

1 0.52 -0.79 -0.71 

2 0.51 -0.79 -0.67 

3 0.52 -0.78 -0.62 

4 0.28 -0.78 -0.65 

5 0.52 -0.78 -0.40 

6 0.54 -0.78 -0.45 

7 4.12 -0.29 -0.13 

8 28.45 0.51 0.52 

9 20.62 0.54 0.51 

10 4.75 0.40 0.24 

11 0.56 0.53 -0.04 

12 4.81 0.36 0.14 

13 16.45 0.50 0.74 

14 4.73 0.51 0.48 

15 24.48 0.51 1.04 

16 36.37 0.50 1.30 

17 44.28 0.53 5.13 

18 52.26 -0.79 0.54 

19 106.94 0.57 4.79 

20 51.52 0.54 2.38 

21 71.34 0.39 1.53 
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22 99.23 0.58 6.23 

23 376.71 2.35 11.15 

24 269.61 0.61 9.80 

25 397.24 0.54 9.25 

26 75.95 0.59 3.84 

27 258.39 0.51 10.41 

28 24.50 2.26 6.30 

29 190.14 4.82 14.66 

30 103.70 3.96 9.19 

31 119.60 0.62 9.62 

32 194.89 0.55 10.04 

33 127.53 3.96 9.44 

34 397.12 4.73 25.30 

35 397.29 0.53 8.70 

36 174.57 4.81 18.59 

37 397.31 4.79 17.81 

38 95.92 6.68 15.43 

39 397.39 4.01 25.02 

40 397.23 4.75 29.66 

41 397.26 4.76 32.24 

42 397.35 4.73 31.41 

43 397.31 4.75 26.88 

44 397.20 2.21 25.04 
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45 397.28 4.78 63.13 

46 397.18 8.55 82.85 

47 397.26 12.65 53.88 

48 397.30 8.51 52.87 

49 397.13 0.55 66.14 

50 397.20 4.81 67.21 

51 397.25 4.78 63.07 

52 397.30 8.58 49.82 

53 397.29 0.54 19.16 

54 397.29 8.54 60.23 

55 397.13 8.59 66.11 

56 397.29 12.63 96.62 

57 397.26 4.76 67.88 

58 397.22 18.52 92.63 

59 397.25 18.55 76.09 

60 397.25 4.76 59.07 

61 397.20 8.52 73.86 

62 397.11 12.61 90.74 

63 397.29 8.51 75.43 

64 397.26 20.57 92.18 

65 397.16 12.64 74.19 

66 397.23 20.55 132.49 

67 397.10 32.46 127.96 
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68 397.17 12.70 106.83 

69 397.23 20.50 107.34 

70 397.21 22.52 117.55 

71 397.26 20.55 93.34 

72 397.30 18.56 96.79 

73 397.25 12.65 88.94 

74 397.12 6.67 90.38 

75 397.28 36.44 107.56 

76 397.12 22.55 126.08 

77 397.23 66.15 170.81 

78 397.23 77.96 169.01 

79 397.28 40.42 132.66 

80 397.22 36.32 141.56 

81 397.21 32.37 130.49 

82 397.22 32.37 118.59 

83 397.15 46.30 136.56 

84 397.32 28.51 127.76 

85 397.19 24.28 148.00 

86 397.32 68.13 167.34 

87 397.37 260.45 210.76 

88 397.28 113.66 187.74 

89 397.23 76.01 165.83 

90 397.21 167.14 198.99 
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91 397.20 260.29 223.86 

92 397.26 397.26 230.83 

93 397.26 141.45 207.38 

94 397.21 147.32 207.85 

95 397.13 234.42 217.92 

96 397.18 103.78 192.86 

97 397.29 387.31 237.15 

98 397.37 36.45 168.21 

99 397.18 115.66 188.81 

100 397.27 397.27 237.73 

101 397.22 397.22 232.89 

102 397.34 397.34 283.69 

103 397.25 397.25 305.54 

104 397.28 397.28 281.48 

105 397.21 52.22 177.42 

106 397.31 232.53 220.67 

107 397.31 397.31 252.73 

108 397.28 397.28 246.93 

109 397.12 97.77 182.50 

110 397.24 79.71 167.45 

111 397.25 288.07 229.68 

112 397.40 163.04 211.53 

113 397.21 335.72 225.13 
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114 397.22 397.22 220.14 

 

9.3.3 Max, Median and Mean Fitness for 15 Hidden Layer Neurons (Seed: 14) 

Generation Max Fitness Median Fitness Mean Fitness 

1 0.52 -0.78 -0.65 

2 0.51 -0.78 -0.64 

3 4.73 -0.78 -0.54 

4 4.82 -0.78 -0.50 

5 0.51 -0.78 -0.52 

6 4.90 -0.78 -0.38 

7 12.64 -0.78 -0.28 

8 7.99 -0.78 -0.15 

9 8.56 -0.78 -0.17 

10 4.15 -0.78 -0.52 

11 16.42 -0.78 -0.08 

12 4.73 -0.78 -0.46 

13 20.57 -0.78 -0.02 

14 16.57 -0.78 -0.03 

15 4.53 -0.78 -0.37 

16 4.73 -0.78 -0.18 

17 4.63 -0.78 -0.24 

18 20.49 -0.78 -0.01 



 

58 

19 12.50 -0.60 0.28 

20 11.83 -0.78 0.05 

21 27.64 -0.16 0.48 

22 7.97 -0.78 -0.02 

23 27.80 0.29 0.32 

24 4.78 -0.78 -0.11 

25 155.25 -0.78 3.04 

26 3.91 -0.78 -0.30 

27 8.55 -0.77 0.02 

28 8.54 -0.76 0.03 

29 4.83 -0.21 -0.09 

30 12.07 -0.54 0.05 

31 8.02 0.03 0.07 

32 12.67 -0.13 0.41 

33 4.79 -0.77 -0.19 

34 16.51 -0.19 0.44 

35 8.50 -0.02 0.44 

36 32.43 0.53 0.61 

37 64.10 0.54 0.85 

38 48.23 0.53 1.80 

39 16.57 0.53 0.68 

40 0.59 -0.51 -0.17 

41 20.54 0.51 0.74 
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42 28.49 0.51 0.70 

43 8.56 0.43 1.00 

44 4.75 0.51 0.65 

45 4.74 0.53 0.87 

46 32.41 0.52 1.88 

47 8.52 0.54 0.78 

48 4.75 0.53 0.75 

49 64.16 0.50 1.51 

50 4.75 0.51 0.39 

51 28.49 0.52 2.43 

52 48.26 0.52 2.37 

53 64.08 0.51 5.86 

54 28.48 0.52 2.40 

55 60.14 0.54 3.76 

56 60.15 0.52 3.04 

57 28.51 0.54 2.17 

58 56.22 0.59 4.19 

59 357.39 0.53 12.03 

60 40.31 0.54 4.66 

61 68.05 0.57 4.75 

62 43.33 0.58 5.15 

63 36.39 0.50 3.02 

64 52.33 2.22 7.36 
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65 52.24 4.74 7.71 

66 48.28 2.73 8.73 

67 48.20 0.60 4.35 

68 44.39 0.52 3.90 

69 51.50 4.75 7.20 

70 20.51 0.63 4.50 

71 194.94 2.66 7.33 

72 83.86 0.61 5.91 

73 48.30 0.61 5.37 

74 63.39 4.77 9.08 

75 20.60 0.56 3.53 

76 91.87 4.74 7.21 

77 40.41 4.83 11.18 

78 385.08 4.77 10.39 

79 329.66 4.74 13.28 

80 40.44 8.52 9.08 

81 36.36 4.78 5.80 

82 127.66 4.02 7.87 

83 68.07 4.78 8.53 

84 95.86 4.76 8.81 

85 24.53 0.62 3.70 

86 59.42 4.82 12.29 

87 40.32 4.79 8.93 
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88 68.08 0.60 6.10 

89 246.47 4.11 8.77 

90 76.01 4.75 7.72 

91 32.47 4.77 5.98 

92 68.13 0.55 4.14 

93 68.10 4.76 7.01 

94 64.20 2.69 5.58 

95 95.83 0.60 10.86 

96 72.00 4.12 7.36 

97 356.78 4.81 15.53 

98 281.47 0.63 11.75 

99 210.76 4.82 18.86 

100 214.64 4.79 18.01 

101 397.18 8.52 17.27 

102 139.36 4.76 11.35 

103 80.03 12.62 15.43 

104 151.32 8.50 16.55 

105 158.52 10.61 22.80 

106 87.83 4.78 9.33 

107 397.29 4.79 15.68 

108 76.08 2.66 7.86 

109 68.05 4.81 12.68 

110 76.03 4.74 7.83 
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111 91.79 0.59 13.79 

112 83.95 8.55 17.56 

113 60.11 4.76 10.23 

114 397.23 4.80 13.49 

115 397.29 6.66 23.09511111 

116 397.2 18.56 31.514 

117 397.19 4.84 33.77911111 

118 397.23 8.49 37.30044444 

119 397.19 8.53 33.41055556 

120 397.2 6.35 51.43011111 

121 397.32 8.525 63.45177778 

122 397.17 24.5 65.30333333 

123 397.28 12.685 62.49033333 

124 397.23 8.6 49.53544444 

125 397.21 12.64 90.668 

126 397.12 20.56 98.02044444 

127 397.27 34.48 120.0878889 

128 397.24 53.82 151.6648889 

129 397.12 36.38 133.5595556 

130 397.3 84.04 167.3923333 

131 397.14 36.44 164.6716667 

132 397.31 187.035 211.6618889 

133 397.27 234.54 218.6645556 



 

63 

134 397.23 232.19 228.5846667 

135 397.21 397.21 251.8702222 

136 397.18 200.815 210.685 

137 397.34 397.34 267.2154444 

138 397.32 397.32 248.1885556 

139 397.25 397.25 268.2436667 

140 397.16 157.265 199.856 

141 397.19 374.82 240.1583333 

142 397.32 397.32 248.7101111 

143 397.29 397.29 289.1445556 

144 397.28 397.28 269.571 

145 397.21 397.21 300.5576667 

146 397.18 397.18 305.3174444 

147 397.21 397.21 230.4615556 

148 397.3 397.3 267.1468889 

149 397.27 397.27 264.0756667 

150 397.22 397.22 267.5594444 

151 397.22 397.22 270.3647778 

152 397.15 397.15 289.0781111 

153 397.18 397.18 246.3966667 

154 397.18 397.18 257.4742222 

155 397.39 347.76 244.0626667 

156 397.26 397.26 286.964 
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157 397.21 397.21 269.8262222 

158 397.25 397.25 291.7905556 

159 397.2 397.2 302.0175556 

160 397.2 397.2 275.9645556 

161 397.27 397.27 301.334 

162 397.2 397.2 314.7288889 

163 397.25 397.25 282.5782222 

164 397.21 397.21 276.6954444 

165 397.24 287.72 223.9163333 

166 397.15 397.15 284.5931111 

167 397.27 397.27 274.158 

168 397.27 397.27 278.7238889 

169 397.26 397.26 315.345 

170 397.26 397.26 289.3608889 

171 397.24 397.24 304.7337778 

172 397.31 397.31 283.4957778 

173 397.24 397.24 315.8652222 

174 397.16 397.16 343.1457778 

175 397.13 397.13 307.2334444 

176 397.13 397.13 306.6426667 

177 397.28 397.28 331.5072222 

178 397.2 397.2 319.8943333 

179 397.24 397.24 321.0216667 
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9.3.4 Score attained in modified game settings when varying hidden layer 

neurons (Pipe Height 110) 

Number of hidden layer 

neurons 

Score attained in modified 

game settings 

 

Seed 1: 4 Seed 2: 26 Seed 3: 30 

1 32 16 

464 

(Anomaly) 47 

2 34 5 67 30 

3 14 6 0 36 

5 1 3 0 1 

8 10 9 21 1 

10 4 5 3 4 

15 34 4 34 64 

20 22 22 24 21 

25 41 78 42 3 

30 2 2 0 5 

35 3 8 0 0 

40 9 23 0 3 

45 4 8 2 1 

 

9.3.5 Score attained in modified game settings when varying hidden layer 

neurons (Pipe Height 105) 

Number of hidden layer 

neurons 

Score attained in modified 

game settings 

 

Seed 1: 4 Seed 2: 26 Seed 3: 30 

1 2 2 1 4 

2 7 2 1 19 
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3 1 0 0 2 

5 1 2 0 1 

8 2 4 1 1 

10 3 4 3 2 

15 3 4 0 4 

20 2 1 0 5 

25 2 5 0 0 

30 1 3 0 1 

35 3 3 0 7 

40 1 3 0 1 

45 2 3 1 1 

 

9.3.6 Score attained in modified game settings when varying generations (2 

Hidden Layer Neurons) 

Number of generations 

trained for 

Score attained in modified 

game settings 

 

Seed 1: 4 Seed 2: 26 Seed 3: 30 

150 4 1 12 0 

151 5 1 7 8 

152 12 11 20 4 

153 20 10 48 1 

154 4 3 8 1 

155 3 2 8 0 

156 27 0 63 19 

157 3 0 1 7 

158 1 1 1 0 
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159 7 0 14 6 

160 10 8 15 6 

161 5 2 5 8 

162 4 2 5 6 

163 7 2 14 4 

164 9 0 26 0 

165 3 1 8 0 

166 11 1 29 4 

167 3 3 4 3 

168 5 10 0 6 

169 3 2 7 0 

170 15 2 20 22 

171 8 1 23 1 

172 2 0 5 1 

173 8 2 17 5 

174 7 3 16 1 

175 14 2 37 4 

176 8 0 24 1 

177 6 1 9 8 

178 5 7 3 4 

179 1 2 0 0 

180 13 3 34 2 

181 38 4 105 4 

182 5 3 9 3 

183 8 0 22 1 
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184 4 3 6 2 

185 12 3 33 1 

186 9 11 14 1 

187 5 2 12 1 

188 4 1 10 2 

189 3 4 2 4 

190 4 4 5 2 

191 1 1 3 0 

192 15 0 29 16 

193 37 0 5 106 

194 9 8 5 15 

195 30 3 25 63 

196 30 5 21 63 

197 31 0 11 83 

198 23 1 1 68 

199 14 2 9 30 

200 6 3 2 14 

 

9.3.7 Score attained in modified game settings when varying generations (15 

Hidden Layer Neurons) 

Number of generations 

trained for 

Score attained in modified 

game settings 

 

Seed 1: 4 Seed 2: 26 Seed 3: 30 

150 4 4 2 7 

151 5 7 4 3 

152 4 4 4 3 
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153 4 4 0 7 

154 3 2 7 0 

155 4 6 5 1 

156 2 2 3 0 

157 4 1 1 9 

158 2 6 0 0 

159 2 2 1 2 

160 4 7 3 1 

161 3 1 9 0 

162 2 2 4 1 

163 5 2 14 0 

164 1 1 0 2 

165 4 12 1 0 

166 1 0 3 0 

167 7 12 4 5 

168 3 1 4 3 

169 4 11 0 2 

170 5 5 3 7 

171 5 1 11 2 

172 9 8 17 1 

173 3 0 0 10 

174 4 4 6 2 

175 2 1 1 5 

176 3 3 7 0 

177 9 7 1 20 
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178 2 0 0 6 

179 15 0 0 44 

180 2 4 0 3 

181 2 5 1 1 

182 6 1 7 10 

183 8 1 2 20 

184 5 1 3 11 

185 3 1 1 6 

186 3 1 0 7 

187 11 11 3 20 

188 13 9 8 21 

189 25 20 28 28 

190 5 6 0 8 

191 3 1 8 1 

192 9 1 2 24 

193 6 2 3 12 

194 6 4 3 10 

195 12 1 12 24 

196 11 0 13 19 

197 20 4 4 51 

198 5 1 1 14 

199 28 13 2 70 

200 10 1 1 27 
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9.3.8 Score attained in modified game settings when varying generations (30 

Hidden Layer Neurons) 

Number of generations 

trained for 

Score attained in modified 

game settings 

 

Seed 1: 4 Seed 2: 26 Seed 3: 30 

150 24 13 3 57 

151 7 1 4 15 

152 12 0 6 30 

153 20 0 8 51 

154 10 0 2 27 

155 16 0 13 36 

156 3 0 6 3 

157 1 0 3 1 

158 8 12 2 9 

159 11 0 25 8 

160 6 0 2 16 

161 2 0 6 1 

162 7 0 11 10 

163 10 5 13 11 

164 12 2 1 34 

165 4 6 5 1 

166 13 6 2 30 

167 3 6 1 3 

168 24 3 12 56 

169 3 4 3 1 

170 20 27 2 31 
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171 8 5 9 9 

172 12 0 9 26 

173 23 16 2 51 

174 8 12 1 10 

175 20 54 4 3 

176 11 24 4 6 

177 15 30 5 11 

178 20 9 27 24 

179 10 23 2 4 

180 7 11 2 8 

181 23 52 2 16 

182 16 29 3 16 

183 29 44 19 25 

184 24 46 6 20 

185 30 63 6 20 

186 11 18 12 3 

187 9 3 4 21 

188 16 16 1 31 

189 24 54 9 9 

190 51 135 11 8 

191 11 20 7 6 

192 18 29 12 12 

193 31 53 32 9 

194 4 2 4 6 

195 60 156 5 18 
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196 53 150 5 5 

197 7 16 1 4 

198 6 8 1 8 

199 4 1 0 12 

200 18 14 7 34 
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