

Extended Essay in Computer Science

Personal Code: kdz007

Session: May 2023

Topic:

The ability of intelligent agents to operate in unfamiliar scenarios

Research Question:

“To what extent is the ability of an intelligent agent to operate in unfamiliar scenarios affected

by the number of hidden-layer neurons in its neural network and the number of generations it

is trained for?”

Word Count: 3,983 words

CS EE World
https://cseeworld.wixsite.com/home
May 2023
30/34
A

Submitter Info:
Name: Sachin Ramanathan
School: UC San Diego Class of 2027
Email: saramanathan [at] ucsd [dot] edu

Table of Contents

1 Introduction 1

2 Theoretical Background 2

2.1 Genetic Algorithms (GAs) 3

2.2 Artificial Neural Networks (ANNs) 5

2.3 Flappy Bird 6

3 Experimental Methodology 7

3.1 Tuning the parameters of an Artificial Neural Network using a Genetic Algorithm 7

3.2 Architecture of the Artificial Neural Network controlling the bird 8

3.3 Parameters of the Genetic Algorithm 10

3.4 Experimental Design 12

3.5 Experimental Procedure 12

3.5.1 Experimental Setup 12

3.5.2 Experiment 1: Varying the number of neurons in the hidden layer 12

3.5.3 Experiment 2: Varying the number of generations trained 13

4 Hypothesis 13

5 Experimental Results and Analysis 15

5.1 Experiment 1: The effect of varying the number of hidden-layer neurons 15

5.1.1 Experimental Data 15

5.1.2 Result Analysis 19

5.1.3 Evaluation 20

5.2 Experiment 2: The effect of varying the number of generations trained 21

5.2.1 Experimental Data 21

5.2.2 Result Analysis 22

5.2.3 Evaluation 22

6 Limitations and Potential Improvements 23

7 Conclusion 23

8 Bibliography 26

9 Appendix 27

9.1 Screenshot of conducting the experiment 27

9.2 Codebase used for experiment 27

9.3 Data Tables 51

List Of Figures

Figure 1. Population of individuals with binary-coded chromosomes……………………….

Figure 2. Simple ANN architecture………………………..………………………..………..

Figure 3. Screenshot of the ‘Flappy Bird’ game.………………………..……………………

Figure 4. Architecture of the ANN used to control the actions of the bird…………………...

Figure 5. Screenshot representing the inputs of the Artificial Neural Network………………

Figure 6. Visual representation of Blend Crossover………………………………………….

Figure 7. Variation of the fitness values (1 hidden-layer neuron)...

Figure 8. Variation of the fitness values (15 hidden-layer neurons)...

Figure 9. Relationship between generations required and hidden-layer neurons…………….

Figure 10. The correlation between the hidden-layer neurons and the agent score in the

modified game (pipe height 110)..

Figure 11. The correlation between the hidden-layer neurons and the agent score in the

modified game (pipe height 105)..

Figure 12. The agent score in the modified game when varying the number of generations...

Figure 13. Screenshot taken while conducting the experiment……………………………….

4

5

6

8

9

11

15

16

17

18

19

21

27

1

1 Introduction

Genetic Algorithms are extremely useful in narrowing down a vast search space and

finding near-optimal solutions quickly. They can be used even when there is a lack of mathematical

representation for the problem being solved, which is why they are used in a variety of

reinforcement learning applications. One such application is in creating intelligent agents to play

games autonomously.

This helps us in our broader goals for AI as games are closed and controlled environments,

free of real-world constraints, thus providing the perfect sandbox to gain a deep understanding of

the behaviour of machine learning algorithms. They are quantifiable and provide us with numerical

data (scores) to evaluate how our algorithm performs, which might be difficult or infeasible to

gather in the real world.

They could also be used by game developers to understand their game’s difficulty level

and find bugs that could be exploited by players. For instance, an evolutionary algorithm was able

to find two bugs in the game Qbert which allowed users to gain endless points (Chrabaszcz et al.

1423).

A neural network can be used as the “brain” of an intelligent agent, to evaluate the actions

to be taken by the player based on its inputs. However, the parameters of neural networks must be

trained for them to function effectively. Genetic algorithms can be used to optimally tune these

parameters to create an efficient intelligent agent.

However, an agent that can only function in situations similar to the training environment

has minimal real-life applications. Machine learning algorithms are often trained on a small subset

of all the scenarios they encounter and are expected to generalise their learning to tackle new

situations. This behaviour is known as transfer learning. The architecture of the neural network

2

and the training parameters govern how it learns and therefore can be varied to extend its

capabilities.

Flappy Bird was chosen to be the game to evaluate this research as it is simplistic, allowing

the configuration of the game to be easily changed. It circumvents the additional complexities

associated with various inputs, numerous possible actions by the player, and complex relationships

between them.

Therefore, the research question this paper seeks to answer is “To what extent is the ability

of an intelligent agent to operate in unfamiliar scenarios affected by the number of hidden-layer

neurons in its neural network and the number of generations it is trained for?”

3

2 Theoretical Background

2.1 Genetic Algorithms (GAs)

Genetic Algorithms are heuristic search algorithms which use the principles of natural

evolution to identify optimal solutions for the given problem. They are particularly useful in

solving problems with a large search space, lack of mathematical representation, or having a large

number of parameters. They yield competent solutions in short durations of time, although usually

not the best possible solution (Wirsansky 9, 19).

The generic pseudocode for GAs is as follows (Mallawaarachchi):

Generate the initial population

Compute fitness

REPEAT

 Selection

 Crossover

 Mutation

 Compute fitness

UNTIL population has converged

These function by maintaining a fixed-size population of individuals which are evaluated

at every iteration. These individuals represent candidate solutions as chromosomes, which are

arrays of genes. Each gene can be a binary digit, integer, or real number (Refer to Figure 1).

4

Figure 1. Population of individuals with binary-coded chromosomes.

(Made by Candidate using Google Drawings)

The initial population is generated by randomising the genes of each individual and is

likely to contain inefficient solutions. Once the population is generated, a fitness score—a measure

of the effectiveness of a candidate solution—is evaluated for each individual.

Weighted by their fitness scores, some individuals are chosen to advance to the next

generation with no modification, as part of a process known as selection. The genes of a few

individuals are crossed over or swapped between chromosomes to create new individuals inserted

into the next generation. Finally, certain chromosomes are randomly reassigned genes in a process

named mutation to introduce new genes into the population, thus preventing a homogenous

aggregation of individuals. The chances that mutation or crossover occur in individuals are

controlled by the specified mutation rate and crossover rate.

Once these three operations are conducted, the fitness of the population is computed again,

and the process repeats until the population satisfies a predetermined stopping condition

(Wirsansky 11-13).

5

2.2 Artificial Neural Networks (ANNs)

Figure 2. Simple ANN architecture with three inputs and one output, having a single hidden layer.

(Made by Candidate using Google Drawings)

Artificial Neural Networks, shown in Figure 2, consist of three primary layers- the input

layer, which takes in the data, the output layer, which forms the final output, and the intermediary

hidden layers which can be as many as required. Each layer consists of multiple neurons, and

each neuron is connected to every neuron in the next layer. In other words, the outputs of each

neuron in an 𝑛𝑡ℎ layer are the inputs to every neuron in the (𝑛 + 1)𝑡ℎ layer (Mueller and Massaron

274-275).

The function of each neuron is to compute a weighted sum of its inputs using the weights

and biases assigned to the neuron for each input during training, pass it through an activation

function which transforms the output into a specific range, and output to the next layer (Mueller

and Massaron 272-273).

6

The weights and biases of each neuron are known as the parameters of the ANN and

determine the magnitude to which each input influences the output. These are tuned during the

training process through methods such as stochastic gradient descent or using genetic algorithms.

The activation function, the number of neurons in each layer, and the network architecture

are known as hyperparameters of the ANN, whose values are determined based on the

application of the ANN.

2.3 Flappy Bird

Flappy Bird is a popular side-scroller arcade game, where players have to control a bird

using flapping actions to fly through pipes without hitting the pipes, ground or ceiling. Therefore,

the flaps have to be timed correctly so that the bird passes through the pipe since flapping is the

only available method to control the vertical position of the bird. The game requires a sense of

when to flap, which is acquired as players play the game. An intelligent agent will be used to do

this artificially on a clone of the game.

Figure 3. Screenshot of the original Flappy Bird game (Brustein).

7

3 Experimental Methodology

3.1 Tuning the parameters of an Artificial Neural Network using a Genetic

Algorithm

For the ANN to produce an effective output, the weights and biases of each neuron has to

be optimally tuned. Since we do not have a differentiable fitness function, which is a requirement

to use stochastic gradient descent, we use a GA to tune the parameters instead (Kwiatkowski).

Each gene would represent either the weight or bias of a neuron and a chromosome would

represent all the weights and biases of the network. The GA would be used to determine the optimal

weights and biases for the ANN, and the ANN would be used to play the game once trained. The

outcome of the game played using each individual’s genes will enable the GA to evaluate its fitness

score and judge its effectiveness relative to other individuals.

The GA is enumerated through numerous generations until the ANN reaches a

predetermined condition of accuracy and consequently, the ANN is considered trained and can be

used as an intelligent agent to play the game.

8

3.2 Architecture of the Artificial Neural Network controlling the bird

Figure 4. Architecture of the ANN used to control the actions of the bird (Candidate).

The ANN controlling the actions of the bird will take five inputs as shown in Figure 4,

which correspond to the distances labelled in Figure 5.

9

Figure 5. Annotated screenshot representing the inputs of the Artificial Neural Network (Candidate).

The sole output of the ANN will be a floating-point value between 0 and 1. If the 𝑜𝑢𝑡𝑝𝑢𝑡 >

 0.5, the bird will flap, and if 𝑜𝑢𝑡𝑝𝑢𝑡 <= 0.5, no action will be taken. To prevent extremely large

outputs, we use the sigmoid activation function, which takes in the output of the neuron and

manipulates it to satisfy the constraint 0 < 𝑜𝑢𝑡𝑝𝑢𝑡 < 1.

Overfitting is when a machine learning model “memorises” how to react to the training

data and is unable to replicate its ability during testing despite performing exceptionally with the

training data because its output is completely based on its memorization (Mueller and Massaron

161). The network will only have one hidden layer to avoid overfitting since the scenario is not

complex enough to justify the use of multiple hidden layers, which would also increase the time

and resources required to train and execute the network.

10

3.3 Parameters of the Genetic Algorithm

The game score, which increases when an agent successfully passes through a pipe pair,

will be weighted the highest in the fitness equation to reward the agent as maximising this value

is our primary goal. However, the distance travelled by the bird will also be factored into the

equation, although weighted lesser, to differentiate between birds with the same score but reaching

a higher distance before colliding with an object. Hitting a pipe, the ground, or the ceiling result

in an immediate termination of a game. Hence, we impose a penalty on these to reduce the fitness

value to disincentivize the agent from repeating actions that lead to this state.

Therefore, the fitness of the bird is given by the equation:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = (3 × 𝑆𝑐𝑜𝑟𝑒) + (0.1 ✕ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑏𝑦 𝑏𝑖𝑟𝑑) − 𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠

We will be having a constant population size of 90 individuals for every generation, to

avoid lag on the system as the individuals will be evaluated concurrently. Elitism will be

implemented to preserve the best individuals in the population, although only one individual will

remain unchanged across generations to allow for greater variance within the population.

The selection method being used will be Rank-Based Selection, where individuals are

ordered by their fitness values, and the probabilities of each individual being selected are

calculated based on their rank, instead of their raw fitness values. This selection method will ensure

that some individuals with abnormally large fitness values will not overshadow the other

individuals and dominate the population, instead providing a substantial opportunity for all

individuals to be selected.

A normally distributed, also known as Gaussian mutation, will be used since the genes

representing the weights and biases of the neurons are real numbers and Gaussian mutation is

compatible with real-encoded genes. It generates a pseudorandom number following a normal

11

distribution (Wirsansky 46). An advantage of this method is that the generated genes are close to

the original gene, preventing the pre-existing gene from being completely eliminated from the

population. The mutation rate is set to a relatively high value here, 0.4, to allow new genes to

enter the population, thus preventing convergence at less-efficient local maxima.

Figure 6. Visual representation of Blend Crossover (Wirsansky 43)

Blend Crossover will be used as the crossover method. Using this method, the resultant

gene will be randomly generated from an interval derived from its parents’ genes. The alpha (ɑ)

value is used to control how wide this interval is. The higher the alpha value, the wider the interval.

Figure 6 represents this, where p1 and p2 are the genes of the two parents. The green region

represents the interval which the gene will be randomly chosen from. We will be using ɑ = 𝟎. 𝟓

to allow for greater variance in the population (Wirsansky 42). The crossover rate will also be set

at 0.4 for the same reason, as it allows for more variance across generations.

12

3.4 Experimental Design

3 Trials will be conducted and averaged for each experiment with different random seeds

(namely 14, 4, and 26) to prevent the state of the randomly-generated initial population from

skewing the results. The same 3 random seeds will be used for all the experiments for uniformity,

since repeating the experiment specifying the same seed will yield identical results. A cap of score

100 will be kept for each generation as without it, some excellent candidates will fly almost

infinitely, blocking the program from advancing to the next generation.

3.5 Experimental Procedure

3.5.1 Experimental Setup

The algorithm will be trained on the original version of the game, and then tested on both

the original version and altered version where the height of the gaps between the pipes is reduced

from 120 units which it was trained on to 110 and 105 units, to examine how the intelligent agent

functions. The number of generations the GA is allowed to run for and the number of hidden-

layer neurons will be varied separately to observe their impact on its performance in the altered

version of the game.

3.5.2 Experiment 1: Varying the number of neurons in the hidden layer

The neural network saved at generation 200 of each trial will be used to compare. The

neural networks used will be from the same generation for all the trials. The 200th generation was

selected to ensure the individual being evaluated is already trained so the results are not skewed

by a partially-trained agent.

13

3.5.3 Experiment 2: Varying the number of generations trained

Although the number of hidden-layer neurons is kept constant within an experiment, we

will conduct three distinct experiments with different numbers of hidden-layer neurons—one low

(2), one medium (15), and one high (30)—so that we can observe trends, if any, between the

different neural network architectures in the effect of varying the number of generations trained.

We start at the 150th generation as all different hidden neuron configurations chosen have

converged by this point.

14

4 Hypothesis

From my theoretical knowledge, I hypothesize that a higher number of hidden-layer

neurons should result in the agent gaining a deeper learning of the game. Therefore, the agent is

more likely to perform better when placed in different game settings. It will be able to model more

complex relationships and may be more accurate in its outputs. However, the performance of the

agent in both the original and the modified game settings may be adversely affected if the number

of hidden-layer neurons is too high since overfitting may occur.

Similarly, training for more generations should provide more individuals the opportunity

to gain optimal genes through mutation and crossover, and therefore make them more likely to be

high-performing individuals. Hence, these agents should perform better in the modified game

settings. Due to the implementation of elitism, it is unlikely that optimal genes will inadvertently

be eliminated in future generations.

15

5 Experimental Results and Analysis

5.1 Experiment 1: The effect of varying the number of hidden-layer neurons

5.1.1 Experimental Data

Figure 7. Variation of the fitness values of the population over generations (1 hidden layer neuron)1

In Figure 7, the max fitness shows the fitness of the best-performing individual in the

population, and the median and mean fitness can be used to identify what proportion of the

population is trained. Initially, the fitness values are clustered around zero. As mutation occurs,

new genes are introduced into the population through a few individuals, shown by the observation

that only the max fitness rises. This value fluctuates across generations, eventually reaches high

1 Refer to Appendix 9.3.2 (page 52)

16

levels, signifying the tuning of the weights of the neural networks until it converges to a fitness

value of approximately 400 which corresponds to a score of 100, which we limited the training

until. Since we use elitism in the genetic algorithm to retain the best-performing bird without

mutation, these genes are not eliminated and hence the max fitness curve remains constant from

now.

The mean and median curves show slow but steady increases, which illustrates the rest of

the population being optimised through random mutation and crossover with the top-performing

individuals. The median fitness reaching 400 represents the top 50% of the population being

trained. However, this curve fluctuates slightly in later generations as mutation and crossover can

cause the genes of optimal individuals to be overwritten, thus explaining the need to preserve

optimal genes through elitism.

Figure 8. Variation of the fitness values of the population over generations (15 hidden-layer neurons)2

2 Refer to Appendix 9.3.3 (page 57)

17

Comparing Figures 7 and 8, it is immediately noticeable that it takes more generations for

the max fitness to converge with 15 hidden-layer neurons (114), compared to with 1 hidden layer

neuron (39). The max fitness in Figure 8 fluctuates considerably, with a generally increasing trend,

until a sudden fluctuation causes it to converge. This could be because of a new set of genes

introduced in the population through mutation, or through the crossover of two individuals creating

an optimal individual. Similar to Figure 7, the mean and median fitnesses slowly approach the

max fitness curve as the optimal genes spread across the population through crossover.

Figure 9. Average number of generations required to train the ANN against the number of hidden-layer

neurons.3

Figure 9 represents the trend of how the average number of generations required to train

the neural network is correlated with the number of hidden-layer neurons. The y-axis values are

3 Refer to Appendix 9.3.1 (page 51)

18

obtained by observing when the max fitness curve converges to 400 for each number of hidden-

layer neurons. There is evidently a broader trend where neural networks with more hidden-layer

neurons take longer to train since there are more genes that need to be optimised, as shown by the

trendline in Figure 9.

Figure 10. The correlation between the number of neurons in the hidden layer and the average score the

agent attained in the modified game with a smaller pipe height of 110 units4

In Figure 10, we see that the score initially begins high, but suddenly drops and gradually

increases again as the number of hidden-layer neurons increases, reaching a peak at 25 hidden-

layer neurons, consequently falling rapidly again. This confirms our hypothesis that the score will

increase as the number of hidden-layer neurons increases since the agent achieves deeper learning,

but the scores remain low beyond 30 neurons.

4 Refer to Appendix 9.3.4 (page 65)

19

Figure 11. The correlation between the number of neurons in the hidden layer and the average score the

agent attained in the modified game with a smaller pipe height of 105 units5

Figure 11 depicts the performance of the bird with the pipe height reduced further than in

Figure 10. However, in the graph, we see no clear trend in scores. Therefore, the average scores

are uniformly lower, reaching a maximum score of only 7, while in Figure 10, they reached a

maximum average score of 41.

5.1.2 Result Analysis

It is clear from the collected data that the number of hidden-layer neurons corresponds to

the number of generations required to train the network. This is because the number of possible

combinations of neuron weights significantly rises with the number of neurons, thus complicating

the process of finding an optimal configuration.

5 Refer to Appendix 9.3.5 (page 65)

20

The initially high score with pipe height 110 occurs because the relationship between the

inputs and the output is simple, allowing networks with lesser neurons to function effectively.

However, this advantage disappears when the number of neurons increases. Following this, the

upward trend validates our hypothesis, but the scores fall beyond 30 neurons as a result of

overfitting—these networks memorised the original environment during training and therefore

were unable to perform when the game settings are modified.

However, there is no clear trend in scores with pipe height 105 since the testing

environment is significantly modified from the training environment and thus is too difficult for

the agent to operate in. We observe that the greater the extent to which the environment is

modified, the lower the effectiveness of the agent is.

5.1.3 Evaluation

The data from at least two of the three trials were often similar for each case, thus

enabling us to validate the reliability of the data. The data from pipe height 105 enabled us to

realise the limits of transfer learning while the data from pipe height 110 illustrated the optimal

range of neuron configurations to utilise.

21

5.2 Experiment 2: The effect of varying the number of generations trained

5.2.1 Experimental Data

Figure 12. Graph of the scores attained in the modified game settings when the number of generations is

varied from 150 to 200, with three different hidden neuron configurations6

In Figure 12, we see from the linear trendlines plotted that there is a universal tendency for

the score to increase as we increase the number of generations trained, although the extent to which

it varies differs. However, there are fluctuations due to large amounts of randomness propagating,

despite the graph being plotted from an average of experiments using three different seeds to

minimise this.

6 Refer to Appendices 9.3.6, 9.3.7, 9.3.8 (pages 66, 68, and 71 respectively)

22

Although all three curves follow an increasing trend, there is a greater degree of fluctuation

when 30 hidden-layer neurons are used, and the peaks are the tallest here. There are moderate

fluctuations with 2 hidden-layer neurons and minimal fluctuations with 15 hidden-layer neurons.

5.2.2 Result Analysis

The score increases with the number of generations due to two reasons. Firstly, the optimal

neurons crossover with other individuals to potentially form better individuals. Secondly, there is

a higher chance that a mutation would provide optimal genes to a random individual to overtake

the previous best individual.

The greater degree of fluctuation with 30 hidden-layer neurons suggests that there is greater

instability in their genes, which is expected as there are more possible combinations of weights

and biases. There is a moderate degree of fluctuation with 2 hidden-layer neurons due to the greater

relative importance of each weight, once again causing instability. The network with 15 hidden-

layer neurons shows minimal fluctuations due to striking a balance between these two behaviours.

5.2.3 Evaluation

Conducting the experiment with three different neuron configurations and attaining

similar results indicating a direct correlation between the number of generations and the score

validates our hypothesis for most ANNs. It also allows us to realise which situations the trade-off

in training time is worth the gain in score resulting from better-optimised ANNs.

23

6 Limitations and Potential Improvements

In this investigation, only three trials were used and their results averaged, which meant

that extremely-large or extremely-small anomalies skewed the resultant data significantly. To

counter this, a higher number of trials could be conducted and their median used instead of their

mean to curb the effect of outliers and ensure a more accurate result.

While the neural network saved at the 200th generation from each trial was compared in

this investigation, this provides a slight advantage to networks with lesser hidden-layer neurons as

their scores converge to 100 earlier, thus allowing them more opportunities to enhance their

performance. Furthermore, the score cap of 100 for each generation could be increased since the

agent attains this by chance rather than by skill in some trials.

The mutation rate can be set lower to prevent useful genes from inadvertently being

eliminated from the population. This, including increasing the number of individuals retained

through elitism, would reduce the rapid fluctuations of the fitness in the graph, although the

increase in score would take longer.

24

7 Conclusion

This investigation successfully explored how varying the number of hidden-layer neurons

and the number of generations trained affects the ability of an agent to adapt to a modified

environment.

Our hypothesis that the effectiveness of the agent in the modified environment improves

as the number of hidden-layer neurons increases was true to some extent. Although this trend was

upheld for small numbers, upon exceeding a certain limit, presumably determined by the

complexity of the relation between the inputs and outputs, the effectiveness dropped due to

overfitting. Furthermore, we observed that when the environment is modified to a greater extent,

there is no clear trend since the effectiveness is low for all hidden-layer configurations.

However, we also observed that as the number of hidden-layer neurons increases, the

training time also increases multifold. This limitation could offset any potential gain provided by

the marginal increase in effectiveness for some use cases.

The second experiment validated our hypothesis that as the number of generations we train

the neural network increases, its effectiveness in the modified environment improves. Yet, we

noticed that the extent to which this matters is non-constant and varies based on the neuron

configuration.

However, one significant limitation of this investigation was that only one game was used

and the environment was varied only by switching the height of the pipe gaps. In the case of Flappy

Bird, even one hidden-layer neuron is sufficient for the neural network to operate as the

relationship between the inputs and the output is simple, which means that increasing the number

of hidden-layer neurons makes it more complex and could lead to worse performance as well.

However, this may not be the case for games with greater complexity, and therefore further

25

experimentation is required before this finding can be generalised. Using more methods to vary

the environment would also allow us to be more certain of our results.

In this investigation, our inputs were limited to 5, and all the hidden-layer neurons were

placed in one layer. Future exploration into how the quantity and nature of the inputs to the neural

network or the number of hidden layers in the neural network affect its ability to perform in novel

environments can prove beneficial.

Therefore, the research question “To what extent is the ability of an intelligent agent to

operate in unfamiliar scenarios affected by the number of hidden-layer neurons in its neural

network and the number of generations it is trained for” can be concluded with this

investigation, which exhibits that the hidden-layer neurons and the number of generations do

affect the effectiveness of a neural network in new environments, although the degree of

correlation varies in certain cases.

26

8 Bibliography

Works Cited

Brustein, Joshua. “The Mysteries of Apps: Flappy Bird Shows That Dumb Luck Matters.”

Bloomberg.com, 7 February 2014, https://www.bloomberg.com/news/articles/2014-02-

07/the-mysteries-of-apps-flappy-bird-shows-that-dumb-luck-matters. Accessed 14

September 2022.

Chrabaszcz, Patryk, et al. “Back to Basics: Benchmarking Canonical Evolution Strategies for

Playing Atari.” 2018, pp. 1419–1426, https://www.ijcai.org/proceedings/2018/0197.pdf.

Accessed 20 June 2022.

Kwiatkowski, Robert. “Gradient Descent Algorithm — a deep dive.” Towards Data Science, 22

May 2021, https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-

cf04e8115f21. Accessed 18 January 2023.

Mallawaarachchi, Vijini. “Introduction to Genetic Algorithms — Including Example Code.”

Towards Data Science, 2017, https://towardsdatascience.com/introduction-to-genetic-

algorithms-including-example-code-e396e98d8bf3. Accessed 7 June 2022.

Mueller, John Paul, and Luca Massaron. Machine Learning For Dummies. Wiley, 2021.

Accessed 12 June 2022.

Wirsansky, Eyal. Hands-on Genetic Algorithms with Python: Applying Genetic Algorithms to

Solve Real-world Deep Learning and Artificial Intelligence Problems. Packt Publishing

Limited, 2020, https://www.packtpub.com/product/hands-on-genetic-algorithms-with-

python/9781838557744. Accessed 26 May 2022.

27

9 Appendix

9.1 Screenshot of conducting the experiment

Figure 13. Screenshot taken while conducting the experiment (Candidate).

9.2 Codebase used for experiment

(Adapted from https://github.com/cr00nkz/Sloppy-Block under the GPL3 licence by modifying

the genetic algorithm and neural network, modifying the game code, and including logging of

readings)

main.py

System / External Library Imports

import csv

import sys

https://github.com/cr00nkz/Sloppy-Block

28

import copy

import pygame

import random

import numpy as np

from time import time

Local imports

import bird

from pipe import Pipe

import cloud

Initialize constants

WIDTH = 640 # Game window width

HEIGHT = 480 # Game window height

BLOCKSIZE = 20 # Size for bounding box

VELOCITYGAIN = -13 # Downward acceleration of bird

Game settings

birdView = False # Set to false, if you don't want to see what the birds see

HIGHDETAILS = True # Set to false for efficiently training.

FPSSES = 1200 # Frames per second

PIPEHEIGHT = 120 # Initially 120 (trained on this) but changed to 120 for

new environment

SCORE_CAP = 100 # Usually after a score of 100 the agent will go on playing,

so we stop the execution here.

GENERATION_LIMIT = 200 # Usually after 200 generations the fitness values

stagnate and further progress is minimal.

Genetic algorithm parameters

29

BIRDS = 90 # Initial birds population size

MUTATION_RATE = 0.4

CROSSOVER_RATE = 0.4

ELITISM = True

SEED = None # None (to prompt for the seed) or an integer (for preset seed)

Execution mode

EVAL_MODE = False # Whether you are evaluating a neural network architecture

rather than training it

GEN_MODE = False # Whether number of generations experiment or number of

hidden layers experiment is taking place

Setting Seeds for Random

if not SEED: # Random seed

 SEED = int(input("Please enter seed: ")) # 14,4,26

random.seed(SEED)

np.random.seed(SEED)

bird.random.seed(SEED)

bird.np.random.seed(SEED)

Create csv files and enter headers

run_time = int(time())

if EVAL_MODE:

 with open(f"evaldata{run_time}.csv", "a") as f:

 writer = csv.writer(f, delimiter=',')

 writer.writerow(

 ["Time", "Seed", "Number of hidden layer neurons", "Generation",

"Pipe Height", "Score", "Best Fitness",

 "Median Fitness", "Mean Fitness"])

30

elif GEN_MODE:

 with open(f"evaldata{run_time}.csv", "a") as f:

 writer = csv.writer(f, delimiter=',')

 writer.writerow(

 ["Time", "Seed", "Number of hidden layer neurons",

"Generation", "Pipe Height", "Score", "Best Fitness",

 "Median Fitness", "Mean Fitness"])

else:

 with open(f"data{run_time}.csv", "w") as f:

 writer = csv.writer(f, delimiter=',')

 writer.writerow(

 ["Time", "Seed", "Number of hidden layer neurons", "Generation",

"Score", "Best Fitness", "Median Fitness",

 "Mean Fitness"])

 with open(f"players{run_time}.csv", "w") as f:

 writer = csv.writer(f, delimiter=',')

 writer.writerow(["Time", "Seed", "Number of hidden layer neurons",

"Generation", "Score", "Best Input Weights",

 "Best Hidden Weights"])

pygame initialization

pygame.init()

fps = pygame.time.Clock()

window = pygame.display.set_mode((WIDTH, HEIGHT), 0, 32)

pygame.display.set_caption('Flappy Bird')

blockPic = pygame.image.load("./img/block.png")

upperPipePic = pygame.image.load("./img/upperPipe.png")

lowerPipePic = pygame.image.load("./img/lowerPipe.png")

backgroundPic = pygame.image.load("./img/background.png")

31

cloudPic = pygame.image.load("./img/cloud.png")

pygame.display.set_icon(blockPic) # set Icon

GlobalVariable Setup

player = None

multiPlayer = []

pipes = []

clouds = []

score = 0

running = True

font = pygame.font.SysFont("comicsansms", 72)

littlefont = pygame.font.SysFont("comicsansms", 16)

generation = 1

birdsToBreed = []

highscore = 0

highgen = 0

allTimeBestBird = None

maxscore = 0

singlePlayer = None

globalFitness = 0.0

respawn = False

def init():

 """ Initialise the game. """

 global player, running, score, multiPlayer, singlePlayer, respawn

 # Initialize Pipes

32

 while len(pipes) > 0: # Reset existing pipes

 pipes.pop(0)

 init_pipe()

 init_pipe(w=WIDTH + WIDTH / 2)

 # Initialize clouds

 while len(clouds) > 0: # Reset existing clouds

 clouds.pop(0)

 init_cloud(w=0)

 init_cloud(w=WIDTH / 2)

 init_cloud(w=WIDTH)

 # Reset some global variables

 score = 0

 running = True

 if EVAL_MODE or GEN_MODE:

 agent = bird.Bird(HEIGHT, num=len(evalHiddenWeights))

 agent.setWeights(evalInputWeights, evalHiddenWeights)

 multiPlayer = [agent]

 return

 else:

 singlePlayer = bird.Bird(HEIGHT, num=num)

 if len(birdsToBreed) == 0: # This is the first init.

 for _ in range(BIRDS):

 multiPlayer.append(bird.Bird(HEIGHT, num=num))

 else:

 multiPlayer = []

33

 if ELITISM: # Keep the best bird of generation without mutation

 _ = bird.Bird(HEIGHT, num=num)

 _.setWeights(birdsToBreed[0].inputWeights,

 birdsToBreed[0].hiddenWeights)

 multiPlayer.append(_)

 # Rank-Based Selection

 sortedPlayers = sorted(birdsToBreed, key=lambda player:

player.fitness)

 totRanks = len(sortedPlayers) * (len(sortedPlayers) + 1) / 2 #

Sum of first N natural numbers formula

 wheel = {"players": [], "probabilities": []}

 for rank, player in enumerate(sortedPlayers, start=1):

 probability = rank / totRanks # Proportion of the wheel

represented by this player.

 wheel['players'].append(player)

 wheel['probabilities'].append(probability)

 selected_players = np.random.choice(wheel['players'], BIRDS -

len(multiPlayer), p=wheel['probabilities'])

 new_players = []

 for player in selected_players:

 # Blend Crossover

 if random.random() > CROSSOVER_RATE:

 player = bird.Bird(HEIGHT, player,

np.random.choice(selected_players), num=num)

 else:

 player = bird.Bird(HEIGHT, player, num=num)

 # Gaussian Mutation

34

 if random.random() > MUTATION_RATE:

 player.mutate()

 new_players.append(player)

 multiPlayer.extend(new_players)

def init_pipe(w=WIDTH):

 """Initializes a pipe, which will scroll in from the right side of the

screen. """

 dist = 0

 for pipe in pipes:

 dist = pipe.x

 return pipes.append(Pipe(w, HEIGHT, dist, pipeheight=PIPEHEIGHT))

def init_cloud(w=WIDTH):

 """ Initializes a cloud, which will scroll in from the right side of the

screen. """

 return clouds.append(cloud.Cloud(w, HEIGHT))

def draw(window):

 """ Drawws the game output """

 if HIGHDETAILS:

 # print background

 window.blit(backgroundPic, (0, 0))

35

 # print clouds

 for c in clouds:

 window.blit(cloudPic, (c.x, c.y))

 # print pipes

 for pipe in pipes:

 window.blit(upperPipePic, (pipe.x, pipe.upper_y - HEIGHT - 160))

 window.blit(lowerPipePic, (pipe.x, pipe.lower_y))

 else: # Low Detail mode.

 pygame.draw.rect(window, (0, 0, 0), (0, 0, WIDTH, HEIGHT))

 for pipe in pipes:

 pygame.draw.rect(window, (255, 0, 0), (pipe.x, 0, 30,

pipe.upper_y))

 pygame.draw.rect(window, (255, 0, 0), (pipe.x, pipe.lower_y, 30,

HEIGHT))

 drewBird = False

 for player in multiPlayer:

 if player.alive:

 if HIGHDETAILS:

 topleft = (BLOCKSIZE, player.y)

 rot = player.velocity * -5

 if rot < -90:

 rot = -90

 rotated_block = pygame.transform.rotate(blockPic, rot)

 new_rect = rotated_block.get_rect(

 center=blockPic.get_rect(topleft=topleft).center)

 window.blit(rotated_block, new_rect.topleft)

36

 if birdView: # Draw what the birds can see

 pygame.draw.line(window, (0, 255, 0),

 (20 + BLOCKSIZE / 2, player.y + BLOCKSIZE

/ 2),

 (BLOCKSIZE / 2 + player.distanceX,

 player.y + player.distanceTop))

 pygame.draw.line(window, (0, 0, 255),

 (20 + BLOCKSIZE / 2, player.y + BLOCKSIZE

/ 2),

 (BLOCKSIZE / 2 + player.distanceX,

 player.y + player.distanceBot))

 pygame.draw.line(window, (255, 255, 255),

 (20 + BLOCKSIZE / 2, player.y + BLOCKSIZE

/ 2),

 (20 + BLOCKSIZE / 2,

 player.y + BLOCKSIZE / 2 +

player.velocity))

 pygame.draw.line(window, (255, 255, 255),

 (20 + BLOCKSIZE / 2, player.y + BLOCKSIZE

/ 2),

 (20 + BLOCKSIZE / 2,

 player.y + BLOCKSIZE / 2 -

player.velocity))

 elif (not HIGHDETAILS) and (not drewBird):

 # Low detail mode - just one bird to draw

 pygame.draw.rect(window, (0, 255, 0),

 (20, player.y, BLOCKSIZE, BLOCKSIZE))

 drewBird = True

37

def draw_text(alive, score, highscore, fitness=None, gen=None, maxGen=None,

 noAlive=None, FPS=None):

 """Draw text on the screen. """

 textColor = (0, 0, 128)

 if not HIGHDETAILS:

 textColor = (0, 128, 0)

 if alive:

 text = font.render("Score {}".format(score), True, textColor)

 window.blit(text, (WIDTH / 2 - text.get_width() // 2, 0))

 text = littlefont.render("Fitness {}".format(round(fitness, 2)), True,

 textColor)

 window.blit(text, (WIDTH - text.get_width(), 0))

 text = littlefont.render("Generation {}".format(gen), True,

 textColor)

 window.blit(text, (WIDTH - text.get_width(), text.get_height()))

 text = littlefont.render("Highscore {}".format(round(maxscore, 2)),

 True, textColor)

 window.blit(text, (WIDTH - text.get_width(), text.get_height() * 2))

 text = littlefont.render("Best generation {}".format(maxGen), True,

 textColor)

 window.blit(text, (WIDTH - text.get_width(), text.get_height() * 3))

 text = littlefont.render("Birds alive {}".format(noAlive), True,

 textColor)

 window.blit(text, (WIDTH - text.get_width(), text.get_height() * 4))

 text = littlefont.render("Hidden Layer Neurons: {}"

38

 .format(num), True, textColor)

 window.blit(text, (WIDTH - text.get_width(), text.get_height() * 5))

 text = littlefont.render("Seed: {}".format(SEED), True, textColor)

 window.blit(text, (WIDTH - text.get_width(), text.get_height() * 6))

 text = littlefont.render("Mutation Rate: {}".format(MUTATION_RATE),

True, textColor)

 window.blit(text, (WIDTH - text.get_width(), text.get_height() * 7))

 text = littlefont.render("Crossover Rate: {}".format(CROSSOVER_RATE),

True, textColor)

 window.blit(text, (WIDTH - text.get_width(), text.get_height() * 8))

 else:

 text = font.render("Game over.", True, (128, 0, 0))

 window.blit(text, (WIDTH / 2 - text.get_width() // 2,

 HEIGHT / 2 - text.get_height() // 2))

 text = font.render("Score {}".format(score), True, (128, 0, 0))

 window.blit(text, (WIDTH / 2 - text.get_width() // 2, 0))

 text = littlefont.render("Highscore {}".format(round(highscore, 2)),

 True, (128, 0, 0))

 window.blit(text, (WIDTH - text.get_width(), text.get_height() * 2))

if EVAL_MODE:

 filename = input("Enter path to players CSV file") # CSV file where

player details are stored.

 with open(filename, "r") as f:

 reader = list(csv.reader(f, delimiter=','))

 num = reader[1][2]

 for row in reader[1:]:

39

 if str(row[3]) == "200": # 200th generation

 evalInputWeights = eval(row[5].replace("array", "np.array"))

 evalHiddenWeights = eval(row[6].replace("array", "np.array"))

 break

elif GEN_MODE:

 filename = input("Enter path to players CSV file") # CSV file where

player details are stored.

 eval_individuals = []

 hundreds_in_a_row = 0

 with open(filename, "r") as f:

 reader = list(csv.reader(f, delimiter=','))

 num = reader[1][2]

 for row in reader[1:]:

 if hundreds_in_a_row >= 3: # Make sure population has converged

before evaluating it.

 generation = int(row[3])

 evalInputWeights = eval(row[5].replace("array", "np.array"))

 evalHiddenWeights = eval(row[6].replace("array", "np.array"))

 eval_individuals.append((generation,evalInputWeights,

evalHiddenWeights))

 if str(row[4]) == "100":

 hundreds_in_a_row += 1

else:

 num = int(input("Enter number of neurons in hidden layer:")) # Number of

neurons in hidden layer

40

if not GEN_MODE:

 eval_individuals = [None]

for individual in eval_individuals:

 if individual:

 generation, evalInputWeights, evalHiddenWeights = individual

 init()

 while True: # the game loop.

 draw(window) # Draw the fancy things.

 currentfitness = 0.0

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 sys.exit()

 if running: # At least one bird is alive

 # Move clouds

 for c in clouds:

 c.move_left()

 if c.x < -140: # Cloud out of screen. Spawn new cloud.

 init_cloud()

 clouds.pop(0)

 # Pipe Handling including collision check

 for p in pipes:

 if p.x < -30: # Pipe out of screen. Spawn new pipe.

 pipes.pop(0)

41

 init_pipe()

 score += 1 # We passed a pipe

 for player in multiPlayer: # Reward living birds

 if player.alive:

 player.fitness += 3

 p.move_left() # Move the pipe to the left

 noAlive = 0

 p = pipes[0] # Closest pipe

 for player in multiPlayer:

 if player.alive:

 if not (EVAL_MODE or GEN_MODE):

 if score >= SCORE_CAP:

 player.alive = False

 player.velocity += 1

 player.handleCollision(HEIGHT, BLOCKSIZE, p) # Did the

bird collide with anything?

 if player.alive:

 player.y += player.velocity

 noAlive += 1

 # Update what the bird sees to make decisions

 player.processBrain(p.upper_y, p.lower_y, p.x)

 currentfitness = player.fitness

 globalFitness = player.fitness

42

 # Jump or not?

 if player.thinkIfJump():

 player.velocity = VELOCITYGAIN

 if noAlive == 0:

 running = False # Game over.

 # Report new high score if previous high score is exceeded

 for i in range(len(multiPlayer)):

 player = multiPlayer[i]

 if (player.fitness > highscore) and (not player.bestReported):

 player.bestReported = True

 # Draw score and information

 draw_text(alive=True, fitness=currentfitness, gen=generation,

 maxGen=highgen, noAlive=noAlive, FPS=FPSSES,

score=score,

 highscore=maxscore)

 else: # Player is dead

 if EVAL_MODE or GEN_MODE:

 time_ = int(time())

 fitness_values = [player.fitness for player in multiPlayer]

 with open(f"evaldata{run_time}.csv", "a") as f:

 writer = csv.writer(f, delimiter=',')

 writer.writerow([time_, SEED, num, generation, PIPEHEIGHT,

score, round(max(fitness_values), 2),

 round(np.median(fitness_values), 2),

round(np.mean(fitness_values), 2)])

43

 break

 if (score > 0) or (maxscore > 0) or (globalFitness > 0.2):

 # Only if at least one bird made it through one pipe

 birdsToBreed = []

 for h in range(2): # Best two birds are taken

 bestBird = -1

 bestFitness = -10

 for i in range(len(multiPlayer)): # Find the best bird

 player = multiPlayer[i]

 if player.fitness > bestFitness:

 bestFitness = player.fitness

 bestBird = i

 if bestFitness >= highscore:

 highscore = bestFitness

 if (h == 1) and (bestFitness >= highscore): # New best

performing bird

 allTimeBestBird = multiPlayer[bestBird]

 bestInputWeights = copy.deepcopy(

 multiPlayer[bestBird].inputWeights)

 bestHiddenWeights = copy.deepcopy(

 multiPlayer[bestBird].hiddenWeights)

 highscore = bestFitness

 highgen = generation

 maxscore = score

 for j in range(len(multiPlayer)):

 birdsToBreed.append(copy.deepcopy(multiPlayer[j]))

 time_ = int(time())

44

 fitness_values = [player.fitness for player in multiPlayer]

 with open(f"data{run_time}.csv", "a") as f:

 writer = csv.writer(f, delimiter=',')

 writer.writerow([time_, SEED, num, generation, score,

max(fitness_values), np.median(fitness_values),

 np.mean(fitness_values)])

 with open(f"players{run_time}.csv", "a") as f:

 writer = csv.writer(f, delimiter=',')

 try:

 writer.writerow([time_, SEED, num, generation, score,

repr(bestInputWeights), repr(bestHiddenWeights)])

 except:

 writer.writerow([time_, SEED, num, generation, score,

repr(multiPlayer[0].inputWeights), repr(multiPlayer[0].hiddenWeights)])

 if generation == GENERATION_LIMIT:

 print("Completed.")

 break

 generation += 1

 init() # Here we go again

 # pygame updates

 pygame.display.update()

 fps.tick(FPSSES)

bird.py

import numpy as np

import random

45

class Bird:

 """ Models a bird/player, its attributes and its methods """

 def __init__(self, height, parent1=None, parent2=None, num=3):

 """ Constructs a bird, with num as the number of hidden layer neurons.

"""

 self.bestReported = False

 self.y = height / 2

 self.velocity = 0

 self.distanceBot = 0

 self.distanceTop = 0

 self.distanceX = 0

 self.distanceGround = 0

 self.distanceCeil = 0

 self.fitness = 0

 self.alive = True

 if parent1 == None and parent2 == None: # New Bird, no parents

 self.inputWeights = np.random.normal(0, scale=0.1, size=(5, num))

 self.hiddenWeights = np.random.normal(0, scale=0.1, size=(num, 1))

 elif parent1 != None and parent2 == None: # Duplicate the single

parent

 self.inputWeights = parent1.inputWeights

 self.hiddenWeights = parent1.hiddenWeights

 else: # Two parents - Crossover.

 self.inputWeights = np.random.normal(0, scale=0.1, size=(5, num))

46

 self.hiddenWeights = np.random.normal(0, scale=0.1, size=(num, 1))

 self.crossover(parent1, parent2)

 def processBrain(self, pipeUpperY, pipeLowerY, pipeDistance):

 """ Updates what the bird sees. """

 self.distanceTop = pipeUpperY - self.y

 self.distanceBot = pipeLowerY - self.y

 self.distanceX = pipeDistance

 self.fitness += 0.01

 def handleCollision(self, HEIGHT, BLOCKSIZE, pipe):

 """ Checks if the bird hits the upper bounds, lower bounds or a pipe.

"""

 # Check if player collided with upper or lower pipe

 if ((pipe.x >= 20) and (pipe.x <= 20 + BLOCKSIZE)) or ((pipe.x + 20 >=

20) and (pipe.x + 20 <= 20 + BLOCKSIZE)):

 if self.alive and ((self.y <= pipe.upper_y) or (self.y + BLOCKSIZE

>= pipe.lower_y)):

 self.alive = False

 self.fitness -= 1

 # Check if bird collided with the ground/ceiling

 if self.y + self.velocity > HEIGHT - BLOCKSIZE: # LowerBounds

 self.y = HEIGHT - BLOCKSIZE

 self.alive = False

 self.fitness -= 1

 elif self.y + self.velocity < 1: # UpperBounds

 self.y = 0

 self.velocity = 0

47

 self.alive = False

 self.fitness -= 1

 def thinkIfJump(self):

 """Forward pass through neural network, giving the decision if the

bird should jump. """

 X = [self.y, self.distanceBot, self.distanceTop, self.distanceX,

 self.velocity]

 hidden_layer_in = np.dot(X, self.inputWeights)

 hidden_layer_out = self.sigmoid(hidden_layer_in)

 output_layer_in = np.dot(hidden_layer_out, self.hiddenWeights)

 prediction = self.sigmoid(output_layer_in)

 if prediction > 0.5:

 return True

 else:

 return False

 def setWeights(self, inputWeights, hiddenWeights):

 """ Overwrites the current weights of the bird's neural network. """

 self.inputWeights = inputWeights

 self.hiddenWeights = hiddenWeights

 def crossover(self, male, female, alpha=0.5):

 """Generate a new neural network from two parent birds using Blend

Crossover """

 for i in range(len(self.inputWeights)):

 for j in range(len(self.inputWeights[i])):

48

 range_ = abs(female.inputWeights[i][j] -

male.inputWeights[i][j])

 lower = min(female.inputWeights[i][j],

male.inputWeights[i][j]) - alpha * range_

 upper = max(female.inputWeights[i][j],

male.inputWeights[i][j]) + alpha * range_

 self.inputWeights[i][j] = lower + random.random() * (upper -

lower)

 for i in range(len(self.hiddenWeights)):

 for j in range(len(self.hiddenWeights[i])):

 range_ = abs(female.hiddenWeights[i][j] -

male.hiddenWeights[i][j])

 lower = min(female.hiddenWeights[i][j],

male.hiddenWeights[i][j]) - alpha * range_

 upper = max(female.hiddenWeights[i][j],

male.hiddenWeights[i][j]) + alpha * range_

 self.hiddenWeights[i][j] = lower + random.random() * (upper -

lower)

 def mutate(self):

 """ Mutate the neural network by randomly changing the individual

weights """

 for i in range(len(self.inputWeights)):

 for j in range(len(self.inputWeights[i])):

 self.inputWeights[i][j] =

self.getMutatedGene(self.inputWeights[i][j])

 for i in range(len(self.hiddenWeights)):

49

 for j in range(len(self.hiddenWeights[i])):

 self.hiddenWeights[i][j] =

self.getMutatedGene(self.hiddenWeights[i][j])

 @staticmethod

 def sigmoid(x):

 """ The sigmoid activation function for the neural network """

 return 1 / (1 + np.exp(-x))

 @staticmethod

 def getMutatedGene(weight):

 """ Apply Gaussian Mutation to a single weight """

 learning_rate = random.randint(0, 25) * 0.005

 mutatedWeight = random.gauss(weight, learning_rate)

 return mutatedWeight

pipe.py

import random

class Pipe:

 """ Models an in-game pipe pair. """

 def __init__(self, screen_width, screen_height, distanceToOldPipe,

pipeheight):

50

 """The constructor of a pipe pair (the obstacle the bird has to fly

through). """

 top = random.randint(0, screen_height - 100)

 self.upper_y = random.randint(0, screen_height - 140)

 self.lower_y = self.upper_y + pipeheight

 # Randomize distance of pipes so the bird can learn better

 self.x = distanceToOldPipe / 4 + screen_width + random.randint(0, 15)

 def move_left(self):

 """ Move the pipe to the left when a frame is processed. """

 self.x -= 4

cloud.py

import random

class Cloud:

 """ Models an in-game cloud. """

 def __init__(self, WIDTH, HEIGHT):

 """ The constructor of a cloud """

 self.x = WIDTH + 140 + random.randint(0, 140)

 self.y = random.randint(0, int(HEIGHT/2))

 self.TICKLIMIT = 5

 self.moveTick = 0

51

 def move_left(self):

 """ Move the cloud every five frames from right to left """

 if self.moveTick > self.TICKLIMIT:

 self.x -= 1

 self.moveTick += 1

9.3 Data Tables

9.3.1 Hidden-Layer Neurons vs Training Time

Number of hidden layer

neurons

Average number of

generations required to train

Seed 1:

4

Seed 2:

26

Seed 3:

30

1 29 26 25 37

2 49 44 45 59

3 38 26 46 41

5 86 77 68 114

8 67 67 81 53

10 66 46 53 100

15 96 79 66 143

20 142 109 161 156

25 109 75 150 101

30 141 162 94 167

35 130 167 111 111

52

9.3.2 Max, Median and Mean Fitness for 1 Hidden Layer Neuron (Seed: 14)

Generation Max Fitness Median Fitness Mean Fitness

1 0.52 -0.79 -0.71

2 0.51 -0.79 -0.67

3 0.52 -0.78 -0.62

4 0.28 -0.78 -0.65

5 0.52 -0.78 -0.40

6 0.54 -0.78 -0.45

7 4.12 -0.29 -0.13

8 28.45 0.51 0.52

9 20.62 0.54 0.51

10 4.75 0.40 0.24

11 0.56 0.53 -0.04

12 4.81 0.36 0.14

13 16.45 0.50 0.74

14 4.73 0.51 0.48

15 24.48 0.51 1.04

16 36.37 0.50 1.30

17 44.28 0.53 5.13

18 52.26 -0.79 0.54

19 106.94 0.57 4.79

20 51.52 0.54 2.38

21 71.34 0.39 1.53

53

22 99.23 0.58 6.23

23 376.71 2.35 11.15

24 269.61 0.61 9.80

25 397.24 0.54 9.25

26 75.95 0.59 3.84

27 258.39 0.51 10.41

28 24.50 2.26 6.30

29 190.14 4.82 14.66

30 103.70 3.96 9.19

31 119.60 0.62 9.62

32 194.89 0.55 10.04

33 127.53 3.96 9.44

34 397.12 4.73 25.30

35 397.29 0.53 8.70

36 174.57 4.81 18.59

37 397.31 4.79 17.81

38 95.92 6.68 15.43

39 397.39 4.01 25.02

40 397.23 4.75 29.66

41 397.26 4.76 32.24

42 397.35 4.73 31.41

43 397.31 4.75 26.88

44 397.20 2.21 25.04

54

45 397.28 4.78 63.13

46 397.18 8.55 82.85

47 397.26 12.65 53.88

48 397.30 8.51 52.87

49 397.13 0.55 66.14

50 397.20 4.81 67.21

51 397.25 4.78 63.07

52 397.30 8.58 49.82

53 397.29 0.54 19.16

54 397.29 8.54 60.23

55 397.13 8.59 66.11

56 397.29 12.63 96.62

57 397.26 4.76 67.88

58 397.22 18.52 92.63

59 397.25 18.55 76.09

60 397.25 4.76 59.07

61 397.20 8.52 73.86

62 397.11 12.61 90.74

63 397.29 8.51 75.43

64 397.26 20.57 92.18

65 397.16 12.64 74.19

66 397.23 20.55 132.49

67 397.10 32.46 127.96

55

68 397.17 12.70 106.83

69 397.23 20.50 107.34

70 397.21 22.52 117.55

71 397.26 20.55 93.34

72 397.30 18.56 96.79

73 397.25 12.65 88.94

74 397.12 6.67 90.38

75 397.28 36.44 107.56

76 397.12 22.55 126.08

77 397.23 66.15 170.81

78 397.23 77.96 169.01

79 397.28 40.42 132.66

80 397.22 36.32 141.56

81 397.21 32.37 130.49

82 397.22 32.37 118.59

83 397.15 46.30 136.56

84 397.32 28.51 127.76

85 397.19 24.28 148.00

86 397.32 68.13 167.34

87 397.37 260.45 210.76

88 397.28 113.66 187.74

89 397.23 76.01 165.83

90 397.21 167.14 198.99

56

91 397.20 260.29 223.86

92 397.26 397.26 230.83

93 397.26 141.45 207.38

94 397.21 147.32 207.85

95 397.13 234.42 217.92

96 397.18 103.78 192.86

97 397.29 387.31 237.15

98 397.37 36.45 168.21

99 397.18 115.66 188.81

100 397.27 397.27 237.73

101 397.22 397.22 232.89

102 397.34 397.34 283.69

103 397.25 397.25 305.54

104 397.28 397.28 281.48

105 397.21 52.22 177.42

106 397.31 232.53 220.67

107 397.31 397.31 252.73

108 397.28 397.28 246.93

109 397.12 97.77 182.50

110 397.24 79.71 167.45

111 397.25 288.07 229.68

112 397.40 163.04 211.53

113 397.21 335.72 225.13

57

114 397.22 397.22 220.14

9.3.3 Max, Median and Mean Fitness for 15 Hidden Layer Neurons (Seed: 14)

Generation Max Fitness Median Fitness Mean Fitness

1 0.52 -0.78 -0.65

2 0.51 -0.78 -0.64

3 4.73 -0.78 -0.54

4 4.82 -0.78 -0.50

5 0.51 -0.78 -0.52

6 4.90 -0.78 -0.38

7 12.64 -0.78 -0.28

8 7.99 -0.78 -0.15

9 8.56 -0.78 -0.17

10 4.15 -0.78 -0.52

11 16.42 -0.78 -0.08

12 4.73 -0.78 -0.46

13 20.57 -0.78 -0.02

14 16.57 -0.78 -0.03

15 4.53 -0.78 -0.37

16 4.73 -0.78 -0.18

17 4.63 -0.78 -0.24

18 20.49 -0.78 -0.01

58

19 12.50 -0.60 0.28

20 11.83 -0.78 0.05

21 27.64 -0.16 0.48

22 7.97 -0.78 -0.02

23 27.80 0.29 0.32

24 4.78 -0.78 -0.11

25 155.25 -0.78 3.04

26 3.91 -0.78 -0.30

27 8.55 -0.77 0.02

28 8.54 -0.76 0.03

29 4.83 -0.21 -0.09

30 12.07 -0.54 0.05

31 8.02 0.03 0.07

32 12.67 -0.13 0.41

33 4.79 -0.77 -0.19

34 16.51 -0.19 0.44

35 8.50 -0.02 0.44

36 32.43 0.53 0.61

37 64.10 0.54 0.85

38 48.23 0.53 1.80

39 16.57 0.53 0.68

40 0.59 -0.51 -0.17

41 20.54 0.51 0.74

59

42 28.49 0.51 0.70

43 8.56 0.43 1.00

44 4.75 0.51 0.65

45 4.74 0.53 0.87

46 32.41 0.52 1.88

47 8.52 0.54 0.78

48 4.75 0.53 0.75

49 64.16 0.50 1.51

50 4.75 0.51 0.39

51 28.49 0.52 2.43

52 48.26 0.52 2.37

53 64.08 0.51 5.86

54 28.48 0.52 2.40

55 60.14 0.54 3.76

56 60.15 0.52 3.04

57 28.51 0.54 2.17

58 56.22 0.59 4.19

59 357.39 0.53 12.03

60 40.31 0.54 4.66

61 68.05 0.57 4.75

62 43.33 0.58 5.15

63 36.39 0.50 3.02

64 52.33 2.22 7.36

60

65 52.24 4.74 7.71

66 48.28 2.73 8.73

67 48.20 0.60 4.35

68 44.39 0.52 3.90

69 51.50 4.75 7.20

70 20.51 0.63 4.50

71 194.94 2.66 7.33

72 83.86 0.61 5.91

73 48.30 0.61 5.37

74 63.39 4.77 9.08

75 20.60 0.56 3.53

76 91.87 4.74 7.21

77 40.41 4.83 11.18

78 385.08 4.77 10.39

79 329.66 4.74 13.28

80 40.44 8.52 9.08

81 36.36 4.78 5.80

82 127.66 4.02 7.87

83 68.07 4.78 8.53

84 95.86 4.76 8.81

85 24.53 0.62 3.70

86 59.42 4.82 12.29

87 40.32 4.79 8.93

61

88 68.08 0.60 6.10

89 246.47 4.11 8.77

90 76.01 4.75 7.72

91 32.47 4.77 5.98

92 68.13 0.55 4.14

93 68.10 4.76 7.01

94 64.20 2.69 5.58

95 95.83 0.60 10.86

96 72.00 4.12 7.36

97 356.78 4.81 15.53

98 281.47 0.63 11.75

99 210.76 4.82 18.86

100 214.64 4.79 18.01

101 397.18 8.52 17.27

102 139.36 4.76 11.35

103 80.03 12.62 15.43

104 151.32 8.50 16.55

105 158.52 10.61 22.80

106 87.83 4.78 9.33

107 397.29 4.79 15.68

108 76.08 2.66 7.86

109 68.05 4.81 12.68

110 76.03 4.74 7.83

62

111 91.79 0.59 13.79

112 83.95 8.55 17.56

113 60.11 4.76 10.23

114 397.23 4.80 13.49

115 397.29 6.66 23.09511111

116 397.2 18.56 31.514

117 397.19 4.84 33.77911111

118 397.23 8.49 37.30044444

119 397.19 8.53 33.41055556

120 397.2 6.35 51.43011111

121 397.32 8.525 63.45177778

122 397.17 24.5 65.30333333

123 397.28 12.685 62.49033333

124 397.23 8.6 49.53544444

125 397.21 12.64 90.668

126 397.12 20.56 98.02044444

127 397.27 34.48 120.0878889

128 397.24 53.82 151.6648889

129 397.12 36.38 133.5595556

130 397.3 84.04 167.3923333

131 397.14 36.44 164.6716667

132 397.31 187.035 211.6618889

133 397.27 234.54 218.6645556

63

134 397.23 232.19 228.5846667

135 397.21 397.21 251.8702222

136 397.18 200.815 210.685

137 397.34 397.34 267.2154444

138 397.32 397.32 248.1885556

139 397.25 397.25 268.2436667

140 397.16 157.265 199.856

141 397.19 374.82 240.1583333

142 397.32 397.32 248.7101111

143 397.29 397.29 289.1445556

144 397.28 397.28 269.571

145 397.21 397.21 300.5576667

146 397.18 397.18 305.3174444

147 397.21 397.21 230.4615556

148 397.3 397.3 267.1468889

149 397.27 397.27 264.0756667

150 397.22 397.22 267.5594444

151 397.22 397.22 270.3647778

152 397.15 397.15 289.0781111

153 397.18 397.18 246.3966667

154 397.18 397.18 257.4742222

155 397.39 347.76 244.0626667

156 397.26 397.26 286.964

64

157 397.21 397.21 269.8262222

158 397.25 397.25 291.7905556

159 397.2 397.2 302.0175556

160 397.2 397.2 275.9645556

161 397.27 397.27 301.334

162 397.2 397.2 314.7288889

163 397.25 397.25 282.5782222

164 397.21 397.21 276.6954444

165 397.24 287.72 223.9163333

166 397.15 397.15 284.5931111

167 397.27 397.27 274.158

168 397.27 397.27 278.7238889

169 397.26 397.26 315.345

170 397.26 397.26 289.3608889

171 397.24 397.24 304.7337778

172 397.31 397.31 283.4957778

173 397.24 397.24 315.8652222

174 397.16 397.16 343.1457778

175 397.13 397.13 307.2334444

176 397.13 397.13 306.6426667

177 397.28 397.28 331.5072222

178 397.2 397.2 319.8943333

179 397.24 397.24 321.0216667

65

9.3.4 Score attained in modified game settings when varying hidden layer

neurons (Pipe Height 110)

Number of hidden layer

neurons

Score attained in modified

game settings

Seed 1: 4 Seed 2: 26 Seed 3: 30

1 32 16

464

(Anomaly) 47

2 34 5 67 30

3 14 6 0 36

5 1 3 0 1

8 10 9 21 1

10 4 5 3 4

15 34 4 34 64

20 22 22 24 21

25 41 78 42 3

30 2 2 0 5

35 3 8 0 0

40 9 23 0 3

45 4 8 2 1

9.3.5 Score attained in modified game settings when varying hidden layer

neurons (Pipe Height 105)

Number of hidden layer

neurons

Score attained in modified

game settings

Seed 1: 4 Seed 2: 26 Seed 3: 30

1 2 2 1 4

2 7 2 1 19

66

3 1 0 0 2

5 1 2 0 1

8 2 4 1 1

10 3 4 3 2

15 3 4 0 4

20 2 1 0 5

25 2 5 0 0

30 1 3 0 1

35 3 3 0 7

40 1 3 0 1

45 2 3 1 1

9.3.6 Score attained in modified game settings when varying generations (2

Hidden Layer Neurons)

Number of generations

trained for

Score attained in modified

game settings

Seed 1: 4 Seed 2: 26 Seed 3: 30

150 4 1 12 0

151 5 1 7 8

152 12 11 20 4

153 20 10 48 1

154 4 3 8 1

155 3 2 8 0

156 27 0 63 19

157 3 0 1 7

158 1 1 1 0

67

159 7 0 14 6

160 10 8 15 6

161 5 2 5 8

162 4 2 5 6

163 7 2 14 4

164 9 0 26 0

165 3 1 8 0

166 11 1 29 4

167 3 3 4 3

168 5 10 0 6

169 3 2 7 0

170 15 2 20 22

171 8 1 23 1

172 2 0 5 1

173 8 2 17 5

174 7 3 16 1

175 14 2 37 4

176 8 0 24 1

177 6 1 9 8

178 5 7 3 4

179 1 2 0 0

180 13 3 34 2

181 38 4 105 4

182 5 3 9 3

183 8 0 22 1

68

184 4 3 6 2

185 12 3 33 1

186 9 11 14 1

187 5 2 12 1

188 4 1 10 2

189 3 4 2 4

190 4 4 5 2

191 1 1 3 0

192 15 0 29 16

193 37 0 5 106

194 9 8 5 15

195 30 3 25 63

196 30 5 21 63

197 31 0 11 83

198 23 1 1 68

199 14 2 9 30

200 6 3 2 14

9.3.7 Score attained in modified game settings when varying generations (15

Hidden Layer Neurons)

Number of generations

trained for

Score attained in modified

game settings

Seed 1: 4 Seed 2: 26 Seed 3: 30

150 4 4 2 7

151 5 7 4 3

152 4 4 4 3

69

153 4 4 0 7

154 3 2 7 0

155 4 6 5 1

156 2 2 3 0

157 4 1 1 9

158 2 6 0 0

159 2 2 1 2

160 4 7 3 1

161 3 1 9 0

162 2 2 4 1

163 5 2 14 0

164 1 1 0 2

165 4 12 1 0

166 1 0 3 0

167 7 12 4 5

168 3 1 4 3

169 4 11 0 2

170 5 5 3 7

171 5 1 11 2

172 9 8 17 1

173 3 0 0 10

174 4 4 6 2

175 2 1 1 5

176 3 3 7 0

177 9 7 1 20

70

178 2 0 0 6

179 15 0 0 44

180 2 4 0 3

181 2 5 1 1

182 6 1 7 10

183 8 1 2 20

184 5 1 3 11

185 3 1 1 6

186 3 1 0 7

187 11 11 3 20

188 13 9 8 21

189 25 20 28 28

190 5 6 0 8

191 3 1 8 1

192 9 1 2 24

193 6 2 3 12

194 6 4 3 10

195 12 1 12 24

196 11 0 13 19

197 20 4 4 51

198 5 1 1 14

199 28 13 2 70

200 10 1 1 27

71

9.3.8 Score attained in modified game settings when varying generations (30

Hidden Layer Neurons)

Number of generations

trained for

Score attained in modified

game settings

Seed 1: 4 Seed 2: 26 Seed 3: 30

150 24 13 3 57

151 7 1 4 15

152 12 0 6 30

153 20 0 8 51

154 10 0 2 27

155 16 0 13 36

156 3 0 6 3

157 1 0 3 1

158 8 12 2 9

159 11 0 25 8

160 6 0 2 16

161 2 0 6 1

162 7 0 11 10

163 10 5 13 11

164 12 2 1 34

165 4 6 5 1

166 13 6 2 30

167 3 6 1 3

168 24 3 12 56

169 3 4 3 1

170 20 27 2 31

72

171 8 5 9 9

172 12 0 9 26

173 23 16 2 51

174 8 12 1 10

175 20 54 4 3

176 11 24 4 6

177 15 30 5 11

178 20 9 27 24

179 10 23 2 4

180 7 11 2 8

181 23 52 2 16

182 16 29 3 16

183 29 44 19 25

184 24 46 6 20

185 30 63 6 20

186 11 18 12 3

187 9 3 4 21

188 16 16 1 31

189 24 54 9 9

190 51 135 11 8

191 11 20 7 6

192 18 29 12 12

193 31 53 32 9

194 4 2 4 6

195 60 156 5 18

73

196 53 150 5 5

197 7 16 1 4

198 6 8 1 8

199 4 1 0 12

200 18 14 7 34

	1 Introduction
	2 Theoretical Background
	2.1 Genetic Algorithms (GAs)
	2.2 Artificial Neural Networks (ANNs)
	2.3 Flappy Bird

	3 Experimental Methodology
	3.1 Tuning the parameters of an Artificial Neural Network using a Genetic Algorithm
	3.2 Architecture of the Artificial Neural Network controlling the bird
	3.3 Parameters of the Genetic Algorithm
	3.4 Experimental Design
	3.5 Experimental Procedure
	3.5.1 Experimental Setup
	3.5.2 Experiment 1: Varying the number of neurons in the hidden layer
	3.5.3 Experiment 2: Varying the number of generations trained

	4 Hypothesis
	5 Experimental Results and Analysis
	5.1 Experiment 1: The effect of varying the number of hidden-layer neurons
	5.1.1 Experimental Data
	5.1.2 Result Analysis
	5.1.3 Evaluation

	5.2 Experiment 2: The effect of varying the number of generations trained
	5.2.1 Experimental Data
	5.2.2 Result Analysis
	5.2.3 Evaluation

	6 Limitations and Potential Improvements
	7 Conclusion
	8 Bibliography
	9 Appendix
	9.1 Screenshot of conducting the experiment
	9.2 Codebase used for experiment
	9.3 Data Tables

