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1 Introduction

The ability of a computer to study and analyze language seems perplexing; when presented
with text the system must be able to find three key pieces of information: the meanings of
words, the way in which words are arranged in a sentence, and the context of the words.
While this may seem familiar to a human, for a computer this poses a challenge. The
three aforementioned types of information are known as semantic, syntax, and context
information respectively, and combined they form the basis of natural language processing

(Barba).

Natural language processing (NLP) is essentially the application of various algorithms
and statistical models with the aim of analyzing language and making conclusions. Two
key domains of NLP are information retrieval and text classification; the former is the
ability to extract information from text, while the latter is the ability to classify text into
distinct categories. Statistical models for NLP have been applied for several decades,
but the advent of new technology has allowed these models to be applied on a large
scale. With the rise of the Internet came an exponential growth in online publications, but
such publications would be rendered pointless if they could not be retrieved in an efficient
manner. Although most of the algorithms used nowadays are relatively simple in nature,
such simplicity is what makes them powerful. These algorithms are in fact used by some
of the most well-known search engines such as Google to match Web pages to a search

query based on their relevance (Manning et al. xxxi-xxxii).

Before any string similarity algorithms can be applied to text, the text must be converted
into a numerical format that a computer can easily manipulate. One way of accomplishing
this is to count the number of times a word occurs in a piece of text (a document); this is
known as the raw term frequency of the word. The problem with raw term frequency is
that it only applies on the level of one document, and it does not account for the relevance

of a word compared to other documents in the collection. Such a collection is referred to



as the corpus, and the set of all words that appear in the corpus at least once is known
as the dictionary. The issues faced with raw term frequency can be rectified by instead
quantifying words using a numerical statistic known as the TF-IDF (Term Frequency,
Inverse Document Frequency) score, which favors words that are not only common in
documents but can also be used to uniquely identify specific documents (Manning et al.

117-119).

This paper is a comparative study that answers the research question of: “To what extent
is the TF-IDF score a reliable means of classifying text and predicting job titles?” To
investigate this, two different string similarity algorithms were applied to a use case of
matching job descriptions to a universal set of job titles. Each algorithm was run twice -
once using raw term frequencies and once using TF-IDF scores. The goal of this study
is to identify how much stronger of an indicator the TF-IDF score is as a way to quantify

words in a corpus, compared to raw term frequency.



2 Background

2.1 The Situation

The data for this study was collected from an employment search company which faces
the issue of ambiguity and/or vagueness with respect to job titles. This is because of
a lack of international standards for job titles coupled with the fact that employers may
provide a generic title. For example, titles such as “engineer” and “manager” do not provide
enough detail for a job seeker. Therefore, a machine learning and NLP-based solution was
implemented to analyze job descriptions and predict the best-matching job title. There is
a wide range of algorithms that can be used to solve this problem, two of which will be

explored in this paper: the weighted sum of scores, and the cosine similarity algorithm.

2.2 Calculating Raw Term Frequency

The raw term frequency of a word is simply the number of occurrences of a word in the
document of interest. It does not account for document length, meaning that a word
occurring 10 times in a 100-word document will have the same raw term frequency score
as a word occurring 10 times in a 10,000-word document. This is one of the main flaws
with raw term frequency. Nonetheless, since more relevant words are likely to be more
common, raw term frequency is still a reliable way to weigh words based on their relevance

(Jain).

Raw term frequency uses what is known as the bag of words approach of information
retrieval. With this approach, the order of the words in a document is ignored (Brownlee).
For example, although the sentences “Alice is taller than Bob” and “Bob is taller than Alice”

have opposite meanings, they will be considered identical with the bag of words approach.

The raw term frequency of a word = in a document d is usually denoted as f,,.



2.3 Calculating TF-IDF

TF-IDF is a numerical statistic that applies some of the shortcomings of raw term frequency
to develop a more refined and meaningful indicator. TF-IDF is maximized for words that
occur frequently in any one document but can only be found in that document and not
any others. Therefore, words with higher TF-IDF scores for a certain document can be
used to uniquely identify that document. This scoring system also uses the bag of words
approach, since it treats each word individually and not as part of a sentence. The TF-IDF
score of a word is determined by two parameters, the term frequency (t f) and the inverse

document frequency (idf), which are multiplied together to result in a TF-IDF value (Jain).

Similarly to raw term frequency, the tf parameter is a measure of how common a word
is in any given document. Each word in the dictionary has a different ¢ f value for each
document. The experiments in this study utilized the sublinear t f, which rescales the raw
term frequency values on a logarithmic scale. This is in order to mitigate the effects of
highly recurring words that are not necessarily relevant. The sublinear tf of a word x in

document d is given by the following:

where f,,; is the raw term frequency as described previously.

Certain words may appear very frequently within one document, but that alone does
not provide enough context as to how relevant the words are with respect to the entire
corpus. Therefore, another parameter must be considered, which is the inverse document
frequency. This parameter is built on the premise that a word that is unique to one
document strongly signifies that document, but words that occur in many documents
cannot be used to differentiate the documents (Manning et al. 118-119). Each word in the

dictionary only has one idf value, which accounts for all of the documents in the corpus.



The idf of a word x is given by the following:

1+ N
1+n

idf, =1+ In

where N is the total number of documents in the corpus, and n is the number of documents
in which the word x can be found at least once. There are many variations of this formula;
the formula given here is what the SciKit-Learn library uses in its TF-IDF calculations and

what is used for the rest of this paper.

With this information, the TF-IDF score for a word in a document can be obtained. Itis the

product of the ¢t f and idf values for that word and document pairing.

2.4 Generating a Document-Term Matrix

Once the raw term frequencies or TF-IDF scores are calculated, they can be inputted into
what is known as a document-term matrix. Not only does this allow for easy visualization of
the scores, butitis also necessary for the classification algorithms to work (Bishop). Figure
2-1 below is an example of a document-term matrix, in which the rows (A-E) indicate words

and the columns (X, Y, and Z) indicate documents.

Word X Y Z
A 5 4 3
B 2 6 1
C 1 8 7
D 1 9 6
E 10 2 5

Figure 2-1: A document-term matrix with hypothetical scores (The candidate).



2.5 The Weighted Sum

The weighted sum algorithm adds up the scores of the desired words for each of the
documents, and chooses the document with the highest sum as the nearest match. This
is an efficient method to solve the problem because job descriptions contain technical
terminology relevant to the job title and finding those words is necessary. The weighted
sum algorithm will favor those words if they occur in the query, especially if they occur

more often.

Using Figure 2-1 as an example, suppose a query contains word A twice, C once, and
D once. The matching scores for those words can be added to give a weighted sum,
while also multiplying words that occur more frequently in the query. In this example, the

weighted sum for document X would be:

bx2)+1+1=12

the weighted sum for document Y:

(4x2)+8+9=25

and for document Z:

(3x2)+7+6=19

When comparing the three sums, it can be seen that document Y has the greatest sum,

therefore the algorithm would predict document Y as the nearest match to the query.

2.6 Cosine Similarity

Another method to calculate string similarity is with a vector-based approach, wherein

documents are represented in a vector space. Each column from the document-term
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matrix is converted to a vector, with the number of dimensions equal to the number of
words in the dictionary. These vectors are known as the document vectors (Manning et

al. 120-124). As an example, the document vector for document X in Figure 2-1 is:

1

10

Since there are 5 words in the dictionary, the vector is 5-dimensional, with each dimension

corresponding to the score of a word for that document.

When a query is processed by the algorithm, that query’s vector is plotted in the vector
space in the same way that the document vectors are plotted. The similarity between the
query vector and any of the document vectors can be determined by considering the angle
that is made between the query vector and the document vector in question. The cosine
of this angle will range from 0 to 1, with 1 corresponding to exactly the same vector and
0 corresponding to an exactly orthogonal (perpendicular) vector. The smaller the angle,
the higher the cosine value and the more similar the vectors are. The cosine of an angle

6 between two vectors « and v is given by the following:

a-U
cos =

[l > [l

The numerator of the fraction denotes the dot product of the vectors, while the denominator
denotes the product of the magnitudes (lengths) of the two vectors. The dot product is
found by multiplying the matching components of both vectors and adding up the results.
The magnitude of a vector is found by adding up the squares of all of the components of

the vector and taking the square root of the result (Gupta).
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An example of cosine similarity using simple 2-dimensional vectors is as follows:

I~
Il
<y
I

T-T=(1x4)+@Bx2)=10

@] = V12 + 3% = V10

7] = V4% + 22 = /20

1
. cosl = —O ~ 0.707

V10v20

Therefore, the two vectors have a cosine similarity of about 0.707. Once the cosine
similarity between the query vector and each of the document vectors is calculated, the
document vector that has the highest cosine similarity with the query vector is what the

algorithm predicts as the nearest match.

The cosine similarity method was used because a vector is an efficient way to represent
all of the scores in one mathematical structure. Also, the angle between two vectors is
constant irrespective of their length. This can be proven mathematically as follows: in
order to double the length of one of the vectors, all of its components must be doubled,
which in turn would result in the dot product being doubled. Since the dot product and
the product of the lengths have both increased by the same scale factor, the angle is

unchanged (Emmery).



3 Methodology

3.1 Data Initialization

The data set used for all of the experiments was a list of 7,788 records. The job descriptions
acted as the independent variable and the corresponding job title acted as the dependent
variable. There were 17 different possibilities of job titles; however, there was not a
perfectly even distribution of records across the 17 titles. This is not a major problem,

provided that the data is randomly chosen.

The data was represented using the DataFrame data structure from the Pandas library.
This is a data structure that displays data in a table format and can transform data from
a comma-separated values (CSV) file. Moreover, representing the data in a DataFrame
allows for ease of manipulation and visualization (Willems). Figure 3-1 shows an example

of a DataFrame.

jobh_title desc
0 sales manager Do you have a successful background in sales, ...
1 area manager The Regional Manager is responsible for creati...

area manager The successful candidate will professionally p...

business development manager Join a leading and award winning provider of i...

1= w N

accountant We look forward to your application! When appl...

Figure 3-1: The DataFrame for this data set, showing the first 5 rows (The candidate).

Once the data set was initialized, it was split into training and test data. Training data
is data that the model uses to learn, and test data is data that the model has not seen
before and is used to test the accuracy of the model (Venkatesh). It was decided that the
test data constituted 30% of the original data set, and all four experiments used the same
training and test data split for consistency purposes. This split resulted in 5,451 records

for training data and 2,337 records for test data.



The training corpus was modified to consist of 17 large documents as opposed to the 5,451
individual records in the training set. Each of those new documents was an aggregate of
all of the records in the training set that matched a certain job title. This was done because
the ultimate goal of the study was to classify new documents according to their nearest

match to a job title, rather than their nearest match to an individual job description.

3.2 Preprocessing

Before the documents could be manipulated, they had to be cleaned up; this is known as
preprocessing. First, all of the text was converted to lowercase. Then, all punctuation,
numbers, new lines, and extraneous whitespace were removed using RegEx (Regular
Expression) patterns. These patterns filter out characters that should be removed from
the documents. A special function called “text_cleaner” was created to apply all of the
RegEx patterns. Next, all words from a list of stopwords were removed. Stopwords are
common words that provide little to no meaning and are only present for grammatical

”

purposes, such as “the,” “a,” and “is.” Finally, the document was converted to a list with

each element being a word, as opposed to a single string. This is for ease of counting
words (Jain). After these preprocessing steps were complete, the data processing could

begin. Figure 3-2 shows an example of how a document can be preprocessed.

Original text:

'We are searching for candidates who desire
a challenging career and want to be part

of a high energy, supportive and rewarding
work environment.'

Text after preprocessing:

['searching', 'candidates', 'desire',
'challenging', 'career', 'high', 'energy',
'supportive', 'rewarding', 'work',

'environment']

Figure 3-2: A sample document before and after preprocessing (The candidate).
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3.3 The Experiments

Each algorithm (weighted sum of scores, and cosine similarity) was run once using raw

term frequencies and once using TF-IDF scores, resulting in a total of four experiments.

The TF-IDF scores were calculated using the TfidfVectorizer from the SciKit-Learn library.
For the experiments involving raw term frequency, a CountVectorizer was used instead.
The CountVectorizer works in a similar way to the Tfidf\Vectorizer, except that it produces
the raw term frequencies of words rather than the TF-IDF scores. These two Vectorizer
objects contain functions that were applied to create document-term matrices, which also
incorporated the DataFrame data structure (Maklin). As an example, Figure 3-3 shows
the first 5 rows of the raw term frequency document-term matrix, sorted in descending

order for the job title of accountant.

assistant business

tant area t business devel t contracts electrical . finance general
accountan manager store analyst evelopmen manager engineer engineers manager manager

manager manager
accounting 2179 50 6 64 64 3 12 10 1094 63
financial 1850 73 470 257 215 5, 19 42 1662 473
experience 1450 775 1351 1041 1175 604 1080 1371 1400 828
company 1208 576 644 367 805 366 285 shlE 1034 673
monthly 1035 123 47 122 274 142 37 154 707 156

Figure 3-3: Part of the raw term frequency document-term matrix (The candidate).

After the document-term matrices were generated, the application of the algorithms could
begin. Each job description in the test data was processed by the algorithms to obtain
a prediction of the nearest matching job title. This prediction was then compared with
the actual job title for the job description to check whether or not the model predicted
correctly. At the end of each experiment, the program outputted a percentage accuracy
score, indicating the percentage of job descriptions that were correctly predicted. This
percentage was compared to a threshold value of 80%; this is generally seen as the

threshold above which an algorithm can be considered reliable for a particular use case.

1



When each experiment was completed, the program generated a CSV file consisting of
the actual job title for each record in the testing data set coupled with what the model

predicted. CSV files can be opened with Microsoft Excel, as seen in Figure 3-4:

A B € D
1 actual predicted outcome
2 0 area manager general manager FALSE
3 1 electrical engineer electrical engineer TRUE
4 2 business analyst business analyst TRUE
5 3 marketing manager marketing manager TRUE
6 4 accountant accountant TRUE
7 5 electrical engineer software engineer FALSE
8 6 area manager area manager TRUE
9 7 accountant accountant TRUE
10 8 sales manager sales manager TRUE
11 9 human resources executive human resources executive TRUE

Figure 3-4: A sample CSV output, showing the first 10 rows (The candidate).

Moreover, a confusion matrix was generated for each of the four experiments. A confusion
matrix is a chart that shows how well the model predicted the dependent variable (in this
case, job title) compared to what the actual values are (Manning et al. 307-308). As the

name suggests, these matrices provide insight into the most frequently confused job titles.

All code was written in the Python language and can be found in the appendix.
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4 Results

Table 4-1 shows the overall accuracy score for each of the four experiments.

Experiment

Overall Accuracy Score

Experiment 1: Sum of | 51.78%
Raw Term

Frequencies

Experiment 2: Sum of | 84.72%

TF-IDF Scores

Experiment 3: Cosine | 68.72%
Similarity with Raw

Term Frequency

Experiment 4: Cosine | 82.76%

Similarity with TF-IDF

Table 4-1: Accuracy scores for each experiment (The candidate).

Table 4-2 shows the accuracy scores for each job title for each of the four experiments,

and an average. It provides insight into which job titles were predicted more accurately

across the experiments.

Title Experiment 1: Experiment 2: Experiment 3: | Experiment 4: | Average

Sum of Raw Sum of TF-IDF Cosine Cosine Accuracy

Term Scores Similarity with | Similarity with | Score

Frequencies Raw Term TF-IDF

Frequency

Assistant store manager 99% 99% 100% 100% 99.50%
Accountant 95% 95% 84% 91% 91.25%
Finance manager 53% 96% 100% 99% 87.00%
Software engineer 100% 99% 41% 81% 80.25%
Marketing manager 80% 88% 62% 77% 76.75%
Human resources executive 99% 97% 40% 64% 75.00%
Contracts manager 0% 98% 100% 99% 74.25%
Human resources manager 10% 87% 94% 97% 72.00%
Sales manager 98% 95% 39% 53% 71.25%
Business development manager 30% 79% 86% 89% 71.00%
Restaurant manager 17% 65% 99% 98% 69.75%
Business analyst 1% 60% 91% 96% 62.00%
Operations manager 0% 43% 91% 97% 57.75%
Engineers 59% 92% 13% 62% 56.50%
Electrical engineer 1% 46% 81% 95% 55.75%
Area manager 0% 67% 61% 77% 51.25%
General manager 4% 75% 36% 61% 44.00%

Table 4-2: Accuracy scores for each experiment, by job title (The candidate).
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Table 4-3 shows how many unique job descriptions the data set had for each job title.

Title # of records (in both training and
test data sets)
Accountant 665
Software engineer 620
Sales manager 597
Assistant store manager 590
Engineers 575
Finance manager 541
Business development manager 503
Human resources manager 494
Human resources executive 479
General manager 423
Area manager 418
Marketing manager 410
Electrical engineer 360
Business analyst 347
Contracts manager 266
Restaurant manager 264
Operations manager 236

Table 4-3: Total number of records in the data set per job title (The candidate).

The following are the confusion matrices that were generated for each experiment:

accountant -165 JEVEEY

area manager §&J

assistant store manager -160
business analyst

business development manager
contracts manager

electrical engineer -120

engineers

finance manager
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general manager

human resources executive
human resources manager
marketing manager
operations manager
restaurant manager

sales manager

software engineer

accountan
area manage
engineers
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ces manage
ing manage
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contracts manage
electrical engineel
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Figure 4-1: Confusion matrix for sum of raw term frequencies (The candidate).
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Figure 4-2: Confusion matrix for sum of TF-IDF scores (The candidate).
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Figure 4-3: Confusion matrix for cosine similarity with raw term frequency (The candidate).
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Figure 4-4: Confusion matrix for cosine similarity with TF-IDF (The candidate).
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5 Analysis

Overall, it can clearly be seen from Table 4-1 that using the TF-IDF score had a pronounced
effect on the accuracy of the algorithms, therefore making using the TF-IDF scores a
more viable option than simply using raw term frequency. Both of the experiments that
utilized TF-IDF scores had an accuracy score above 80%, which exceeds the threshold
that was set prior to conducting the experiment. The accuracy scores generated from the
experiments that utilized raw term frequency were notably lower, not only failing to reach

the threshold of 80% but also falling severely below that.

The worst performer out of the four experiments was the sum of raw term frequency scores,
with Table 4-1 indicating that it had an overall accuracy of only 51.78%. This is most likely
due to the fact that this model can be heavily skewed by large numbers and that the raw
term frequency values do not account for the lengths of the documents. This is especially a
problem when considering that some job titles had more records than others, and therefore
the job titles with the most records tended to contain higher raw term frequency values,
therefore skewing the algorithm in their favor. This skewing is reflected in Table 4-2, with
the four most frequently occurring job titles according to Table 4-3 (accountant, software
engineer, sales manager, and assistant store manager) all having accuracy scores of at
least 95% for this experiment. This can also be seen at the other end of the spectrum, with
most of the least frequently occurring titles having alarmingly low accuracy scores. The
titles of operations manager and contracts manager - the least and third-least frequently
occurring titles respectively - had no correct predictions for this experiment. The high
variability in accuracy for this experiment is more evident when considering its confusion
matrix (Figure 4-1). Ideally, a confusion matrix should have a colored diagonal line from
the top-left corner to the bottom-right corner, reflecting a majority of correct predictions.
However, the confusion matrix for this experiment fails to produce a complete diagonal,

and its unevenly scattered colored cells indicate many incorrect predictions.
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Out of the 17 job titles, the most anomalous titles were those involving engineering -
software engineer, electrical engineer, and the generic “engineers” title. The latter was the
most problematic due to the fact that most of the records under the generic “engineers” title
could potentially be applied to a software or electrical engineer depending on what words
they contain. For example, in Figure 4-4, it can be seen that 30 records from the generic
‘engineers” title were predicted as an electrical engineer, which is likely due to the fact
that those 30 records contained words that pertain to an electrical engineer. The issue
is exemplified by the fact that in Table 4-2, the titles of electrical engineer and generic
engineers had low average accuracy scores of 55.75% and 56.50% respectively. The
presence of the generic “engineers” title seems to be a flaw with the data set, and it is
plausible that repeating the experiments without the records with the generic “engineers”

title would yield better accuracy scores for the algorithms.

However, it is worth noting that there were many words for software engineers that were
not common for the generic “engineers” title, such as names of programming languages.
Also, as seen in Table 4-3, there were more records for the title of software engineer
(620) than there were for the other two titles involving engineering (575 and 360). With a
greater sample size, the algorithms were able to learn more about words that are unique
to software engineers. These were key reasons why the title of software engineer had a

substantially higher accuracy score than the title of electrical engineer, at 80.25%.

Another common area of confusion for all four experiments was differentiating between a
human resources executive and a human resources manager. For example, in Figure 4-2
it can be seen that 20 managers were predicted as executives, and in Figure 4-3 it can
be seen that 62 executives were predicted as managers. This is understandable as both
jobs are similar in nature and are therefore likely to have similar job descriptions, however
a manager tends to have greater responsibility than an executive. This is not something

that an algorithm with the bag of words approach would have been able to notice.
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6 Conclusion

This study set out to answer the research question of: “To what extent is the TF-IDF
score a reliable means of classifying text and predicting job titles?” When considering this
question, it becomes more evident that using a bag of words approach such as TF-IDF
scores was necessary. The overall goal of describing a word using such a score is to
quantify the word according to its relevance among a set of documents, and the words
with the highest scores tend to be words that can uniquely define a document/category
(Manning et al. 119). When a human analyzes a job description and tries to match it to
a job title, it is of their best interest to identify such keywords that can be used to clearly
describe a job title, and by using TF-IDF scores to quantify words, the algorithms explored

in this paper did essentially that.

Although an algorithm that produces an accuracy score of at least 80% is likely to be
reliable for the specific use case, it is not to say that this study was perfectly executed.
One area that this study could have been improved was in the sense that only unigrams
(single words) were considered as part of the dictionary. This is an issue because there
were many terms in the data set that constituted multiple words, such as “real estate” and
‘human resources.” Such bigrams (two-word phrases) should have also been included
among the dictionary and their respective TF-IDF scores calculated. In this situation,
all unigrams would have been treated as normal, but then every instance of two words

adjacent to each other would have also been considered as a term (Kim).

Furthermore, the preprocessing of text could have been improved by applying a function
to the text known as lemmatization. This function converts every word to its root form; for
example, the words “manager” and “management” would be converted to “manage.” This
is done because different forms of words are only used for grammatical purposes and thus
do not provide any extra information to scoring systems using the bag of words approach.

It also reduces the size of the dictionary, speeding up the process as a whole (Jain).
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It can be seen that the bag of words approach is limited in the sense that it only considers
the relevance of words relative to each other. However, there exist some algorithms that
quantify words on an individual level based on the meaning of the word. In essence, these
algorithms quantify words based on their innate features, and the grammatical order of
words becomes more important (Nicholson). Some features that can be used to discern
job titles include the field of work, annual salary, and level of education required. Therefore,
words would be represented as vectors consisting of scores for all of those features. This
method would likely solve the issue that was faced with distinguishing between a human
resources manager with a human resources executive. However, implementing this is a

convoluted process and was considered beyond the scope of this study.
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Appendix

text_cleaner function:
import re
patternl = re.compile(z' [\W+]"')

pattern2 = re.compile(r'\b\d+\b')
pattern3 = re.compile(r' {2,}')

def text_cleaner(doc):

doc = doc.replace('&', ' and ')
doc = re.sub(patternl, ' ', doc)
doc = re.sub(pattern2, ' ', doc)
doc = re.sub(pattern3, ' ', doc)

return doc.lower().strip()
Main program:
# INITIALIZATION

import numpy as np
import pandas as pd
import re

import seaborn as sns

from text_cleaner import text_cleaner
from tqdm import tqdm

from nltk.corpus import stopwords

from pandas.api.types import CategoricalDtype

from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics import confusion_matrix

from sklearn.metrics.pairwise import cosine_similarity

from sklearn.model_selection import train_test_split

stop_words = stopwords.words('english') # defining stopwords

df = pd.read_csv('dataset.csv').dropna() # reading the CSV file

df ['job_title_cln'] = df['job_title_cln'].astype("category")

X, y = df['desc'], df['job_title_cln'] # defining the independent and dependent variables
titles = list(y.cat.categories)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

df = df.reset_index(drop=True)
corpus = []
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train = pd.DataFrame({"coll": X_train, "col2": y_train})
test = pd.DataFrame({"coll": X_test, "col2": y_test})

for i in tqdm(range(len(titles))): # building the training and test corpora

main = train.loc[train['col2'] == titles[i]]

main = main.reset_index(drop=True)

toAdd = ""

for x in range(len(main)): # preprocessing of text using regex and removal of stopwords
temp = re.split(" ", text_cleaner(main.loc[x, "coli"]))
temp = [word for word in temp if word not in stop_words]
toAdd += " ".join(temp)

corpus.append (toAdd)
print("Intialization Complete.")
# RAW TERM FREQUENCY MATRIX GENERATOR

cv = CountVectorizer()
vector = cv.fit_transform(corpus)

feature_names = cv.get_feature_names()
final = pd.DataFrame(vector[0].T.todense(), index=feature_names, columns=[titles[0]])
for i in range(l, len(titles)):
tempvec = vector[i]
tempdf = pd.DataFrame(tempvec.T.todense(), index=feature_names, columns=[titles[i]])
final = final.join(tempdf)

# TF-IDF DOCUMENT-TERM MATRIX GENERATOR

tv = TfidfVectorizer(norm=None, sublinear_tf=True)
vector2 = tv.fit_transform(corpus)

feature_names = tv.get_feature_names()
final2 = pd.DataFrame(vector2[0].T.todense(), index=feature_names, columns=[titles[0]])
for i in range(1, len(titles)):
tempvec = vector2[i]
tempdf = pd.DataFrame(tempvec.T.todense(), index=feature_names, columns=[titles[i]])
final2 = final2.join(tempdf)

# FUNCTION TO CHECK SUMS

def check_scores(entry, data):
query = re.split(" ", text_cleaner(entry))
query = [word for word in query if word not in stop_words]
generator = []
for term in query:
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try:
key = data.loc[term, :].tolist()
generator.append (key)

except KeyError:
continue

final 1list = []

for i in range(len(titles)):
key2 = 0
for j in range(len(generator)):
key2 += generator[j] [i]
final_list.append(key2)

return titles[final list.index(max(final_list))]
# SUM CALCULATION

y_test = y_test.reset_index(drop=True)

test = test.reset_index(drop=True)

test_output = pd.DataFrame(columns=["actual", "predicted", "outcome"])
test_output2 = pd.DataFrame(columns=["actual", "predicted", "outcome"])

count = 0
count2 = 0

for x in tqdm(range(len(test))): # iterating through the test data
check = check_scores(test.loc[x, "coll"], final)
if check == y_test[x]:
count += 1
test_output.loc[x]
else:
test_output.loc[x]

[y_test[x]] + [check] + [True]

[y_test[x]] + [check] + [False]

check = check_scores(test.loc[x, "coll"], final2)
if check == test.loc[x, "col2"]:
count2 += 1
test_output2.loc[x]
else:
test_output2.loc[x]

[y_test[x]] + [check] + [True]

[y_test[x]] + [check] + [False]

test_output.to_csv("raw_sum_results.csv")

print ("Raw Term Frequency Sum accuracy = " + str(count / len(test) * 100) + "%")
test_output2.to_csv("tfidf_sum_results.csv")
print ("TF-IDF Weighted Sum accuracy = " + str(count2 / len(test) * 100) + "%")

# RAW TERM FREQUENCY WEIGHTED SUM CONFUSION MATRIX
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matrix = confusion_matrix(test_output['actual'], test_output['predicted'])

fig, ax = plt.subplots(figsize=(7.5, 7.5))

sns.heatmap(matrix, annot=True, xticklabels=titles, yticklabels=titles, cmap='hot', ax=ax)
plt.xlabel('Predicted')

plt.ylabel('Actual')

plt.show()

plt.savefig('matl.png')

# TF-IDF WEIGHTED SUM CONFUSION MATRIX

matrix = confusion_matrix(test_output2['actual'], test_output2['predicted'])

fig, ax = plt.subplots(figsize=(7.5, 7.5))

sns.heatmap(matrix, annot=True, xticklabels=titles, yticklabels=titles, cmap='hot', ax=ax)
plt.xlabel('Predicted')

plt.ylabel('Actual')

plt.show()

plt.savefig('mat2.png')

# RAW TERM FREQUENCY COSINE SIMILARITY

X_test_cv = cv.transform(X_test)

test_df = pd.DataFrame(X_test_cv.T.todense(), index=cv.get_feature_names())
cos_df = pd.DataFrame(columns=["actual", "predicted", "outcome"])

count = 0O

for i in tqdm(range(len(test))):

query_vector = test_df [i]

cosine_list = []

for j in titles:
doc_vector = final2[j]
query_vector = np.array(query_vector) .reshape(-1, 1).swapaxes(0, 1)
doc_vector = np.array(doc_vector) .reshape(-1, 1).swapaxes(0, 1)
cosine_list.append(

cosine_similarity(query_vector, doc_vector).max()

pred = titles[cosine_list.index(max(cosine_list))]
if pred == y_test[i]:
count += 1
cos_df.loc[i]
else:
cos_df.loc[i]

[y_test[i]l] + [pred] + [Truel

[y_test[i]l] + [pred] + [False]

cos_df.to_csv("raw_cos_results.csv")
print ("Raw Term Frequency Cosine Similarity accuracy = " + str(count / len(test) * 100) + "%")
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# TF-IDF COSINE SIMILARITY

X _test_tfidf = tv.transform(X_test)

test_df = pd.DataFrame(X_test_tfidf.T.todense(), index=tv.get_feature_names())
cos_df2 = pd.DataFrame(columns=["actual", "predicted", "outcome"])

count2 = 0

for i in tqdm(range(len(test))):

query_vector = test_df[i]

cosine_list = []

for j in titles:
doc_vector = final2[j]
query_vector = np.array(query_vector) .reshape(-1, 1).swapaxes(0, 1)
doc_vector = np.array(doc_vector).reshape(-1, 1).swapaxes(0, 1)
cosine_list.append(

cosine_similarity(query_vector, doc_vector).max()

pred = titles[cosine_list.index(max(cosine_list))]
if pred == y_test[il]:
count2 += 1
cos_df2.loc[i]
else:
cos_df2.loc[i]

[y_test[i]l] + [pred] + [Truel

[y_test[il] + [pred] + [False]

cos_df2.to_csv("tfidf_cos_results.csv")
print ("TF-IDF Cosine Similarity accuracy = " + str(count2 / len(test) * 100) + "%")

# RAW TERM FREQUENCY COSINE SIMILARITY CONFUSION MATRIX

matrix = confusion_matrix(cos_df['actual'], cos_df['predicted'])

fig, ax = plt.subplots(figsize=(7.5, 7.5))

sns.heatmap(matrix, annot=True, xticklabels=titles, yticklabels=titles, cmap='hot', ax=ax)
plt.xlabel('Predicted')

plt.ylabel('Actual')

plt.show()

plt.savefig('mat3.png')

# TF-IDF COSINE SIMILARITY CONFUSION MATRIX

matrix = confusion_matrix(cos_df2['actual'], cos_df2['predicted'])

fig, ax = plt.subplots(figsize=(7.5, 7.5))

sns.heatmap(matrix, annot=True, xticklabels=titles, yticklabels=titles, cmap='hot', ax=ax)
plt.xlabel('Predicted')

plt.ylabel('Actual')

plt.show()

plt.savefig('mat4.png')
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