

Extended Essay

Computer Science

The Travelling Salesman
Problem

How does the Elitist Genetic Algorithm

compare to Ant Colony System in terms
of time complexity and accuracy when

attempting to solve the Travelling
Salesman Problem?

Word count: 3,818 words

Anderson Addo
CS EE World
https://cseeworld.wixsite.com/home
30/34 (A)
May 2024

Submitter info:
Hello my name is Erika and I am studying Mathematics with Mathematical Computation at Imperial College London! Feel free to email me with any questions regarding the IB : erikarus6 [at] hotmail [dot] com

1

Table of Contents
1. INTRODUCTION ... 3

1.1 Background Information ... 3

1.2 Contextual Significance ... 4

1.3 Scope of Research .. 4

1.4 Experimental Overview .. 5

2. RESEARCH ... 6

2.1 Genetic Algorithms .. 6

2.1.1 Population Initialisation ... 7

2.1.2 Fitness Evaluation ... 7

2.1.3 Selection and Elitism ... 8

2.1.4 Evolution through PMX Crossover .. 9

2.1.5 Evolution through Mutation ... 10

2.2 Ant Colony Optimisation .. 11

2.2.1 Real Ant Behaviour ... 11

2.2.3 Ant Colony System .. 12

2.2.3 ACO Algorithms for the TSP ... 13

2.3 Parameters for Analysis ... 15

2.3.1 Time Complexity.. 15

2.3.2 Accuracy ... 16

2.4 Hypothesis ... 17

3. EXPERIMENTATION .. 18

3.1 Methodology .. 18

3.1.1 Variables ... 18

2

3.1.2 Experiment .. 20

3.2 Results ... 22

3.3 Interpretation .. 25

4. CONCLUSION ... 27

4.1 Research Question Analysis .. 27

4.2 Hypothesis Analysis ... 28

4.3 Relevance of Data ... 30

4.4 Evaluation .. 31

5. BIBLIOGRAPHY ... 33

5.1 Books ... 33

5.2 Research Papers ... 34

5.3 Websites .. 35

6. APPENDIX ... 36

6.1 Appendix 1 – Main Code ... 37

6.2 Appendix 2 – Brute Force Algorithm Code .. 39

6.3 Appendix 3 – Elitist Genetic Algorithm Code ... 42

6.4 Appendix 4 – Ant Colony System Code ... 46

6.5 Appendix 5 – Data Sets ... 49

6.5.1 Four City Map .. 49

6.5.2 Eight City Map ... 49

6.5.3 Twelve City Map .. 50

6.5.4 Sixteen City Map ... 50

6.5.4 Twenty City Map ... 51

3

1. Introduction

1.1 Background Information

In computational complexity theory, a problem is assigned to the NP (non-deterministic

polynomial) class if it can be verified in polynomial time. The Travelling Salesman

Problem (TSP) is potentially the most famous optimisation problem and it falls under the

NP-hard category since the existence of a polynomial-time solution for it implies the

existence of a polynomial-time solution for every problem in NP.1 The TSP consists of

determining the shortest tour to complete a Hamiltonian Cycle – a path through a graph

that starts and ends at the same vertex, including every other vertex exactly once; an

example is shown in Figure 1.2

Figure 1: A Hamiltonian cycle with 8 vertices3

1NP-hard problems and approximation algorithms - University of Texas at ... Available at:

https://personal.utdallas.edu/~dxd056000/cs6363/unit5.pdf (Accessed: 17 May 2023).
2 Black, P.E. (2020) Hamiltonian cycle, Dictionary of Algorithms and Data Structures Available at:

https://xlinux.nist.gov/dads/HTML/hamiltonianCycle.html (Accessed: 17 May 2023).
3 Chatting, M. (2018) 'A Comparison of Exact and Heuristic Algorithms to Solve the Travelling Salesman Problem', The
Plymouth Student Scientist, 11(2), p. 53-91.

4

1.2 Contextual Significance

The TSP has stimulated the development of various problem-solving techniques,

algorithms and innovative mathematical models that can be applied beyond its immediate

problem space. For instance, this can be applied to the sphere of network and hardware

optimisation where the most efficient route for data transmission ought to be found. The

formulation as a TSP essentially provides the simplest way to solve problems arising in

many different contexts, including computer wiring, vehicle routing, clustering, and job-

shop scheduling.

1.3 Scope of Research

There are two variations of the TSP: asymmetric Travelling Salesman Problem (ATSP),

where the distance from node A to B differs to that from B to A, and symmetric Travelling

Salesman Problem (STSP), where the graph is undirected.4 Hence, regarding the STSP,

it can be said that 𝑐!" = 𝑐"!; this simply states that regardless of the direction of travel, the

cost (or distance) between city 𝑖 and city 𝑗 is constant.5 Numerous algorithms have been

generated to approximate a solution to the TSP in a feasible time span since finding the

optimal solution for large problem instances is computationally challenging.

The aim of the paper is to determine the most efficient algorithm for solving the STSP by

analysing both the time complexity and accuracy of the algorithms. In this case, the most

efficient algorithm can be quantified as the one that has the greatest accuracy and

shortest execution time.

4 Deep, Kusum., & Mebrahtu, Hadush. (2012), "Variant of partially mapped crossover for the Travelling Salesman
problems." International Journal of Combinatorial Optimization Problems and Informatics, Vol.3, num.1, pp.47-69.
ISSN: 2007-1558
5 Ibid.

5

1.4 Experimental Overview

This paper specifically focuses on comparing the Elitist Genetic Algorithm to Ant Colony

System, evaluating which of the two is most efficient at solving the STSP. Random data

sets of increasing size will be used to collect a set of execution time periods for each of

the algorithms. Furthermore, the accuracy of the algorithms will be obtained by comparing

the shortest distance calculated to that determined by a control algorithm; for this

experiment, the Brute Force Algorithm will be used - an exact algorithm, so the optimal

solution is guaranteed to be found, with time complexity of O(n!).6 These two factors were

then analysed to answer the question: “How does the Elitist Genetic Algorithm

compare to Ant Colony System in terms of time complexity and accuracy when

attempting to solve the Travelling Salesman Problem?”

6 Chase, C. et al. (no date) An Evaluation of the Traveling Salesman Problem. Available at:

https://scholarworks.calstate.edu/downloads/xg94hr81q#:~:text=. (Accessed: 14 July 2023).

6

2. Research

2.1 Genetic Algorithms

Genetic Algorithms (GA) are adaptive, stochastic, metaheuristic search algorithms that

are a subclass of evolutionary computing used to solve combinatorial optimisation

problems.7 Combinatorial optimisation is the process of solving for the optimal solution of

a finite data set by using combinatorial techniques.8 Metaheuristics are algorithmic

concepts that define heuristic methods applicable to a number of different problems.9

Darwin’s theory of evolution (survival of the fittest and natural selection) forms the

backbone of GAs; Figure 2 describes the steps of this process.

Figure 2: Flowchart for the Elitist Genetic Algorithm10

7 Genetic algorithms (2017) Scribd. Available at: https://www.scribd.com/document/351623322/Genetic-Algorithms#
(Accessed: 15 June 2023).

8 Ibid.
9 Dorigo, M. and Stützle, T. (2004) ‘The Ant Colony Optimization Metaheuristic’, in Ant colony optimization.

Cambridge, MA: MIT Press, pp. 25–26.
10 Singh, V.K. and Sharma, V. (2014) ‘Elitist genetic algorithm based energy balanced routing strategy to prolong

lifetime of wireless sensor networks’, Chinese Journal of Engineering, 2014, pp. 1–6. doi:10.1155/2014/437625.

7

These algorithms are more robust and can navigate through larger data sets whilst finding

an optimal solution within a sensible timespan. Chromosomes are used to represent n

number of genes (cities) in the order in which they are visited, typically as a binary string.

Figure 3 shows a chromosome of a 5-city tour, where the salesman begins at city 3, then

travels to city 4 and so on.

3 2 4 1 5
Figure 3: Chromosome of a 5-city tour

2.1.1 Population Initialisation

In terms of the TSP, the city tour is referred to as the population. The first process of a

GA is to initialise the population – the cities can be randomly generated or set before. If

the initial population size is too small, diversity is prohibited which forces some

optimisation routines to converge too quickly, causing the population to become

homogenous.11 However, if the population size is too big, it would take a long time for the

optimisation routine to converge.12

2.1.2 Fitness Evaluation

As each city is situated in a 2D plane, their position can be given by (𝑥! , 𝑦!). Using

Equation (1) and the position coordinates of two cities, the cost 𝑐!", in other words the

distance between the	𝑖th and 𝑗th city, can be found:

																																																												𝑐!" = +(𝑥! − 𝑥")# + (𝑦! − 𝑦")# 13 (1)

11 Morris, A.T. (1998) Optimization of the Traveling Salesman Problem and Multivariate Real-Valued Functions using
a Genetic Algorithm. dissertation.
12 Ibid.
13 Deep, Kusum., & Mebrahtu, Hadush. (2012), op. cit.

8

The distances between the cities can be represented in an 𝑛 × 𝑛 cost matrix. Below is an

example of a symmetric 5-city tour.

Each chromosome is then evaluated using a fitness function and is assigned a fitness

value. The fitness value is determined based on the distance between the two cities using

Equation (2):

																																																							𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥! 	𝑡𝑜	𝑥!$%)&
!'%

14, (2)

 where 𝑛 is the number of cities and 𝑖 is the city index value.

The shortest distance is given the highest fitness value.

2.1.3 Selection and Elitism

A random sample of chromosomes is placed in a mating pool via the reproductive

process, selection, by which the fitter chromosomes, those with shorter city tours, are

more likely to be reproduced to the next generation.15 Elitism is also considered part of

the selection process for this paper, meaning it is guaranteed that the best chromosome,

the one with the shortest distance, is copied to the next generation.16

14 Deep, Kusum., & Mebrahtu, Hadush. (2012), op. cit.
15 Morris, A.T. (1998) Optimization of the Traveling Salesman Problem and Multivariate Real-Valued Functions using
a Genetic Algorithm. dissertation.
16 Ibid.

9

2.1.4 Evolution through PMX Crossover

Crossover is a genetic operator by which design characteristics between two parent

chromosomes, chosen randomly from the mating pool, are exchanged to form two new

superior offspring.17 For this experiment, the Partially Mapped Crossover (PMX) operator

will be used as one of the most effective and popular. It is a modification of the basic two-

point crossover, however, uses an additional mapping relationship to avoid duplicate

values in the offspring that often lead to infeasible results.18 PMX falls into the category

of Inventing Specialised Operators - meaning only valid chromosomes are generated

(cities are not missing or repeated).19

Below is an example PMX crossover, where 𝑃%	and 𝑃#	are random, parent chromosomes

of an 8-city tour. Offspring 𝑂%	and 𝑂# are formed which each represent a new city tour.

𝑃%	 = (4	1	2	5	7	3	6	8)

𝑃#	 = (1	5	8	3	6	2	4	7)

A substring is selected using two random crossover points (marked with “|”):

𝑃%	 = (4	1	2	|	5	7	3	|	6	8),

𝑃#	 = (1	5	8	|	3	6	2	|	4	7).

A Two-Point Crossover is performed:

𝑂%	 = (𝑥	𝑥	𝑥	|	3	6	2	|	𝑥	𝑥),

𝑂#	 = (𝑥	𝑥	𝑥	|	5	7	3	|	𝑥	𝑥).

17 Hasançebi, O. and Erbatur, F. (2000) ‘Evaluation of crossover techniques in genetic algorithm based optimum

structural design’, Computers & Structures, 78(1–3), pp. 435–448. doi:10.1016/s0045-7949(00)00089-4.
18 Deep, Kusum., & Mebrahtu, Hadush. (2012), op. cit.
19 Üçoluk, G. (2002) ‘Genetic algorithm solution of the TSP avoiding special crossover and mutation’, Intelligent

Automation & Soft Computing, 8(3), pp. 265–272. doi:10.1080/10798587.2000.10642829.

10

 The mapping systems are determined:

																																																																				5 ↔ 3, 7 ↔ 6, 3 ↔ 2.

 Bits that are not conflicting are filled:

𝑂%	 = (4	1	𝑥	|	3	6	2	|	𝑥	8),

𝑂#	 = (1	𝑥	8	|	5	7	3	|	4	𝑥).

 Using the mapping relationships, the offspring can be fully filled:

𝑂%	 = (4	1	5	|	3	6	2	|	7	8),

𝑂#	 = (1	2	8	|	5	7	3	|	4	6).

2.1.5 Evolution through Mutation

Mutation is a unary genetic operator which produces spontaneous, random changes on

one parent chromosome.20 Only one type of mutation, the swap mutation, will be used to

ensure reliability in the results as this acts as a control variable. Two genes (cities) are

selected at random, and their positions are swapped.

An example swap mutation is shown, where 𝑃%	 is the parent chromosome of an 8-city

tour.

 𝑃%	 = (4	1	2	5	7	3	6	8)

 Two cities are chosen:

																																																																			𝑃%	 = (4	𝟏	2	5	7	𝟑	6	8).

 Their values are interchanged:

																																																																			𝑂%	 = (4	𝟑	2	5	7	𝟏	6	8).

20 GeeksforGeeks. (2018). Mutation Algorithms for String Manipulation (GA). [online] Available at:
https://www.geeksforgeeks.org/mutation-algorithms-for-string-manipulation-ga/.

11

2.2 Ant Colony Optimisation

Ant Colony Optimisation (ACO) is another stochastic, population-based, metaheuristic

search algorithm that simulates the foraging behaviour of ants to solve combinatorial

optimisation problems.21 The concept of using swarm intelligence, the collective

behaviour of decentralised, self-organised natural or artificial systems, was first

introduced by Gerado Beni and Jing Wang in 1989.22

2.2.1 Real Ant Behaviour

Ants use stigmergy meaning they indirectly communicate with each other by altering their

surrounding environment. They have collective intelligence as they lay a pheromone trail

while searching for food to communicate with each other to find the shortest path; other

ants can sense this chemical, influencing their choice of path. Pheromone is a particularly

volatile substance that starts to evaporate after the ant marches over the path. Hence, for

shorter paths, the pheromone density remains high as pheromone accumulation is

faster.23 Figure 4 shows how the distribution of pheromones is dependent on path length.

Figure 4: Pheromone trails of path A and B24

21 Ahmed, Z.E. et al. (2020) ‘Energy optimization in low-power wide area networks by using heuristic

techniques’, LPWAN Technologies for IoT and M2M Applications, pp. 199–223. doi:10.1016/b978-0-12-818880-
4.00011-9.

22 Ibid.
23 Ranjith, K.A. (2010) Ant Colony Optimization. rep., pp. 1–16.
24 Nguyen, K.-H. and Ock, C.-Y. (2011) ‘Word sense disambiguation as a traveling salesman problem’, Artificial

Intelligence Review, 40(4), pp. 405–427. doi:10.1007/s10462-011-9288-9.

12

Initially, there is an equal probability 𝑝 that an ant will travel via path A or B when in search

of food. As path A is shorter than path B, in a specific time period 𝑡, path A will be travelled

more times; therefore, path A will have a higher pheromone density. As 𝑡 increases, more

ants will follow path A whilst the pheromone trails in path B will all evaporate - eventually

all ants follow path A.25

2.2.3 Ant Colony System

There are many variations of ACO algorithms including Rank-Based Ant System

(ASrank), Max-Min Ant System (MMAS) and Ant Colony System (ACS). In this paper, the

ACS algorithm will be investigated - a set of cooperating agents, ants, indirectly

communicate with each other through the deposited pheromones on the edges of the

TSP graph whilst finding the optimal solution.26 All ants perform the local pheromone

update after every step rather than after a completed tour meaning the next edge is

chosen purely based on the updated pheromone value. The process stops when the best

solution is found or there are no more pheromone updates.27 During ACS, an ant

completes a tour around the map 𝑛 number of times. After every iteration, the ant’s global

memory is reset; meaning, they have no knowledge of the journey they took prior.

25 Ranjith, K.A. (2010), Op. cit,
26 Dorigo, M. and Gambardella, L.M. (1997) ‘Ant Colony System: A cooperative learning approach to the traveling

salesman problem’, IEEE Transactions on Evolutionary Computation, 1(1), pp. 53–66.
doi:10.1109/4235.585892.

27 Mulani, M. and Desai, V.L. (2018) ‘Design and Implementation Issues in Ant Colony Optimization’, in International
Journal of Applied Engineering Research. 16th edn. Research India Publications, pp. 12877–12882.

13

Figure 5 below describes the steps of an ACS where the evaluation stop condition is when

𝑛 number of iterations have taken place.

Figure 5: Flowchart for ACS28

2.2.3 ACO Algorithms for the TSP

When solving the TSP, this algorithm assumes that ants are always able to determine the

shortest path to the food sources by detecting the pheromones laid by other ants. In other

words, cities further away are less visible meaning there is a lower probability of being

chosen. The greater the intensity of the pheromone trail, the greater the probability that

the ant will choose that edge.

28 M. Almufti, S., Boya Marqas, R. and Ashqi Saeed, V. (2019) ‘Taxonomy of bio-inspired optimization

algorithms’, Journal of Advanced Computer Science & Technology, 8(2), p. 23.
doi:10.14419/jacst.v8i2.29402.

14

Pheromone trails describe the desirability of an ant visiting node 𝑗 after node 𝑖. As evident

in Equation (3), the heuristic desirability,	𝜂!", of an ant going from node 𝑖 to node 𝑗 is

inversely proportional to the distance,	𝑑!", between the nodes:

																																																																													𝜂!" = 1/𝑑!".30 (3)

At each node, the ant plans based on its local memory – this stores information about the

adjacent nodes. Nodes that have not been visited by the 𝑛th ant are defined as 𝑎𝑙𝑙𝑜𝑤𝑒𝑑&.

The probability of the 𝑛th ant choosing one node is given by Equation (4):

																																										𝑝!"& (𝑡) = L
[*!"(,)]#[/!"]$

∑ [*!"(,)]#[/!"]$%∈'(()*+,%
				𝑗	 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑&

0																															𝑒𝑙𝑠𝑒,
 (4)

where 𝜏!" is the evaporation rate, determining the amount of pheromone present between

node 𝑖 and 𝑗, 𝛼 ≥ 0 is a parameter in control of the influence of 𝜏!", 𝜂!" is the desirability

of the transition from 𝑖 to 𝑗 and 𝛽 ≥ 1 is a parameter in control of the influence of 𝜂!".31

These parameters must be selected properly otherwise the convergence speed may be

too high causing the algorithm to fall rapidly into local optima. Likewise, if the parameters

are set so that the convergence speed is slow, time complexity increases.

30 Dorigo, M. and Stützle, T. (2004) ‘Ant Colony Optimization Algorithms for the Traveling Salesman Problem’, in Ant

colony optimization. Cambridge, MA: MIT Press, pp. 67–68.
31 Danu, M.S. (2013) Ant colony optimization algorithms, Scribd. Available at:

https://www.scribd.com/document/136679005/Ant-colony-optimization-algorithms# (Accessed: 27 June 2023).

15

2.3 Parameters for Analysis

2.3.1 Time Complexity

The first parameter analysed for each algorithm is the time complexity. For a given

problem, the time complexity is defined as the maximum time the algorithm requires to

find a solution for each possible input size, 𝑛.32 This is alternatively referred to as the

worst-case time complexity. Big-O notation is typically used to describe time complexity

for the function 𝑓(𝑛) as it gives asymptotic upper bounds for the worst-case scenario:

𝑓(𝑛) = 𝑂T𝑔(𝑛)V				𝑓𝑜𝑟	𝑛 → ∞				𝑎𝑛𝑑				𝑓(𝑛), 𝑔(𝑛) ∈ 𝑅

where 𝑔(𝑛) represents the big-O notation.33 Equation 4 is only valid if there exist

constants 𝑐 and	𝑛1	such	that	

	

|𝑓(𝑛)| ≤ 𝑐|𝑔(𝑛)|			𝑓𝑜𝑟	𝑎𝑙𝑙			𝑛 > 	𝑛1.34

This effectively means that the big-O notation, denoted by	𝑔(𝑛), is always greater than or

equal to the number of steps. Determining the time complexities of different algorithms

enables their efficiency to be compared and analysed.

32 Big O notation - mit - massachusetts institute of technology (no date) Big O Notation. Available at:

https://web.mit.edu/16.070/www/lecture/big_o.pdf (Accessed: 26 June 2023).
33 Ibid.
34 Ibid.

16

For example, as seen in Figure 6, an algorithm with a time complexity of 𝑂(log 𝑛) is

significantly more efficient than one which has a time complexity of 𝑂(𝑛!).

Figure 6: A graph to show different time complexities35

The execution time of NP-hard problems increases exponentially with the data size;

consequently, so does the time complexity. For instance, the TSP has a time complexity

of 𝑂(𝑛!). Although finding the solution for low values of 𝑛 is manageable, this is not the

case for most scenarios. Hence heuristic approaches are used which have a better time

complexity even though the solution may not be optimal.

2.3.2 Accuracy

Accuracy is the second parameter investigated in this paper as it is used to validate and

assess the performance of a specific algorithm. It is defined as an evaluation metric that

measures the closeness of the obtained values to the accepted or correct value. For this

35 Prado, K.S. do (2020) Understanding time complexity with python examples, Medium. Available at:

https://towardsdatascience.com/understanding-time-complexity-with-python-examples-2bda6e8158a7
(Accessed: 26 June 2023).

17

experiment, the accuracy states the error between the optimal path generated by an

algorithm and the actual, shortest path available. As mentioned previously, exact

algorithms, including the Brute Force Algorithm, always find the shortest route for the TSP

despite being extremely inefficient. Hence, the percentage accuracy of the Elitist GA and

ACS will be found using Equation (5).

										𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 2345,62,	78,3	96&658,6:	;<	=4&,54>	;5?,6	@45=6	8>945!,3A
2345,62,	78,3	96&658,6:	;<	,36	6>!,!2,	BC	45	CDE

× 100 (5)

2.4 Hypothesis

Although the two algorithms fall under the same combinatorial optimisation category (as

they are both population-based, metaheuristic and stochastic), this paper hypothesises

that the elitist GA will have a lower time complexity compared to ACS. This is because

the additional parameter, elitism, ensures that the best chromosomes are always

transferred to the next generation, so the optimal solution should be obtained faster.

However, ACS should be more accurate since there are several parameters that can be

adjusted to acquire the desired convergence speed – this includes the desirability and the

constants 𝛼 and 𝛽. Therefore, the hypothesis for this investigation is: When using the

elitist GA and ACS to find the shortest tour for the TSP, the Elitist GA should have

a lower time complexity whilst the solution generated by ACS should have a higher

level of accuracy.

18

3. Experimentation

3.1 Methodology

3.1.1 Variables

The two independent variables for this investigation are the algorithms used, Elitist GA or

ACS, and the data set size. As evident in Appendix 4, the number of cities to visit

increases by 4 each time up until 20 as this provides a variety of results that can later be

interpreted.

As stated in the research question both the accuracy and efficiency of each algorithm will

be measured. Hence, the two dependent variables are the shortest distance calculated

and the time taken, in seconds. This enables the accuracy of each algorithm to be

calculated using Equation (5) as well as the time complexities to be compared.

One key control variable is the type of control algorithm used since it will produce the

shortest distance of each city tour which will then be compared to those calculated by

ACS and GA . This way the accuracy can be calculated. Hence, it was decided that the

Brute Force algorithm will act as the control and the Python code to run this will be

obtained from https://github.com/Joseph bakulikira/Traveling-Salesman-Algorithm.

19

Table 1 discusses all the control variables for this experiment.

Controlled Variable Why is it controlled? How is it controlled?
Computer and
Operating System

The hardware can impact the
speed of each algorithm,
depending on factors such as
processor speed and memory.
Therefore, these elements
must be kept constant to
ensure repeatability.

The same hardware was
used throughout the
experiment:
- Computer model: 21.5-

inch 2019 iMac
- Processor: 3GHz 6-Core

Intel Core i5
- Memory: 16GB 2667

MHz DDR4
- macOS: Ventura 13.4.1

All applications will be closed
when running code to keep
the amount of RAM available
constant.

Integrated
Development
Environment (IDE)

The specifications and differing
features of an IDE can have an
effect on the results obtained.

The same IDE was used:
- Type: Visual Studio Code
- Version: 1.80.1

Data points for each
data set

If different points are used, the
shortest distance will be
different so the accuracy of
each algorithm cannot be
calculated.

The points used were
chosen in the preliminary
experiment and used
throughout the experiment
(see Appendix 4)

Parameters for each
algorithm

The specific parameters of
each algorithm have effects on
factors like termination criteria,
convergence speed and the
exploration of space.

The mutation rate for the
Elitist GA was 0.01%.
The parameters for ACS
were fixed:
- 𝛼: 1
- 𝛽: 3

Initial population size The population size influences
the convergence speed and so
must be controlled.

The population size for both
algorithms was set at 150.

Python code for ACS,
GA, and Brute Force

The same code must be used
for each algorithm to ensure
reproducibility and consistency
in the results.

All algorithms were taken
from:
https://github.com/Joseph
bakulikira/Traveling-Salesman-
Algorithm
(Accessed on 21st July
2023).

Table 1: Control Variables

20

3.1.2 Experiment

The following steps were used to obtain a set of results:

1. Run the Brute Force Algorithm with 4 data points and record the shortest distance

calculated (see Appendix 2).

2. Run the elitist GA using the same 4 data points and record the shortest distance

calculated and the time taken (see Appendix 3).

3. Repeat step 2 using ACS (see Appendix 4).

4. Repeat steps 2 and 3 two more times to collect repeat readings.

5. Repeat all steps using a larger data set (see Appendix 5).

6. Calculate the mean time taken for each set of results.

The default_timer() function was imported from the timeit module in Python to obtain the

time taken for the optimal solution to be calculated as seen in Figure 7.

Figure 7: Code to import default_timer()

21

After program execution, the time and shortest distance were outputted – see Figures 8

and 9 respectively.

Figure 8: Example time output

Figure 9: Example best distance output

22

3.2 Results

Measured using the timer function in Figure 7, the results in Tables 2 and 3 show the time

taken to calculate the shortest distance for each algorithm and data set. The mean time

taken was found using Equation (6):

 𝑚𝑒𝑎𝑛	𝑡𝑖𝑚𝑒 = ,!A6	%	$,!A6	#$,!A6	F
F

 (6)

An example calculation using Equation (6) is shown below.

 1.#FF$1.#%H$1.%IJ
F

= 0.2143̇

		= 0.214	(3	𝑠. 𝑓)

Number of
Cities

Time taken to find the shortest distance (s) Mean
time (s) Attempt 1 Attempt 2 Attempt 3

4 0.233 0.214 0.196 0.214
8 1.554 1.219 0.805 1.193

12 12.02 11.68 12.76 12.15
16 21.43 19.33 22.46 21.07
20 29.04 30.21 28.65 29.30

Table 2: Time taken to find shortest distance using the Elitist GA

Number of
Cities

Time taken to find the shortest distance (s) Mean
time (s) Attempt 1 Attempt 2 Attempt 3

4 0.246 0.178 0.197 0.207
8 0.565 0.689 0.713 0.656

12 4.595 5.103 4.992 4.897
16 7.456 7.685 8.103 7.748
20 12.31 13.85 13.59 13.25

Table 3: Time taken to find shortest distance using ACS

23

The results from Tables 2 and 3 were plotted to produce Figure 10.

Figure 10: A graph to show mean time taken (s) against number of cities

To evaluate the accuracy of each algorithm, the shortest distance obtained by each of the

algorithms was noted down in Tables 4 and 5.

Number of
Cities

Shortest distance obtained Mean shortest
distance Attempt 1 Attempt 2 Attempt 3

4 543.890 543.890 543.890 543.890
8 1121.46 1121.46 1121.46 1121.46

12 1253.88 1261.41 1247.21 1254.17
16 1531.68 1542.35 1546.54 1540.19
20 2035.21 1986.42 1964.53 1995.39

Table 4: Shortest distance obtained using the Elitist GA

Number of
Cities

Shortest distance obtained Mean shortest
distance Attempt 1 Attempt 2 Attempt 3

4 543.890 543.890 543.890 543.890
8 1121.46 1121.46 1121.46 1121.46

12 1242.87 1239.34 1242.87 1241.69
16 1515.34 1513.43 1511.76 1513.51
20 1687.48 1693.78 1701.54 1694.27

Table 5: Shortest distance obtained using ACS

24

The actual shortest distance was found using the control Brute Force Algorithm (see

Appendix 2).

Number of Cities Actual shortest distance
4 543.890
8 1121.46

12 1237.83
16 1493.76
20 1632.06

Table 6: Actual shortest distance obtained using Brute Force

The data in Tables 4-6 were processed using Equation (5), enabling the percentage

accuracy of each algorithm to be found (see Table 7). The example calculation shows

how the percentage accuracy of ACS was determined for 16 cities:

 %HIF.KJ
%L%F.L%

× 100 = 98.69508626

 = 98.70%	(4	𝑠. 𝑓)

Number of Cities Elitist GA Percentage
Accuracy (%)

ACS Percentage
Accuracy (%)

4 100.0 100.0
8 100.0 100.0

12 98.70 99.69
16 96.99 98.70
20 81.79 96.33

Table 7: Percentage accuracy calculated using Equation (6)

25

The data from Table 7 were plotted to produce Figure 11.

Figure 11: A graph to show percentage accuracy against number of cities

3.3 Interpretation

Figure 10 shows that for both algorithms, the time taken to find the optimal route increased

exponentially as the size of the city tour increased. However, the time taken by the Elitist

GA increased at a faster rate than ACS suggesting it generally has a greater time

complexity. When the algorithms navigated through a map of 4 cities or less, both

algorithms had a similar time complexity as it roughly took them a mean time of 0.2

seconds for a solution to be generated.

There were no distinct anomalous results in Tables 2 and 3 since the points in Figure 10

were all located close to the line of best fit. Extrapolation was used to create a curve

between 0 and 4 cities for both algorithms, therefore, there was a chance that these points

26

could be unreliable. Nevertheless, this was most likely not the case since background

theory supports the claim that the time complexity will increase with city tour size.

Figure 11 clearly illustrates that as the number of cities in the tour increased, the accuracy

of the distance generated decreased. Both algorithms are proven to be 100% accurate

for tours that consisted of 8 cities or less; if the city tour was greater, the accuracy

decreased at a non-linear rate. When experimenting with 20 cities, the Elitist GA had an

accuracy rate of 81.79% which is significantly lower than the accuracy of ACS which was

96.33%. Overall, the Elitist GA was shown to be more inaccurate in comparison to ACS

as the percentage accuracy fell by a faster rate, especially when the city tour was greater

than 16.

It is also evident that there were no anomalous results in Tables 4 and 5 as the points in

Figure 11 only deviated slightly from those on the line of best fit, hence, the results were

valid and reliable overall. However, the values obtained from the Elitist GA are located

further away from its line of best fit in contrast to ACS. This implies that the results from

Table 4 had a greater error uncertainty than those in Table 5. Despite this, the error

uncertainty did not have an effect on the overall relationship between the accuracy of

each algorithm and the number of cities.

27

4. Conclusion

4.1 Research Question Analysis

This exploration aimed to utilise the theory behind metaheuristic algorithms to formulate

an experiment, applicable to evaluate each algorithm’s time complexity and percentage

accuracy when solving an NP-hard problem. This investigation showed that ACS has a

lower time complexity but a higher level of accuracy in comparison to the Elitist GA when

finding the shortest route to solve the TSP.

It was proven that accuracy is inversely proportional to the city tour size since larger data

sets lead to a lower percentage accuracy. On the other hand, the time taken for either

algorithm to obtain a solution increased with the number of cities visited in the tour. A

greater time complexity represents a lower level of efficiency; therefore, reinforcing the

inversely proportional nature between efficiency and data set size.

28

4.2 Hypothesis Analysis

The hypothesis made was supported by the results to a partial extent as ACS was shown

to be more accurate, however, the Elitist GA actually has a higher time complexity than

ACS. After further research, relevant supporting evidence was found. After every iteration,

the entire population (city tour) changes with ACS whereas with the Elitist GA, only one

city is altered enabling the optimal solution to be found quicker. 36

This paper’s results are reproducible as a similar experiment, carried out by Alexander,

A. and Sriwindono, H. had the same findings.37 As shown in Figure 12, the distance

obtained by ACS is always much shorter than that found by the GA, implying that ACS is

more accurate. The accuracy of the GA tended to decrease at a faster rate than ACS like

in this paper.

Figure 12: Distance found by each of the two algorithms with shortest distance
on the 𝒚-axis and city tour size on the 𝒙-axis38

36 Alexander, A. and Sriwindono, H. (2019) ‘The comparison of genetic algorithm and ant colony optimization in

completing travelling salesman problem’, Proceedings of the 2nd International Conference of Science and
Technology for the Internet of Things, ICSTI 2019, September 20th, Yogyakarta, Indonesia [Preprint].
doi:10.4108/eai.20-9-2019.2292121.

37 Ibid.
38 Ibid.

29

Alexander, A. and Sriwindono, H also recorded the time taken by each algorithm – this is

shown in Figure 13.

Figure 13: Average time taken by each of the two algorithms with time, in
seconds, on the 𝒚-axis and city tour size on the 𝒙-axis 39

Their data supported the concept that ACS is faster than the GA when navigating through

a city tour consisting of 20 or fewer. However, when the city tour size exceeds 20, the GA

was faster than ACS. Therefore, to improve this investigation, data sets larger than 20

should be used to see whether ACS will have a greater time complexity than GA.

39 Alexander, A. and Sriwindono, H. (2019), op. cit.

30

4.3 Relevance of Data

Both algorithms are powerful metaheuristic methods of solving NP-hard problems, so

comparing, and evaluating the algorithms are beneficial to see which one would

outperform the other. This experiment proved that ACS is superior to the Elitist GA when

solving the TSP, a notable optimisation problem. Based on the results and analysis

presented in this paper, for cities consisting of 20 or fewer, ACS always produced a

shorter distance in a quicker time period.

These metaheuristic approaches are applicable beyond the TSP as they can be used to

solve other NP-hard problems including the Knapsack Problem, Job Shop Scheduling

Problem and Vehicle Routing Problem. They can approximate a solution more efficiently

than exact algorithms; hence, this data is insightful.

Outside of computational complexity theory, these algorithms have real-life applications,

for instance, in telecommunications network optimisation and circuit board manufacturing.

In telecommunications, metaheuristic algorithms are used to determine how data packets

should be routed to improve network performance and reduce latency. On the other hand,

when manufacturing circuitry, the optimal component arrangement is vital to eliminate

signal interference. For these reasons, this data is relevant as it can be applied to these

scenarios to save resources, such as money, and increase efficiency.

31

4.4 Evaluation

Seeing that the findings of this experiment aligned with the results of other research

papers (see Section 4.2), this essay was proven to be successful and had many

strengths. The accuracy of the results was ensured through repeat readings and

calculating a mean. In addition, the absence of anomalies supports emphasises the

validity of the results. Despite this, several improvements would eliminate potential

sources of error since the investigation was carried out in a home environment – these

are presented in Table 8.

Source of Errors Effect and Importance Improvements
Brute Force Algorithm: For
large data sets, the time
taken to generate a solution
was extremely slow since it
has a time complexity of
𝑂(𝑛!).

The program may have
stopped too soon, meaning
the final solution generated
was inaccurate. As this
value was used to calculate
the percentage accuracy,
this would have had an
effect on the values in
Table 15.

Other exact algorithms with
a lower time complexity
could be used:
- Brand and Bound:

𝑂(2&)
- Dynamic Programming:

𝑂(𝑛# × 2&)

Random Time Error: The
programs' performance can
be affected by other
computer processes
running simultaneously.

Although all other
applications were closed
during program execution,
background processes are
still being carried out. This
would affect the accuracy
of the default_timer(),
impacting the results in
Tables 2 and 3.

A computer with a better
processor and larger RAM
could eliminate this source
of error.

Systematic Error from
Source Code: The program
code was found online so
there may be logic errors.

This error would have an
effect on most of the results
obtained if the code does
not directly mirror the
algorithms.

One could program their
own algorithms or use code
that they are certain to
contain no logic errors.

Table 8: Potential errors and corresponding improvements

32

After evaluating the data acquired in this investigation, it has been concluded that ACS is

both more accurate and has a lower time complexity than the Elitist GA when it comes to

solving the TSP for 20 cities or fewer. Therefore, the research question “How does the

Elitist Genetic Algorithm compare to Ant Colony System in terms of time

complexity and accuracy when attempting to solve the Travelling Salesman

Problem?” has been answered, consequently underscoring the beneficial nature and

indispensability of this essay.

33

5. Bibliography

5.1 Books

1 Ahmed, Z.E. et al. (2020) ‘Energy optimization in low-power wide area networks by using
heuristic techniques’, LPWAN Technologies for IoT and M2M Applications, pp. 199–223.
doi:10.1016/b978-0-12-818880-4.00011-9.

2 Chatting, M. (2018) 'A Comparison of Exact and Heuristic Algorithms to Solve the
Travelling Salesman Problem', The Plymouth Student Scientist, 11(2), p. 53-91.

3 Deep, Kusum., & Mebrahtu, Hadush. (2012), "Variant of partially mapped crossover for
the Travelling Salesman problems." International Journal of Combinatorial Optimization
Problems and Informatics, Vol.3, num.1, pp.47-69. ISSN: 2007-1558

4 Dorigo, M. and Gambardella, L.M. (1997) ‘Ant Colony System: A cooperative learning
approach to the traveling salesman problem’, IEEE Transactions on Evolutionary
Computation, 1(1), pp. 53–66. doi:10.1109/4235.585892.

5 Dorigo, M. and Stützle, T. (2004) ‘The Ant Colony Optimization Metaheuristic’, in Ant
colony optimization. Cambridge, MA: MIT Press, pp. 25–26.

6 Dorigo, M. and Stützle, T. (2004) ‘Ant Colony Optimization Algorithms for the Traveling
Salesman Problem’, in Ant colony optimization. Cambridge, MA: MIT Press, pp. 67–68.

7 Lenstra, J.K. and Kan, A.H. (1975) ‘Some simple applications of the travelling salesman
problem’, Operational Research Quarterly (1970-1977), 26(4), pp. 717–733.
doi:10.2307/3008306.

8 M. Almufti, S., Boya Marqas, R. and Ashqi Saeed, V. (2019) ‘Taxonomy of bio-inspired
optimization algorithms’, Journal of Advanced Computer Science & Technology,
8(2), p. 23. doi:10.14419/jacst.v8i2.29402.

9 Nguyen, K.-H. and Ock, C.-Y. (2011) ‘Word sense disambiguation as a traveling
salesman problem’, Artificial Intelligence Review, 40(4), pp. 405–427.
doi:10.1007/s10462-011-9288-9.

10 Singh, V.K. and Sharma, V. (2014) ‘Elitist genetic algorithm based energy balanced
routing strategy to prolong lifetime of wireless sensor networks’, Chinese Journal of
Engineering, 2014, pp. 1–6. doi:10.1155/2014/437625.

34

5.2 Research Papers

1 Alexander, A. and Sriwindono, H. (2019) ‘The comparison of genetic algorithm and ant
colony optimization in completing travelling salesman problem’, Proceedings of the 2nd
International Conference of Science and Technology for the Internet of Things, ICSTI
2019, September 20th, Yogyakarta, Indonesia [Preprint]. doi:10.4108/eai.20-9-
2019.2292121.

2 Chase, C. et al. (no date) An Evaluation of the Traveling Salesman Problem. Available
at: https://scholarworks.calstate.edu/downloads/xg94hr81q#:~:text=. (Accessed: 14 July
2023).

3 Danu, M.S. (2013) Ant colony optimization algorithms, Scribd. Available at:
https://www.scribd.com/document/136679005/Ant-colony-optimization-algorithms#
(Accessed: 27 June 2023).

4 Hasançebi, O. and Erbatur, F. (2000) ‘Evaluation of crossover techniques in genetic
algorithm based optimum structural design’, Computers & Structures, 78(1–3), pp.
435–448. doi:10.1016/s0045-7949(00)00089-4.

5 Morris, A.T. (1998) Optimization of the Traveling Salesman Problem and Multivariate
Real-Valued Functions using a Genetic Algorithm. dissertation.

6 Mulani, M. and Desai, V.L. (2018) ‘Design and Implementation Issues in Ant Colony
Optimization’, in International Journal of Applied Engineering Research. 16th edn.
Research India Publications, pp. 12877–12882.

7 NP-hard problems and approximation algorithms - University of Texas at ... Available at:
https://personal.utdallas.edu/~dxd056000/cs6363/unit5.pdf (Accessed: 17 May 2023).

8 Ranjith, K.A. (2010) Ant Colony Optimization. rep., pp. 1–16.

9 Üçoluk, G. (2002) ‘Genetic algorithm solution of the TSP avoiding special crossover and
mutation’, Intelligent Automation & Soft Computing, 8(3), pp. 265–272.
doi:10.1080/10798587.2000.10642829.

35

5.3 Websites

1 Big O notation - mit - massachusetts institute of technology (no date) Big O Notation.
Available at: https://web.mit.edu/16.070/www/lecture/big_o.pdf (Accessed: 26 June
2023).

2 Black, P.E. (2020) Hamiltonian cycle, Dictionary of Algorithms and Data Structures
[online] Available at: https://xlinux.nist.gov/dads/HTML/hamiltonianCycle.html (Accessed:
17 May 2023).

3 Genetic algorithms (2017) Scribd. Available at:
https://www.scribd.com/document/351623322/Genetic-Algorithms# (Accessed: 15 June
2023).

4 Prado, K.S. do (2020) Understanding time complexity with python examples, Medium.
Available at: https://towardsdatascience.com/understanding-time-complexity-with-
python-examples-2bda6e8158a7 (Accessed: 26 June 2023).

36

6. Appendix

All the code was accessed on 21st July 2023 from https://github.com/Joseph

bakulikira/Traveling-Salesman-Algorithm. See the following pages for screenshots of the

code used.

37

6.1 Appendix 1 – Main Code

38

39

6.2 Appendix 2 – Brute Force Algorithm Code

40

41

42

6.3 Appendix 3 – Elitist Genetic Algorithm Code

43

44

45

46

6.4 Appendix 4 – Ant Colony System Code

47

48

49

6.5 Appendix 5 – Data Sets

6.5.1 Four City Map

6.5.2 Eight City Map

50

6.5.3 Twelve City Map

6.5.4 Sixteen City Map

51

6.5.4 Twenty City Map

