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1. Introduction

Finding the most optimal route, whether it be networks, transportation or information flow,

lies at the heart of efficient resource utilization and problem-solving in various domains. As

the scale and complexity of these systems continue to expand, algorithms that determine the

shortest path between points become indispensable. The Shortest Path Problem (SPP) is a

well-known optimization problem in graph theory that deals with determining the minimum

weight path between two vertices in a weighted graph. The efficiency of solving the SPP

varies greatly based on the algorithms and data structures employed. The problem is

considered computationally challenging due to its high complexity, and different algorithms

have been proposed to solve it efficiently.

This essay will focus on investigating the time complexity (refer to Appendix C for

definition) of pathfinding algorithms at solving the SPP on weighted graphs. This essay will

specifically explore Dijkstra's Algorithm and the Bellman–Ford Algorithm, which are two

prominent shortest-path algorithms. Both algorithms will also be compared with the

implementation of a priority queue, which is an abstract data structure which, in the context

of this essay, is used to keep track of the vertices to be explored. Which gives rise to the

research question: “How does the use of a priority queue and the implementation of

Bellman-Ford and Dijkstra's algorithm affect the time complexity of solving the shortest path

problem in weighted graphs?”.
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2. Background Information

2.1 Weighted Graphs and The Shortest Path Problem

A graph consists of points (vertices) connected by lines (edges), in weighted graphs, each

edge has an associated weight. This weight can represent various things depending on the

context, commonly distance or cost. There are two types of weighted graphs: directed

(digraphs) and undirected graphs. Digraphs have edges that point from one vertex to another

in a specific direction. Undirected weighted graphs have bidirectional edges that can be

traversed in either direction between two vertices. Weighted digraphs are useful for modeling

one-way relationships, such as transportation networks. Undirected weighted graphs are

suited for modeling mutual relationships like social networks (example shown in Figure 1).

Figure 1: Undirected Weighted Graph Consisting of 9 Vertices (Virginia Tech: Department of

Computer Science)

When the sum of the edge weights between two vertices is minimum (relative to all other

possible routes), it is considered the shortest path. Given a weighted digraph ,

to find the shortest path from a source vertex to and an end vertex , a path from the

start to end vertex needs to be found that minimizes the function:
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(Erickson 273)

There are two main variations of the SPP: single-source (SSSP) and all-pairs (APSP), see

Appendix C for definitions. This essay will be specifically focusing on the SSSP+ problem,

where all weights are positive (i.e. ), as the APSP is comparatively more

computationally taxing and time-consuming.

2.2 Shortest-Path Algorithms

2.2.1 Dijkstra's Algorithm

The most popular shortest-path algorithm widely used in applications such as Google Maps.

It works by iteratively selecting the vertex with minimum weight, updating distances to its

neighbors by considering the weights of the connecting edges, and repeating this process until

all vertices have been visited.

Dijkstra’s Algorithm is an example of a greedy algorithm (refer to Appendix C for

definition). One stipulation to using the algorithm is that the graph needs to have a

nonnegative weight on every edge (Abiy et al.).

In the context of this essay, a “naive” algorithm (refer to Appendix C for definition) is one

with no optimizations (i.e. no priority queue).
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Figure 2: Pseudocode for Naive Dijkstra’s Algorithm (ChatGPT, 2023)

The following is a breakdown of the pseudocode (Figure 2 above):

1. Declaration: The ‘dist’ dictionary stores the shortest distances between source and

every other vertex in the graph, while ‘visited’ keeps track of visited vertices.

2. Initialization: The distance from the source vertex to every other vertex is initially set

as ∞ (unknown), except the source vertex, which is set to 0.

3. The algorithm will run while there are unvisited vertices.

a. Selecting Vertex With Minimum Distance: The algorithm selects the vertex

‘current’ with the minimum distance from the ‘dist’ dictionary among the

unvisited vertices in each iteration, or . The

current vertex is marked as visited or true.

b. For each neighbor vertex of the current vertex:

i. Check if the neighbor vertex is unvisited: If visited[neighbor] is false,

it means it has not been visited. ‘newDistance’ is a variable that will

calculate and store the new distance from the source to the neighbor

vertex.
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ii. The calculated distance is compared with the current distance in the

‘dist[neighbor]’ dictionary. If smaller, a shorter path has been found

from the source vertex to the neighbor. ‘dist[neighbor]’ is updated with

the new, smaller distance. Denoted mathematically as

. ‘min’ is used

here to choose the smaller of the two distances. By updating

‘dist[neighbor]’ with the new smaller distance, the edge between the

current vertex and its neighbor vertex is “relaxed” (refer to Appendix

C for definition). ‘dist’ is returned, which now contains all the shortest

paths from the source vertex to every other vertex.

Consider the following graph:

Figure 3: Example Weighted Digraph with 6 Vertices and 9 Edges

Below is an example use of the algorithm against Figure 3.
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Graph Explanation

Figure 4: Distances Initially Unknown

The distance from every vertex to the start
vertex is initialized to be ∞ except the
starting vertex itself, which would be 0.

The only vertex visited so far is the starting
vertex itself, A.

Figure 5: Exploring Neighbors of Vertex A

The neighbors of the current vertex (A) are
explored, which are B and C. Now, the edge
from A to B is relaxed. Currently, the
distance known from A to B is ∞, and the
new potential distance is 0 + 2 = 2. Since 2
< ∞, the shortest distance from A to B is
updated as 2. This can also be represented
mathematically as:

The edge from A to C is to be relaxed, the
known distance from A to C is ∞, the new
potential distance is 0 + 6 = 6. Since 6 < ∞,
the shortest distance from A to C is updated
as 6. This can be represented
mathematically in a similar way as the
above.

Now, the current vertex is set to the
neighbor vertex with the smallest distance,
which is B (since 2 < 6).
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Graph Explanation

Figure 6: Exploring Neighbors of Vertex B

B is marked as visited in the ‘visited’
dictionary by setting it to true. The
neighbors of B are to be explored, which are
C, D and E. The process of edge relaxation
is repeated. Now, the edge from B to C is
relaxed. The current known shortest
distance from A to C is 6, but the new
potential distance through B is 2 + 3 = 5.
Since 5 < 6, the shortest distance to C can
be updated to be 5. Denoted mathematically
as:

The edge from B to E is to be relaxed, the
current distance is ∞ from A to E, the new
potential distance through B is 2 + 2 = 4.
Since 4 < ∞, the shortest distance from A to
E is 4.

Finally, the edge from B to D is relaxed; the
current distance is ∞, and the new potential
distance through B is 2 + 3 = 5. Since 5 < ∞,
the shortest distance from A to D is 5. Now,
the current vertex is set to the neighbor
vertex with the smallest distance, which is E
(since 2 < 3).

Figure 7: Exploring Neighbors of Vertex E

Now explore the neighbors of E, which
would be only F. The edge from E to F is to
be relaxed. The current known distance
from A to F is ∞ and the potential distance
will be 2 + 2 + 3 = 7. Since 7 < ∞, the
shortest distance from A to F is updated to
be 7.

The current vertex is set to the neighbor
vertex with the smallest distance, which is
simply F.
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Graph Explanation

Figure 8: End of Loop, Shortest Paths
Found

Now that all the vertices have been visited,
the loop terminates and the ‘dist’ dictionary
containing the shortest paths from A to
every other vertex is returned. As shown
below:

This essay will use Big-O notation (refer to Appendix C for definition) for measuring time

complexity (as opposed to Big-Ω or Big-Θ), as it aims to evaluate the performances of both

algorithms under maximum stress (worst-case).

The worst-case time complexity of Dijkstra’s Algorithm without the use of a priority queue is

, where represents the number of vertices in the graph. In each iteration, the

algorithm needs to find the vertex with minimum distance among the unvisited vertices. In a

naive implementation, this requires iterating over all vertices, resulting in a time complexity

of for this operation. As this process is repeated for each vertex ( ), the overall

time complexity becomes (since ).

2.2.2 Bellman-Ford Algorithm

Bellman-Ford's algorithm finds applications in networking, particularly in a distance-vector

routing protocol. This protocol decides how to route packets of data on a network (Chumbley

et al.).

Similar to Dijkstra’s Algorithm, it uses the idea of relaxation but doesn’t use [it] with [a]

greedy technique (Morampudi). It works by keeping track of weight distance from the origin
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and previous node in the shortest path, looping over the edges/connections for n times (n

being the number of nodes/vertices), and updating the fastest route to the destination

(stevenard). In comparison to Dijkstra’s algorithm, the Bellman-Ford algorithm admits or

acknowledges the edges with negative weights (Magzhan and Mat).

Figure 9: Pseudocode for Naive Bellman-Ford Algorithm (ChatGPT, 2023)

The following is a breakdown of the pseudocode (Figure 9 above):

1. Declaration: A dictionary called ‘distance’ is created to store the shortest distance

from the source vertex to every other vertex.

2. Initialization: Set the distance from the start vertex to every other vertex to be ∞,

except the start vertex, which is set to 0.

3. Continuously Relax Edges: Iteratively update the distances until the optimal solution

is found. Let be the total number of vertices in the graph. This process is repeated

times.

a. For every edge in the graph, where and are vertices and is

the weight of the edge, the distance to is checked to see if it can be

minimized by going through .
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i. If this condition is satisfied, the distance of vertex is updated to be

the sum of the distance to vertex and the weight of the edge .

The relaxation can be denoted mathematically as:

4. Check for negative weight cycles: If the sum of the weights of the edges along the

cycle is negative, it is defined as a negative weight cycle. For every edge ,

the distance from the start vertex to vertex ( ) is checked to see if it

is smaller than the current shortest distance to ( ). If a negative weight

cycle is present, the algorithm will fail to provide a solution.

5. If the condition above is not satisfied, the ‘distance’ dictionary is returned which now

contains all the shortest paths.

The algorithm will not be demonstrated using a graph with negative weights as it is not

relevant to this experiment. The following example demonstrates the algorithm's use on the

same graph (Figure 3) as discussed in the previous section.

Graph Explanation

Figure 10: Distances Initially Unknown

The distance from every vertex to the
start vertex is initialized to be ∞ except
the starting vertex itself, which would be
0.

The only vertex visited so far is the
starting vertex itself, A.
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Graph Explanation

Figure 11: First Iteration

The main loop is entered, where edges in
the graph are continuously relaxed for a
total of 5 iterations in this case.

For every edge in the graph:

Now if this distance is smaller than the
current distance[B], which is infinity, the
distance from A to B is updated as 2
( ).

Similar to the above, is
currently infinity, which is greater than 6.
Thus .

This is the first iteration of Step 3 (refer
to pseudocode). The known distances are
as shown below.

Figure 12: Second Iteration

Now, compare this with the current
, which is 6. Since 5 < 6,
is updated to be 5, which is

the shorter path.

Since 4 < ∞, is updated to be
4.

11



Graph Explanation

Since 5 < ∞, is updated to be
5.

This is the second iteration of Step 3. The
new distances are shown as below:

Figure 13: Third Iteration

Since 8 is greater than the current
, which is 4. The distance

dictionary is not updated.

This is the third iteration of Step 3. The
new distances are shown as below:

Figure 14: Fourth Iteration

Since 9 is greater than the current
distance , which is 4. The
distance dictionary is not updated.

Since 7 is less than the current value of
, which is ∞. is

updated to be 7.

This is the fourth iteration of Step 3. The
new distances are shown as below:
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Graph Explanation

Figure 15: Fifth Iteration

No updates occur in the fifth and final
iteration, all edges have been successfully
relaxed. This is the fifth iteration of Step
3. The final distances are shown as
below:

Figure 16: End of Loop, Shortest Paths Found

Now, check for any negative weight
cycles, for which there are none

Finally, the ‘distance’ dictionary is
returned containing all the shortest paths:

The time complexity of the naive Bellman-Ford Algorithm is . Where is the

number of vertices and is the number of edges. The algorithm repeatedly relaxes each edge

for iterations, in each iteration, it checks all edges within the graph and updates the

distance to each vertex in case a shorter path is found. Resulting in relaxation

operations, the constant can be ignored. Resulting in a total time complexity of .

2.3 Priority Queues

A priority queue is a variation of the traditional queue data structure where each element in

the queue is associated with a priority value, elements are attended to in the queue based on

this priority value. Conventionally, the element at the front of the queue has the highest

priority value.
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Priority queues are usually implemented using heaps (refer to Appendix C for definition).

There are two different types of heaps, a max heap and min heap. In a min heap, the value of

the parent node is less than or equal to the value of the child node, for all nodes, this property

is known as the heap invariant. The max heap is simply the opposite. The value of the nodes

in the context of this experiment being distances. Figure 16 shows a min heap of height 3

satisfying the heap invariant, while Figure 17 shows a violated heap invariant where the

child of parent node 3 is less than its parent.

Figure 17: Valid Min Heap Figure 18: Invalid Min Heap

The two main operations of the priority queue that concern this experiment are insertion and

extraction (removal). The worst-case time complexity of both operations is

(Garg), where is the number of elements in the heap. Since the min heap can be visualized

as a complete binary tree, the tree’s height can be expressed as a logarithm of (e.g. Figure

18 above has 7 nodes, therefore ). Leading to a logarithmic time complexity for

both insertion and extraction.

In this experiment, the priority queue being implemented into the algorithms will be using a

min heap, as Python has a built-in data structure which is essential to prioritize the smallest

distance at each localized step of the algorithm, in order to find an optimal path.
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3. Hypothesis and Applied Theory

The experiment will find the relationship between execution time in nanoseconds ( ) and the

number of vertices in the digraph ( ). By increasing the number of vertices, a clear

correlation can be drawn between both variables and how the relationship differs when a

priority queue is implemented within both algorithms.

The graph used in this experiment is such that . Thus, recalling the time

complexities for both algorithms, it is hypothesized that for naive implementations, Dijkstra’s

Algorithm will run with a lower execution time. The number of edges in the graph are such

that , so the time complexity of the Bellman-Ford can be approximated to

be a quadratic as . Therefore, for both naive algorithms, there is

predicted to be a quadratic relationship between and .

For Dijkstra’s Algorithm, the priority queue is queried to extract the vertex with the smallest

current distance, taking time. Then, the algorithm performs edge relaxation on the

neighboring vertices of the extracted vertex, potentially updating their current distances. This

is repeated until all vertices have been processed or the priority queue is empty, improving

the time complexity to , as the extraction of the vertex with the smallest

distance becomes optimized through the logarithmic time complexity of the min heap

extraction.

As mentioned in Section 2.2.2, the number of relaxation operations in the Bellman-Ford

Algorithm is . With a priority queue, each relaxation operation involves inserting or

extracting an element in the priority queue, which is time complexity , leading to

the relaxation operations having a time complexity of . The priority queue
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benefits the selection of the vertex with the smallest distance in each iteration which can be

done in time. Combining this time complexity with the relaxation operations

results in .

It appears that both min heap implemented algorithms have the same time complexity,

however, the graph that will be used in the experiment is such that there are no negative

weights, and Dijkstra’s Algorithm tends to perform better in this environment. Furthermore,

Dijkstra’s Algorithm does not iterate through all the edges, while the Bellman-Ford

Algorithm does multiple times.

Thus, it is hypothesized that with the priority queue implementations, both algorithms will

reduce in execution time, specifically, Dijkstra’s Algorithm will run with a lower execution

time compared to the Bellman-Ford Algorithm. For both priority queue implemented

algorithms, there is predicted to be a logarithmic relationship.
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4. Experimental Methodology

4.1 Weighted Graph Used

As a resident of Singapore, the author of this paper frequently relies on the public bus

network for their transportation needs. Therefore, for this experiment, they decided to

represent the Singapore Bus Network as a weighted digraph, which can be used to evaluate

the execution times of the algorithms. The vertices being bus stops and the weights being the

travel distances between the stops in kilometers.

The dataset used in the experiment’s code originates from the Land Transport Authority; this

data was mostly scraped from the website and compiled into a data repository on Github

(Aun). Two files were saved locally on the author’s system, stops.json and services.json.

Figure 19: Code Snippet Showing The Parsing of JSON Data and Dictionary Population

Both files services.json and stops.json are read and deserialized into Python objects.

The services.json file contains data about bus services in Singapore, each identified by a

distinct service ID, such as 3 or 4, and including information about its name and routes. The

stops.json file contains information regarding the bus stops themselves, such as bus stop ID,
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latitude and longitude. A dictionary called stop_coordinates is created and is populated with

bus stop IDs as the keys and their corresponding latitude and longitude coordinates as values.

Figure 20: Code Snippet Showing The Haversine Distance Formula

The weights are calculated using the Haversine distance formula (shown below), which

accurately calculates the distances between two points on the surface of a sphere

(approximating the shape of Earth as a sphere) given the latitude and longitude of the two

points.

(Sydorenko)

The weights do not reflect the real-life distances between the bus stops but rather provide an

approximation.

18



Figure 21: Code Snippet Showing The Creation of The Digraph

A digraph is created using the NetworkX library. The services_data dictionary is iterated

over, and for each service, the routes are examined. Within each route, consecutive pairs of

stops are considered. If both the start and end stops are present in the stop_ids list, their

corresponding coordinates are retrieved from the stop_coordinates dictionary. The distance

between the start and end coordinates are calculated with the aforementioned haversine

distance function. Finally, an edge is added to the graph, connecting the start and end stop

IDs, with the calculated distance as the weight. Resulting in Figure 22 below:

Figure 22: Visualization of All The Bus Stops in Singapore Using the Kamada-Kawai Layout
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4.2 Independent Variables

The size of the weighted digraph will be changed, specifically, the number of vertices and

edges in the graph. The idea is to iterate through increasing fractions of the stops.json file so

that the number of vertices and edges in the graph can be increased, which is a convenient

and logical way of changing the independent variables in this experiment. This will be done

by changing this variable:

By changing the after the floor division operator, the fraction of the stops included in the

graph can be controlled. For example, when , only one-tenth of the stops will be

considered, resulting in a smaller graph size with a reduced number of vertices and edges.

The value of in this experiment will be varied from 10 to 1, with 1 being inclusive of all

5083 bus stops. The purpose is to showcase algorithm performance under escalating

computational stress, revealing the correlation between execution time and input size. Figure

23 shows the various number of vertices and edges that will be used to test the algorithms:

Vertices Edges

508 734

564 816

633 911

726 1012

847 1186

1010 1363

1269 1681

1694 2241

2540 3454

5083 7420

Figure 23: Range of Values for Independent Variable
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4.3 Dependent Variables

The only dependent variable is the execution time for the given algorithm to find the shortest

path from the source vertex to all the other vertices (SSSP) in nanoseconds. This will be

measured using the time.perf_counter_ns() function from the time module in Python, which

provides a high-resolution timer for accurate timing measurements in nanoseconds.

4.4 Controlled Variables

Variable Description Specification

IDE Used

The program will be run on
the same IDE. To minimize
variations in code execution
and optimization, which can
prevent systematic errors in
execution times between the
algorithms.

IDE: Visual Studio Code
1.79.0 (user setup)

Python 3.11.4
- NetworkX 3.1
- json 2.0.9

Computer and OS

The program will be run on
a Razer Book 13. This will
minimize systematic and
random error as there are no
variations in hardware and
OS.

OS: Microsoft Windows 11
Home Version 10.0.22621
Build 22621

Processor: Processor 11th
Gen Intel(R) Core(TM)
i7-1165G7 @ 2.80GHz,
2803 Mhz, 4 Core(s), 8
Logical Processor(s)

Memory: 16GB DDR4
SDRAM 4267MHz

Start Vertex

The first bus stop id found in
the stops.json file will be
used, so that the algorithms
are subjected to the same
initial conditions, reducing
random error in results due
to different starting points.

id: 10009

Input Dataset

The same data will be used
to construct the weighted
graph, reducing systematic
error and ensuring a
consistent basis for
algorithmic comparison.

stops.json and services.json
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Variable Description Specification

Graph Representation

The graph will be
represented using the
NetworkX library, the same
graph structure and
connectivity are used
consistently throughout this
experiment.

nx.DiGraph()

Graph

The same graph will be used
to benchmark the
algorithms. The distances
between each vertex will be
kept constant, reducing
systematic error.

Weighted Digraph
consisting of 5083 vertices
and 7420 edges in total

4.5 Procedure

1. Install the following library: NetworkX

2. Open the file ee.py (see Appendix A) in Visual Studio Code version 1.79.0. Place

stops.json and services.json in the same folder as the program.

3. Run the program by clicking the arrow button or pressing F5.

4. Perform 10 trials for each value of the independent variable (re-run the program). For

each trial, record the execution times of the Dijkstra's algorithm (naive),

Bellman-Ford algorithm (naive), Dijkstra's algorithm with a priority queue, and

Bellman-Ford algorithm with a priority queue. Note down the results in a spreadsheet

software.

Figure 24: Results Outputted in the Terminal

5. Calculate the average execution times for each algorithm (naive and priority queue)

based on the recorded data.
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5. The Experimental Results

5.1 Tabular Data Presentation

Figure 25 below shows the average execution time in nanoseconds for each algorithm to find

the SSSP in the weighted digraph with increasing vertices and edges. See Appendix B for the

raw data.

Figure 25: Average Execution Time for Each Algorithm

5.2 Graphical Representation of Data

Execution time was chosen to be graphed against the number of vertices instead of edges as it

better reflects the complexity of the graph and enables analysis of algorithm efficiency and

scalability with increasing graph size.

23

Vertices Edges

Average Execution Time (nanoseconds)

Dijkstra's

Algorithm

(Naive)

Bellman-Ford

Algorithm

(Naive)

Dijkstra's

Algorithm

(Priority Queue)

Bellman-Ford

Algorithm

(Priority Queue)

508 734 18277760 145268750 1823730 92678050

564 816 20924270 167572360 1902800 102746450

633 911 26766110 226592440 2109500 131542560

726 1012 33335310 270494600 2194940 159646660

847 1186 48589910 365931930 2879720 247789270

1010 1363 66669930 507861230 3299370 344395450

1269 1681 105192020 734278890 3651060 466298250

1694 2241 174840830 1373807150 6027200 1015853050

2540 3454 388870850 3093997800 9051150 2287816100

5083 7420 1598144270 13528484770 17772930 9412515240



A log scale for the axis was due to the wide and unevenly distributed range of values. The

reason for this uneven distribution was justified in Section 4.2. Using a standard scale would

result in a compressed representation, restricting effective observation of trends and patterns.

Figure 26: Execution Time of Dijkstra’s Algorithm (Naive) Against the Number of Vertices

Figure 27: Execution Time of Dijkstra’s Algorithm (Priority Queue) Against the Number of

Vertices
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Figure 28: Execution Time of the Bellman-Ford Algorithm (Naive) Against the Number of

Vertices

Figure 29: Execution Time of the Bellman-Ford Algorithm (Priority Queue) Against the

Number of Vertices
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5.3 Data Analysis

5.3.1 Analyzing Dijsktra’s Algorithm

The hypothesis regarding the quadratic relationship between and has proven to be

correct for the naive implementation. The value in Figure 26 of exactly 1 indicates that

the data points are a perfect fit to the quadratic curve. The equation is given in Figure 26 can

be re-written in the general form as . The

positive coefficient suggests that as the number of vertices in the graph increases, the

execution time of the algorithm will increase quadratically. The negative value suggests

that as the number of vertices increases, the execution time of the algorithm will decrease

linearly (by a relatively small amount).

The hypothesis regarding the logarithmic relationship for the priority queue implemented

algorithm is partially correct. Figure 27 shows the trend line to have equation

. The negligible value for this equation suggests that the

relationship between and is more linear. As mentioned previously, the time complexity

for the priority queue implemented Dijkstra’s Algorithm is , using the

previous approximation , the time complexity can be written as

. Graphing this out against , it is observed that the time complexity is

superlinear (Figure 30 below). A superlinear relationship is a non-linear function that

appears to grow linearly.
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Figure 30: Graph of in Red and in Blue (Desmos)

The relationship between and is indeed logarithmic, but appears to be linear. This can be

due to the relatively small input size for the algorithm; the graph used to benchmark the

algorithm contained not as many vertices and edges needed to observe a clear logarithmic

relationship. Furthermore, the graph used was sparse, which was in favor of the algorithm

since there were fewer edges to explore. However, for the size of the dataset used, the

relationship can be better modeled using a linear function.

Looking back at Figure 25, taking the average execution times for both algorithms for the

entire graph (5083 vertices) and applying the percentage decrease formula:

Which is approximately 98.9%. It is evident that the min heap priority queue implementation

has greatly optimized Dijkstra’s Algorithm, resulting in significantly improved execution

times.
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5.3.2 Analyzing Bellman-Ford Algorithm

The hypothesis regarding the quadratic relationship has proven to be correct for the naive

implementation. The value in Figure 28 indicates that the data points are a perfect fit to

the quadratic curve. It behaves similarly to Dijkstra’s Algorithm (naive), however, with a

longer execution time overall.

The hypothesis regarding the logarithmic relationship for the priority queue implementation

was incorrect, as the value shown in Figure 29 suggests that the data points perfectly

fit the shape of a quadratic curve. As a consequence of the sparse graph, the number of

priority queue operations is performed a relatively smaller number of times compared to

relaxation operations and iterations. As fewer edges need to be considered during each

iteration, the component of the time complexity becomes negligible, which results

in a more quadratic relationship.

The value of a quadratic represents how wide/narrow the parabola is, it can be interpreted

as the rate at which the execution time increases, a higher value exemplifying a steeper

increase in execution time against the number of vertices. Using the percentage decrease

formula with the values as the input, it is observed that the Bellman-Ford Algorithm

decreased in execution time by about 34.2% after the priority queue was implemented. This

is due to several reasons. With the implementation of a priority queue, the algorithm can

terminate early once all shortest paths have been found, it guarantees that once a vertex’s

shortest distance is finalized, it will not be updated further. Furthermore, relaxation

operations are optimized as the vertex with the smallest distance is always selected first,

which reduces the number of comparisons required, thus improving execution time.

28



Applying the second derivative test on the trendlines in Figures 28 and 29, the rate of

execution time change with input size increase is determined, aiding in identifying the

algorithm with lower execution times as input size expands.

Trendline in Figure 28: Trendline in Figure 29:

As , it is concluded that the Bellman-Ford algorithm with a priority queue is

more efficient and scalable as input size increases.
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6. Limitations

There were various experiment-related limitations that could potentially have impeded the

achievement of better results.

The graph used in this experiment is Singapore's Bus Network. In Figure 22, it can be seen

that each vertex only points towards one other vertex, indicating the graph was sparse.

Empirically, most real-world graphs are sparse by nature. The number of edges is within a

constant multiple of the number of vertices (Cook). The main issue is the algorithms may not

encounter enough complexity to demonstrate the improvement of priority queue

implementation. There were less relaxation and priority queue operations overall, which can

be why all the algorithms mostly exhibited quadratic time complexity behaviors.

As Singapore is a small country, the graph contained only 5083 vertices and 7420 edges. This

became an issue when collecting results for Dijkstra’s Algorithm with a priority queue, as the

relationship was observed to be initially linear when graphed without using a log scale

(Figure 31). The use of a graph with more vertices (and preferably more edges) is speculated

to eliminate this issue.
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Figure 31: Figure 27 without a Log Scale

Hardware limitations can influence execution time, potentially causing fluctuations in results.

The CPU of the laptop used was also being utilized by other processes such as Windows

service host processes, which adds random error to the algorithm execution time. This is an

inherent limitation to the device that was used in this experiment, as it is not meant to be a

dedicated computing system for intricate algorithmic calculations.
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7. Conclusion

The results clearly show that with the implementation of a min heap priority queue, both the

Bellman-Ford and Dijkstra’s Algorithm reduce in time complexity and execution time.

By implementing a min heap priority queue into Dijkstra’s Algorithm, the selection and

extraction of the minimum distance vertex during each iteration improves, reducing the

number of relaxations and comparisons. This makes it more scalable as the number of

vertices increases in a graph.

The Bellman-Ford Algorithm improves for the same reasons, however, it is not as

pronounced due to the nature of the algorithm being dependent on the number of iterations

and relaxation operations which overshadows the time complexity in sparse graph

environments.

Figure 31: Combined Graph Showing the Execution Times of All Algorithms Against the

Number of Vertices
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Looking at Figure 31 above, it can be concluded that Dijsktra’s Algorithm is better at solving

the SSSP problem in weighted graphs compared to the Bellman-Ford Algorithm. This is

supported by the steepness of both the red and green lines (Bellman-Ford) as compared to the

blue and yellow lines (Dijkstra), the blue and yellow lines are significantly more shallow,

suggesting that Dijkstra’s Algorithm is more efficient in terms of execution time as the

number of vertices increases.

This paper hopes to prove useful to computer scientists collaborating with transportation

planners and urban developers, providing them with a deeper understanding of how

algorithmic optimizations can lead to more efficient transportation networks in urban

environments. This research may serve as a foundational resource for future studies aiming to

improve various graph-based algorithms in diverse applications, from network routing to

logistics and beyond.
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9. Appendices

Appendix A: Python Code

The code was initially generated using the Large Language Model (LLM) “ChatGPT”,

however, underwent further modifications by the author (ChatGPT, 2023). Below is a table

containing the significant prompts and their respective explanation as to why they were

entered.

Prompt Explanation

The research question for my IB Computer
Science Extneded (sic) Essay is "How does
the use of a priority queue and the
implementation of Bellman-Ford and
Dijkstra's algorithm affect the time
complexity of solving the shortest path
problem in weighted graphs?". For the
weighted directed graph, I intend to use
Singapore's Bus Network.

This was the first prompt fed into the LLM.

The purpose of this prompt was to introduce
ChatGPT, the core research question of the
essay as well as provide context for the rest
of the conversation.

There are two files you will need,
"services.json" and "stops.json". Below are
sample data from each file.

services.json
{

"2": {
"name": "Changi Village Ter

⇄ Kampong Bahru Ter",
"routes": [

[
…

stops.json
{

"10009": [
103.81722,
1.2821,
"Bt Merah Int",
"Bt Merah Ctrl"

],
…

The purpose of this prompt was to introduce
the data files “services.json” and
“stops.json”, which was the information
used to construct the weighted digraph.

Sample data was provided from both files
which enabled the LLM to understand how
to deserialize the files into Python objects.
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Prompt Explanation

I want you to do this in python, and use the
networkx library to create the digraph, and
calculate the weights using the haversine
distance

The purpose of this prompt was to give the
specification that the program should be
created in Python.

It also specifies that the digraph is to be
created with NetworkX, as opposed to
igraph or PyGraphviz. It also specifies for
the weights of the digraph to be created by
applying the haversine formula on the
latitude and longitude values.

Let me explain what I need fully:
1. Parsetops.json and services.json in
python objects using the json library
2. Create a dictionary of stop IDs to
coordinates
3. create a function to calculate haversine
distance, with the paramters being coord1
and coord2
4. create an empty digraph using networkx
5. add edges to the graph with weights
6. Create the following algorithms:
Dijkstra's Algorithm Naive, Dijkstra's
Algorithm with a min heap priority queue,
Bellman-Ford Algorithm Naive,
Bellman-Ford Algorithm with a min heap
priority queue. All of these algorithms will
solve the SSSP problem. Implement the
min heap priority queue using "from queue
import PriorityQueue"
7. Measure the execution time of each
algorithm in nanoseconds using
time.perf_counter_ns() from the time library

This lengthy prompt helped generate most
of the code, I gave instructions in the order
of how I wanted them to be implemented
within the program.

In steps 1-5, I explain to the LLM how the
digraph should be constructed using the
stops.json and services.json file. These steps
involve parsing the data, mapping stop IDs
to coordinates, calculating distances,
creating the digraph, and adding weighted
edges to represent the transportation
network.

In steps 6 and 7, I ask the LLM to write the
implementations for the naive and priority
queue-implemented algorithms, as well as
the specification to measure the execution
time using the time library in Python.

# Measure the execution time of each
algorithm in nanoseconds
source_stop = "10009" # Example source
stop ID
target_stop = "10041" # Example target
stop ID

The purpose of this was to correct the LLM,
as it initially thought that the problem to be
solved was the Single-Pair Shortest Path
(SPSP), which finds the shortest path only
between a single pair of vertices.
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Prompt Explanation

since i am intending the alogirhtms (sic) to
solve the SSSP problem, a target stop wont
be needed.

However, the problem being focused on in
this essay was the SSSP, therefore,
ChatGPT was corrected accordingly.

Below is the Python code used in the experiment to benchmark the algorithms and collect the

raw data for the execution times in nanoseconds.

1. # filename: ee.py

2. import json

3. import networkx as nx

4. import math

5. from queue import PriorityQueue

6. import time

7.

8. # Constants for Haversine formula

9. AVG_EARTH_RADIUS = 6371 # in kilometers

10.

11. # Step 1: Parse services.json

12. with open('services.json') as services_file:

13. services_data = json.load(services_file)

14.

15. # Step 2: Parse stops.json

16. with open('stops.json') as stops_file:

17. stops_data = json.load(stops_file)

18.

19. # Step 3: Create a dictionary of stop IDs to coordinates

20. stop_coordinates = {}

21. for stop_id, stop_info in stops_data.items():

22. longitude, latitude, _, _ = stop_info

23. stop_coordinates[stop_id] = (float(latitude), float(longitude))

24.

25. # Function to calculate Haversine distance

26. def haversine_distance(coord1, coord2):

27. lat1, lon1 = coord1

28. lat2, lon2 = coord2

29.

30. dlat = math.radians(lat2 - lat1)
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31. dlon = math.radians(lon2 - lon1)

32.

33. a = math.sin(dlat / 2) * math.sin(dlat / 2) + math.cos(

34. math.radians(lat1)) * math.cos(math.radians(lat2)) * math.sin(

35. dlon / 2) * math.sin(dlon / 2)

36. c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))

37.

38. distance = AVG_EARTH_RADIUS * c

39. return distance

40.

41. # Step 4: Create an empty directed graph

42. graph = nx.DiGraph()

43.

44. # Step 5: Add edges to the graph with weights

45. stop_ids = list(stop_coordinates.keys())[:len(stop_coordinates)//1]

46.

47. for service_id, service_info in services_data.items():

48. routes = service_info['routes']

49. for route in routes:

50. for i in range(len(route) - 1):

51. start_stop_id = route[i]

52. end_stop_id = route[i + 1]

53.

54. if start_stop_id in stop_ids and end_stop_id in stop_ids:

55. start_coordinates = stop_coordinates[start_stop_id]

56. end_coordinates = stop_coordinates[end_stop_id]

57. distance = haversine_distance(start_coordinates,

58. end_coordinates)

59. graph.add_edge(start_stop_id, end_stop_id,

weight=distance)

60.

61. # Dijkstra's algorithm (without priority queue)

62. def dijkstra(graph, start_node):

63. distances = {node: float('inf') for node in graph.nodes}

64. distances[start_node] = 0

65.

66. visited = set()

67.

68. while len(visited) < len(graph.nodes):

69. current_node = min((node for node in graph.nodes if node not in

70. visited), key=distances.get)
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71. visited.add(current_node)

72.

73. for neighbor, edge_data in graph[current_node].items():

74. weight = edge_data['weight']

75. distance = distances[current_node] + weight

76.

77. if distance < distances[neighbor]:

78. distances[neighbor] = distance

79.

80. return distances

81.

82. # Bellman-Ford algorithm (without priority queue)

83. def bellman_ford(graph, start_node):

84. distances = {node: float('inf') for node in graph.nodes}

85. distances[start_node] = 0

86.

87. for _ in range(len(graph.nodes) - 1):

88. for u, v, edge_data in graph.edges(data=True):

89. weight = edge_data['weight']

90. if distances[u] + weight < distances[v]:

91. distances[v] = distances[u] + weight

92.

93. return distances

94.

95. # Dijkstra's algorithm with a priority queue

96. def dijkstra_priority_queue(graph, start_node):

97. distances = {node: float('inf') for node in graph.nodes}

98. distances[start_node] = 0

99.

100. pq = PriorityQueue()

101. pq.put((0, start_node))

102.

103. while not pq.empty():

104. current_distance, current_node = pq.get()

105.

106. if current_distance > distances[current_node]:

107. continue

108.

109. for neighbor, edge_data in graph[current_node].items():

110. weight = edge_data['weight']

111. distance = current_distance + weight
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112.

113. if distance < distances[neighbor]:

114. distances[neighbor] = distance

115. pq.put((distance, neighbor))

116.

117. return distances

118.

119. # Bellman-Ford algorithm with a priority queue

120. def bellman_ford_priority_queue(graph, start_node):

121. distances = {node: float('inf') for node in graph.nodes}

122. distances[start_node] = 0

123.

124. pq = PriorityQueue()

125. pq.put((0, start_node))

126.

127. while not pq.empty():

128. current_distance, current_node = pq.get()

129.

130. if current_distance > distances[current_node]:

131. continue

132.

133. for u, v, edge_data in graph.edges(data=True):

134. if u != current_node:

135. continue

136.

137. weight = edge_data['weight']

138. distance = current_distance + weight

139.

140. if distance < distances[v]:

141. distances[v] = distance

142. pq.put((distance, v))

143.

144. return distances

145.

146. print("Number of vertices:", graph.number_of_nodes())

147. print("Number of edges:", graph.number_of_edges())

148.

149. # Measure execution time of Dijkstra's algorithm (without priority queue)

150. start_time = time.perf_counter_ns()

151. shortest_paths_dijkstra = dijkstra(graph, '10009')

152. end_time = time.perf_counter_ns()
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153. execution_time_dijkstra = end_time - start_time # Time in nanoseconds

154.

155. # Measure execution time of Bellman-Ford algorithm (without priority

queue)

156. start_time = time.perf_counter_ns()

157. shortest_paths_bellman_ford = bellman_ford(graph, '10009')

158. end_time = time.perf_counter_ns()

159. execution_time_bellman_ford = end_time - start_time

160.

161. # Measure execution time of Dijkstra's algorithm with priority queue

162. start_time = time.perf_counter_ns()

163. shortest_paths_dijkstra_pq = dijkstra_priority_queue(graph, '10009')

164. end_time = time.perf_counter_ns()

165. execution_time_dijkstra_pq = end_time - start_time

166.

167. # Measure execution time of Bellman-Ford algorithm with priority queue

168. start_time = time.perf_counter_ns()

169. shortest_paths_bellman_ford_pq = bellman_ford_priority_queue(graph,

'10009')

170. end_time = time.perf_counter_ns()

171. execution_time_bellman_ford_pq = end_time - start_time

172.

173. # Print the results

174. print("Dijkstra's algorithm (without priority queue):")

175. print("Execution time:", execution_time_dijkstra, "nanoseconds")

176.

177. print("Bellman-Ford algorithm (without priority queue):")

178. print("Execution time:", execution_time_bellman_ford, "nanoseconds")

179.

180. print("Dijkstra's algorithm with a priority queue:")

181. print("Execution time:", execution_time_dijkstra_pq, "nanoseconds")

182.

183. print("Bellman-Ford algorithm with a priority queue:")

184. print("Execution time:", execution_time_bellman_ford_pq, "nanoseconds")
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Appendix B: Raw Data — Execution Times For Each Algorithm

Below are four tables containing the raw data for the execution times for all both algorithms

naively and priority queue implemented.

Dijkstra's Algorithm (Naive)

Vertices Edges
Execution Time (nanoseconds)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

508 734
119812

00

219344

00

187191

00

188747

00

208148

00

213346

00

192359

00

180741

00

146208

00

171880

00
18277760

564 816
229988

00

239538

00

165448

00

171783

00

172987

00

206403

00

226239

00

165522

00

257231

00

257288

00
20924270

633 911
294099

00

211119

00

289993

00

217923

00

303369

00

297289

00

293598

00

255342

00

293842

00

220037

00
26766110

726 1012
351529

00

392259

00

374550

00

390475

00

284014

00

324614

00

281736

00

338400

00

302319

00

293635

00
33335310

847 1186
523929

00

461059

00

537013

00

342537

00

452613

00

482004

00

528076

00

503240

00

524618

00

503902

00
48589910

1010 1363
660054

00

661547

00

644566

00

740336

00

647062

00

721190

00

745532

00

532783

00

638490

00

675433

00
66669930

1269 1681
951143

00

103253

100

836371

00

114374

500

110008

000

120537

000

109009

200

105947

500

108108

000

101931

500
105192020

1694 2241
175072

500

181875

000

170464

400

206013

000

138782

000

192145

500

188640

400

173174

800

139807

800

182432

900
174840830

2540 3454
377145

300

365253

100

483338

100

418696

100

383313

600

383556

500

348133

600

319151

700

434086

500

376034

000
388870850

5083 7420
188442

6500

165859

1600

132120

6300

138822

6400

154731

4400

153880

2100

165638

8100

157483

3200

171258

6800

169906

7300
1598144270

Bellman-Ford Algorithm (Naive)

Vertices Edges
Execution Time (nanoseconds)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

508 734
1386451

00

1441636

00

159186

900

140928

100

136946

800

158509

300

134072

000

144617

900

145289

700

1503281

00
145268750
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Bellman-Ford Algorithm (Naive)

Vertices Edges
Execution Time (nanoseconds)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

564 816
2040982

00

2031755

00

167630

900

123132

900

147859

500

200917

900

171318

100

116900

800

179134

100

1615557

00
167572360

633 911
2582753

00

2179865

00

235156

500

239027

400

235583

800

215396

400

230625

000

211644

700

191907

700

2303211

00
226592440

726 1012
3182746

00

2899442

00

295647

900

314248

900

227696

100

255524

200

175536

900

301477

900

295709

100

2308862

00
270494600

847 1186
3960264

00

3879800

00

306934

900

377343

200

389627

900

357523

100

318928

100

361835

200

356576

900

4065436

00
365931930

1010 1363
5083802

00

5491417

00

471250

500

553523

900

496799

700

520952

800

537441

800

512110

500

569653

100

3593581

00
507861230

1269 1681
8117004

00

6942527

00

640477

700

745964

900

802252

600

806862

000

623195

600

652351

200

714230

200

8515016

00
734278890

1694 2241
1628369

200

1337397

300

137017

9800

117314

2100

126027

0300

144180

2600

148303

2600

135174
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Dijkstra's Algorithm with Priority Queue

Vertices Edges
Execution Time (nanoseconds)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average
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Dijkstra's Algorithm with Priority Queue

Vertices Edges
Execution Time (nanoseconds)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average
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Bellman-Ford Algorithm with Priority Queue

Vertices Edges
Execution Time (nanoseconds)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average
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Bellman-Ford Algorithm with Priority Queue

Vertices Edges
Execution Time (nanoseconds)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average
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Appendix C: Definitions and Key Terms

Below are some technical terms used in this essay that can be used to support the reader’s

comprehension:

Time Complexity: Time complexity is defined as the amount of time taken by an algorithm to

run, as a function of the length of the input (Team).

Single-Source Shortest Path (SSSP): [The] Single-source shortest path (or SSSP) problem

requires finding the shortest path from a source vertex to all other vertices in a weighted

graph (Nvidia).

All-Pairs Shortest Path (APSP): [The] All-pairs shortest path (or APSP) problem requires

finding the shortest path between all pairs of vertices in a graph (Nvidia).

Greedy Algorithm: A greedy algorithm is a simple, intuitive algorithm that is used in

optimization problems. The algorithm makes the optimal choice at each step as it attempts to

find the overall optimal way to solve the entire problem (YOON MI KIM).

Naive Algorithm: A naive implementation [of an algorithm] is a programming technique that

prioritizes imperfect shortcuts for the sake of speed, simplicity, or lack of knowledge

(Perplexity AI. "Prompt: What is a naive implementation of an algorithm?").

Relax/Relaxing/Relaxation: Relaxation is the process of updating the distance of a [vertex] if

a shorter path is found (SaturnCloud).
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Big-O Notation: Big O notation is a mathematical notation describing a function’s limiting

behavior when the argument goes towards a certain value or infinity (Ashwani K).

Heap: A Heap is a complete binary tree-based data structure (Jaludi).
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