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Terminology

Cryptographic Hash Function (krɪptəˈgræ

fɪk hæʃ ˈfʌnŋkʃən) Noun • A mathematical

function used to generate a pseudo-random

output (image) of a fixed length from an

input (preimage) of any given length. [23]

Decoding (ˈdiːkəʊdɪŋ) Verb • The use of

an inverse function in order to option the

preimage of an encryption. [16]

Encode (ɪnˈkəʊd) Verb • To format data

into a standard format that transforms its

meaning. [16]

Encryption (ɪnˈkrɪpʃ(ə)n) Verb • The use

of a function to format plaintext data

(preimage) and encode it in a way that

renders it not useable in the same way

as its plaintext was intended to be used –

usually the image is not human-readable

and must be decoded before use. [16]

Hacker (ˈhækə) Noun • Someone who

undertakes the act of hacking with the

malicious intent – in this case to obtain a

password protecting secure data.

Hacking (ˈhækɪŋ) Verb • In our case,

hacking refers to the use of attacks on a

hash (image) in order to obtain its preimage.

[Computed] Hash (hæʃ)Noun •The output
(image) of a cryptographic hash-function,

of a fixed length depending on the function

used. The image of the function. [17]

Hashing (ˈhæʃɪŋ) Verb • The act of

producing an image from a plaintext input

(preimage) in order to obfuscate the input –

in this essay passwords are hashed using

the SHA-256 hash-function. [17]

Image (ˈɪmɪʤ) Noun • The output of

a function, hash-function, encryption or

otherwise. [21]

[Password] Security (ˈpɑːswɜːd) Noun •
The hiding of private information such as

banking details behind a string allowing

access to the information – in this case

stored as a hash.

PreImage (priː-ˈɪmɪʤ) Noun • The input

to a function, hash-function, encryption or

otherwise. [21]

Note

[x] = Reference to bibliographic index.
x = Reference footnote index.
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1 Introduction

1.1 Background

The security of private data on computer systems relies on the use of cryptography.

Encryption and hashing are two key aspects that make up cryptography over the internet as

we know it today, these are methods of converting a set of data (plaintext) into an encoded

version of that text; in order to obfuscate the original data. The data is encrypted by means

of an pseudo-random algorithm [30].

The encoded version of the data is almost useless unless you have the technology to

find out what the original text was. This method is used for passwords – the passwords

stored by websites are not stored in their original form, instead they are first encoded so

that if the database the password is stored in is breached, it is challenging to decode the

text to find what the original password was.

This essay will focus on cryptographic hash functions as opposed to other forms of

cryptography, as hash-functions are the industry standard for storing passwords. [27] We

use hash functions because the images they produce are said to be impossible to reverse

and find the preimage of [21]. The implication of this is that data can be encoded and only

decoded if the original data is presented. Because of this, websites can store the hashes

without fear that hackers may be able to access users’ passwords, even if the hashes are

found. Though, there are ways hackers can find the preimage of hashes if users are not

careful with passwords they choose.

Hash functions are deterministic formulae, producing the same output with a given

input each time [19]. For this essay I will be exploring SHA-256, a type of hash function,

as it is the industry standard. [19] [27] We use this function for the following reasons: it

produces a long 256-bit hash (a series of 256 1s and 0s); it is yet to be broken by means of

working backwards through the function in order to find the preimage of a given image;

[19] and the long image length lends itself to being preimage resistant, second-preimage

resistant and collision resistant [21] - each explained in subsection 2.2.

- 1 -
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I believe that security of private data is vitally important to our lives, and thus I will be

investigating my research question;

”To what extent will advances in computing speeds negate the security provided

by 256-bit password hashing?”

The relevance of this topic is that as computing speeds increase it is ever-easier for

hackers to use the methods I will outline later in order to circumvent security. The outcome

of my research will determine whether it is necessary to upgrade security protocols to

something even more secure than SHA-256, or if data is safe with the current standards in

place.

I will first look at hash functions and what makes them secure, then look at the kinds

of attacks that can be used on hashes in order to obtain their preimage. Thenceforth I

will look at ways companies can further secure hashes using additional technologies such

as ’salts’ and ’peppers’. Finally, I will discuss the feasibility of successfully obtaining the

preimage of a hash once the necessary precautions are taken to protect it.

- 2 -
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1.2 Historical Analysis

In the past, encryption was used to secure passwords and other secret messages. These

methods have been since deemed insecure [12] [24]. When the use of hash functions

became standard, even early hashes were not foolproof, experiencing insecurities due to

their short length of hash they produced:

Before hashes, ciphers such as 1970’sData Encryption Standard (DES) developed by

IBM, required keys in order to ’unlock’ the data. [12] This particular standard of encryption

became obsolete once it was determined that computing speeds were fast enough to

generate sufficient attempts at unlocking the cipher through a trial-and-error, inputting

56-bit key, after two companies banded together in 1999 to break a DES cipher, taking

only 22 hours. [12] 56 bits is a relatively short length of bits when compared to a modern

encryption standard. To give a sense of scope, a 56-bit number has 6.22 ∗ 1059 1 times

fewer permutations than a 256-bit number, and 2.11 ∗ 1020 2 times fewer permutation than

even a 128-bit number, going to show just how much more computer processing time it

would take to trial-and-error through these larger bit-count hashes [or encryptions].

Furthermore, in the more recent past SHA-1, was used as a standard for hashing. [23]

Published in 1995, preceding SHA-2 (current), SHA-1 used a 160-bit model, generating

hashes of that length. [24] Like SHA-2, this function is deterministic, producing a 160-bit

image for a plaintext preimage. Like DES, trial-and-error can be used. [24] [23] Plaintext

preimages are to be fed into the function until an image matches the hash you are trying to

break. The determination that 160-bit was too short a hash length in 2005 lead to 256-bit

encryptions becoming the norm, due to its relative size and time it would take to iterate

through so many permutations of images, [15] ensuring an increase in the security in

common hash functions. [24] [23] [20]

1256/2256 ∗ 100%= 6.22e59%
2256/2128 ∗ 100%= 2.11e20%

- 3 -
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2 Investigating Hash Encryptions

2.1 Hashes in General

Example of a 256-bit hash on two sample strings.

String input (Hash Function’s Preimage):

”Password”

Output of hash function (256 bits):

101111010001000010010001001100011011010001010000000010000000

000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000

000000000000000

Data stored in database (Hexadecimal equivalent of the above binary):

5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8

On a very similar string input...

String input:

”Dassword”

Output of hash function:

101010111101100011000001011100110111010011110111001010000000

000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000

000000000000000

Data stored in database:

55ec60b9ba7b924bf480439fd5473e00325f71f5454403d3d2705ddd152ac9cf

Figure 1.1: Showing the different hashes of two similar preimages, where the outputs are vastly

differing.
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In terms of website security, the figure 1.1 displays how two passwords look once

passed through a hash-function. The plaintext password ’Password’ is not stored in a

website’s database, but its corresponding hash is. Any minor change to the plaintext

will completely change what the hash looks like. So, ’Password’ and ’Dassword’ have

completely different outputs. Note that the output is the same length for each.

So when a user goes to log back into their account, the password they enter is hashed

and the output checked against the hash on file for that account - if they match the user

may log in.

Almost all modern programming languages now have in-built encryption packages. For

example, below is the body of a Java method, converting the input ”Password” into its

64-bit hash. [28] This makes the ability to secure information open for anyone to use.

1 // Base64Encryption.java
2 ...
3 String inputString = "Password"; //Input
4

5 //Instance of Java class containing hash function.
6 MessageDigest sha256 = MessageDigest.getInstance("SHA-256");
7

8 //Convert string to byte array, then hash with #digest() method.
9 byte[] inputArray = inputString.getBytes();
10 byte[] hashArray = sha256.digest(passBytes);
11

12 ... //Code reconstructing hash as a string from a byte array.
13

14 //Output: 5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8
15 System.out.println(hashArrayAsString);
16 ...

Listing 1.1: Code displaying simplicity of hashing in a modern language.

- 5 -
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2.2 Attacks on Hashes

2.2.1 Preimage Attacks

In cryptographic terms, preimage attacks are attacks on a hash-functions’ preimage, the

inverse of the product of a function. e.g, for f(x) = x2, where the product is 4, the inverse

images are a set {−2, 2}). [21] In a preimage attack, the focus is placed on finding said

preimage.

Hash-functions attempt to use two forms of security against attacks: Preimage resistance

and second-preimage resistance. [21] [20] The former is ensuring it is computationally

infeasible to find the preimage from the output of a function through brute-force (see below),

and the latter is that it is computationally infeasible to find a second preimage that yields a

like image. (i.e, given that x′ 6= x, it is difficult to find h(x) = h(x′))[21].

We are yet to mathematically find the inverse of the SHA-256 hash-function, and so

we can say it is ’one way’. [15] Therefore, the only way we can find a specific preimage is

by inserting a variety of inputs into the hash function and guess-and-checking the output

until it matches the hash you are attempting to know the preimage of. We can call this the

method ’verification’ for short.

Practically, a hacker may access a database of passwords stored as hashes, and run a

program that iterates through many SHA-256 attempts with a range of preimages until it

finds an output that is the same as an image stored in the database, at which point the

hacker knows what the password for that user’s account is (the preimage).

To summarise: a preimage attack can be used when a computed hash is known and

the input of the hash-function used to produce said hash is desired.

Figure 2.1: Illustration of the one-way nature of hash functions.
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Knowing this, there are a fewways onemay attempt to obtain the password corresponding

to a hash. Some methods include:

Brute-force

The slowest and least efficient method of finding the corresponding preimage of a hash

is brute-force. Brute-force methods do as the name suggests, attempting every possible

input into a hash-function incrementally until the correct input is found (through the

aforementioned verification approach). [18] Due to the fixed-length of the function’s

range, there are 2256 permutations of possible outputs, [15] and on average the correct

image is found after 2255 attempts (50%of the total permutations), therefore 2255 attempts

are, on average, necessary to find the preimage.

Rainbow tables

A rainbow table is a list of preimages with their corresponding images [8] - someone

who has a hash and wants to know the preimage required to output it can look up

the hash in this table in order to find its preimage. This is only likely to be successful

if the hash is for a commonly used password (like names of places, dates, names

of people or ’password’). [8] Some tables may take into account varying versions of

common passwords, like when numbers are appended - however it is infeasible for

a table to contain every combination of hash and input. [11] This method sacrifices

local storage space for reduced processing time (Lookups are a faster computational

operation than completing a full hash). [8] One more drawback of this method is that if

the hash-function used a ’salt’ or ’pepper’, the hashes in the table are useless. Salts

and peppers are explained in subsection 2.3. [11] [5]

Password (preimage) Hash (image, as hexadecimal)

Password123 008c70392e3abfbd0fa4 . . .
London ecc0e7dc084f141b2947 . . .
ILoveDogs bd22742a359acb57af42 . . .
. . . . . .

Table 1.1: A portion of a Rainbow Table - preimage and a portion of their SHA-256 image.

- 7 -
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Dictionary attacks

Dictionary attacks are fundamentally similar to rainbow tables, however they do not

perform lookups, instead they strategically choose which preimages to verify based off

of large banks of words, phrases, names and common passwords (Such as a dictionary).

[6] Iterating through these possibilities skips all of the very unlikely preimages that the

brute-force method would run through, instead focusing on those a user is likely to be

able to remember and use, creating variations like substituting letters for numbers and

verying capitalisation as a human might. [6] However, even this attack can be thwarted

through the use of ’salts’ and ’peppers’. [5] [6]

2.3 Providing Extra Security to Hashes

The attacks listed in the previous section – aside from bute-force – rely on predictable

passwords. Without extra security, a rainbow table lookup can find hashes corresponding

to simple passwords like ’cat’ or ’Awesome123’ or ’Password’ in seconds. But, companies

can take extra measures when storing passwords.

Salts

Salts are a pseudo-randomly generated string of data that is generated when a user

submits their password to be hashed and stored by a system. Before hashing, the

system would concatenate the ’salt’, a newly generated string, to the end of the user’s

password, then produce the computed hash. [11] The computed hash is then stored

alongside the salt in the database, so the next time a user looks to login, the salt

is reapplied before the verification of the hash takes place. This protects against

pre-computed rainbow table attacks[5], as the hash of like passwords are likely very

different due to the applied salt, but does not protect against dictionary attacks, as if the

attacker knows the hash, they know the salt and can apply it before each iteration. [11]

- 8 -
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Peppers

Peppers are similar to salts in that they are concatenated to the password before

encryption, however, they are not stored in the database alongside the computed hash

instead they are kept as a secret by the client, used as a constant across all encrypted

passwords. [13] These are kept secure, away from the database so that the attacker

would need both the pepper and the database (salt and hash) in order to apply a

dictionary attack (making them more infeasible). [13] [11] [5]

If companies apply both salts and peppers to the passwords that are made, the company

is now covered on almost all bases from different forms of attack. This leads us to investigate

brute-force as the last method.

2.4 Expression of the Brute-Force Method

Assuming a company applies salts and peppers to hashes, and a hacker is unable to use

the faster methods of validating a hash they might choose to brute-force it.

Deterministic hash-functions can be illustrated as the following function literal, where

m, is the input to a hash-function h, m ⊂ Z, and 256 is the number of bits in the output

computed hash [20]. 3...

(1)
h : m−→2256

⇒ y, of length 256 bits.
= h(m)

A brute force attack iterates through permutations of domain m in order to determine

outputs of y that match the hash they are verifying. When youtput = ycurrent. Iteration i for

i = 1, 2, . . . , 2n. [Author Owned]

(2)h(mi) = ycurrent
⇒ youtput

3Hash functions are of algorithmic efficiency O(2n).
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Or computationally [Author Owned]...

1 m = 0
2 found = false
3 y = CURRENT_HASH
4

5 loop while found is false
6 x = m.hash()
7 if x = y
8 set found to true
9 output m
10 else
11 increment m
12 endif
13 end loop

Listing 2.1: Pseudocode showing a simple brute-froce algorihm.

When trying to find the correct value of m, brute-force attempts every permutation of x

(in the above listing) and thus has the highest chance of finding m. [Author Owned]

- 10 -
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2.5 Feasibility of Cracking 256-bit Encryptions

We can look at how feasible cracking a 256-bit hash is from two perspectives: time and

energy. If computers were capable of computing enough hashes to make brute forcing

one viable, how much speed and power would they require?

We will be looking at GPUs (graphics cards / graphics processing units) as the computer

component that deals with computing the hashes as they are better suited for being used

in large arrays and engaging in parallel processing than CPUs. Let us assume that each is

running at a speed equal to their maximum potential. Speed will be measured in FLOPS

(floating point operations per second), as a unit of computational speed. A GFLOPS

(gigaFLOPS) is 109 FLOPS.

2.5.1 Time

In a computer targeted towards generating hashes, we can assume the specific graphics

card being used by looking at what bitcoin and other cryptocurrency miners use 4. Below is

a table showing the highest selling GPUs to miners, and their corresponding speeds. [29]

Specifications

GPU Model Speed (GFLOPS) Release Date

Radeon RX 470 [2] 4367 Aug 2016

Radeon RX 480 [3] 5498 Jun 2016

Radeon R9 295X2 [4] 5733 Apr 2014

Radeon HD 7990 [1] 8200 Apr 2013

Table 2.1: Graphics cards most commonly used in bitcoin mining (repetetive hashing)

The Radeon RX 480 is a mid-tier average card that is setup in large arrays for hashing

SHA-256 over and over again to generate bitcoins, so we will use that card’s speed in our

speed calculations - 5498 FLOPS - which is about 5498 billion calculations per second.

For this example let’s say we have one thousand of these GPUs in a parallel computing

4Bitcoin mining consists of generating hashes until you find a hash that acts as a key in order to generate

a bitcoin - they use the same brute-force process as hacking.

- 11 -
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system, each performing at maximum efficiency.

1000 ∗ 5, 498, 000, 000, 000 = 5498 TFLOPS (Trillion FLOPS)

In one day (86400 seconds) theGPU can do 475∗1019 computations (86400∗5498 TFLOPS).

If we divide the number of average permutations taken to find a hash by the number of

computations per day we can make, we will find how many days it will take to find the

correct preimage for the given hash.

2255

475 ∗ 1019
= 1.219 ∗ 1056 days

1.219 ∗ 1056

365
= 3.339 ∗ 1053 years

Given that the estimated age of the universe is 13.799±0.021 billion years old, we could

say that with one thousand of these graphics cards running all day every day, it would take

as long as the universe has existed times by 2.4 ∗ 1043 in order to find the preimage of a

single hash through brute force. With the same calculations, if you had one billion GPUs in

parallel, it would take 3.339 ∗ 1047 years to find the preimage.

This truly gives a sense of scale of just how large a 256-bit number is. 5 What about

the fastest computer in the world? At 124.5 petaFLOPS being its theoretical maximum

top speed, the Sunway TaihuLight [10] supercomputer would still take 1.474 ∗ 1052 years to

crack the hash. It is clear through these calculations that as it stands, in the foreseeable

future, we will not have computers fast enough to iterate through 2255 permutations of a

binary number.

52256 =
115, 792, 089, 237, 316, 195, 423, 570, 985, 008, 687, 907, 853, 269, 984, 665, 640, 564, 039, 457, 584, 007, 913, 129, 639, 936
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2.5.2 Energy

To look at the lowest possible energy consumption that would be needed to iterate through

2255 permutations of 1s and 0s, we look towards Landauer’s Principle. This principle finds

the theoretical minimum energy consumption for the transformation, known as the Landauer

Limit, of a single bit of data using the following equation: [9]

kT ln 2

Where k is a the Boltzmann Constant, 1.381023J/K (joules per kelvin), T is the

environmental temperature of the system, and ln 2 is a constant being the natural logarithm

of 2, ≈ 0.69315.

Let us assume we are computing in as cold an environment we can achieve without

expending energy, the ambient temperature of space, which is 3.2K (Kelvin) [26] [22]. The

lower limit of energy required to change a bit according to Landauer’s Principle is:

(1.38 ∗ 1023)(3.2)(ln 2) = 3.061 ∗ 10−23J

For each permutation of the 256-bit number, we must change a single binary digit to

a 1. The addition of a bit has an energy cost associated, however the removal of a bit

(1 to 0) does not. [9] As we are changing a single 0 to a 1 for each permutation, we can

multiply the energy cost by the number of permutations to calculate the energy cost to

iterate through 2255 permutations of the image.

3.061 ∗ 10−23 ∗ 2255 = 1.772 ∗ 1054J

A display of how one bit is added for each permutation is displayed below in table 2.2.

- 13 -
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Iteration Permutation

1 …0001

2 …0010

3 …0011

4 …0100

5 …0101

… …

Table 2.2: Example of permutations of hashes adding a single bit each iteration.

The amount of energy required (1.772 ∗ 1054J) is extreme. As a comparison, the yearly

output of energy of the sun is only 1.245 ∗ 1011J . [14]
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3 Implications of Increasing Computing Speeds

When you consider the orders of magnitude more speed and power that is required in order

to find the preimage of a hash through brute force, it is logical to think that with current

technological limitations presented by silicon-based computers and our current means of

producing energy, it is very unlikely that we will be able to achieve such a task any time

soon.

Even when measuring energy consumption in the most optimal conditions – in the

vacuum of space, with GPUs running at no inefficiency – we would require millions of years

and the ability to harness masses of solar energy in order to obtain such power.

As computer speeds increase, unless new technology is discovered that surpasses

current limitations, we are safe from computers’ abilities to crack 256-bit hashes through

brute force. With the rise of quantum computing and other experimental technologies,

we do however come closer to a reality where passwords may not be safe, but this is

experimental and not yet within the scope of investigation. [7]

4 Conclusion

4.1 Propositions

The realistic methods hackers may use: rainbow tables; dictionary attacks; and social

engineering (obtaining the password through non-cryptographic means), can be curbed

when companies take precautions to secure their databases containing hashes and

when they use appropriate technologies such as salts and peppers. Companies can

impose restrictions on the types of passwords users can choose such that they must

include symbols, capitalisation and other variations in order to further protect against

non-brute-force methods. [5]
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4.2 Closing Statements

To answer my research question: ”To What Extent Will Advances in Computing Speeds

Negate the Security Provided by 256-bit Password Hashing?”

The increases in computing speeds in computers as we know them will have little to no

effect on the security provided by hash algorithms. The security 256-bit hashes provide

is that they are very long in length, and through this they repel attacks (brute force) that

make them fundamentally insecure. They are also complicated enough in nature that they

can not be mathematically inverted. They do not, however, repel dictionary and rainbow

table attacks, but this is for users and companies to work against, whilst SHA-256 and

other 256-bit hashes do as they intend.

Throughout this essay, academic papers and university websites were key sources

in order to limit the chance of citing inaccurate information. Each source was evaluated

for their academic merit based off of the credentials of the author and the peer checking

involved. How this essay has concluded, if any miss-information was used it is unlikely to

change the essay’s conclusion or outcome.
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Appendices

Appendix A Source pseudocode for the SHA-256 algorithm [25]:

1 Lemma 1: All variables are 32 bit unsigned integers and addition is
2 calculated modulo 232
3 Lemma 2: For each round, there is one round constant k[i] and one entry
4 in the message schedule array w[i], 0 i 63
5 Lemma 3: The compression function uses 8 working variables, a through h
6 Lemma 4: Big-endian convention is used when expressing the constants
7 in this pseudocode, and when parsing message block data from
8 bytes to words, for example, the first word of the input message
9 "abc" after padding is 0x61626380
10

11 #Initialize hash values:
12 #(first 32 bits of the fractional parts of the square roots of
13 #the first 8 primes 2..19):
14 h0 := 0x6a09e667
15 h1 := 0xbb67ae85
16 h2 := 0x3c6ef372
17 h3 := 0xa54ff53a
18 h4 := 0x510e527f
19 h5 := 0x9b05688c
20 h6 := 0x1f83d9ab
21 h7 := 0x5be0cd19
22

23 #Initialize array of round constants:
24 #(first 32 bits of the fractional parts of the cube
25 #roots of the first 64 primes 2..311):
26 k[0..63] :=
27 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
28 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
29 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
30 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
31 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
32 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
33 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
34 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
35 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
36 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
37 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
38 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
39 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
40 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
41 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
42 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
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43

44 Pre-processing (Padding):
45 begin with the original message of length L bits
46 append a single '1' bit
47 append K '0' bits, where K is the minimum number >= 0 such that
48 L + 1 + K + 64 is a multiple of 512
49 append L as a 64-bit big-endian integer, making the total post-
50 processed length a multiple of 512 bits
51

52 Process the message in successive 512-bit chunks:
53 break message into 512-bit chunks
54 for each chunk
55 create a 64-entry message schedule array w[0..63] of 32-bit words
56 copy chunk into first 16 words w[0..15] of the message schedule array
57

58 Extend the first 16 words into the remaining 48 words w[16..63] of the
59 message schedule array:
60 for i from 16 to 63
61 s0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18)
62 or (w[i-15] rightshift 3)
63 s1 := (w[i-2] rightrotate 17) xor (w[i-2] rightrotate 19)
64 xor (w[i-2] rightshift 10)
65 w[i] := w[i-16] + s0 + w[i-7] + s1
66

67 Initialize working variables to current hash value:
68 a := h0
69 b := h1
70 c := h2
71 d := h3
72 e := h4
73 f := h5
74 g := h6
75 h := h7
76

77 Compression function main loop:
78 for i from 0 to 63
79 S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25)
80 ch := (e and f) xor ((not e) and g)
81 temp1 := h + S1 + ch + k[i] + w[i]
82 S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22)
83 maj := (a and b) xor (a and c) xor (b and c)
84 temp2 := S0 + maj
85

86 h := g
87 g := f
88 f := e
89 e := d + temp1
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90 d := c
91 c := b
92 b := a
93 a := temp1 + temp2
94

95 Add the compressed chunk to the current hash value:
96 h0 := h0 + a
97 h1 := h1 + b
98 h2 := h2 + c
99 h3 := h3 + d
100 h4 := h4 + e
101 h5 := h5 + f
102 h6 := h6 + g
103 h7 := h7 + h
104

105 Produce the final hash value (big-endian):
106 hash := h0 append h1 append h2 append h3 append h4 append h5 append h6 append h7
107 digest := hash
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