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1. Introduction

Computer graphics has been an ever-evolving field in computer science over the past few decades. One

of the leading causes has been rendering multidimensional models more accurately by simulating how

light functions in the real world, thus achieving photorealistic images with three-dimensional models.

This approach is called Physically Based Rendering (Pharr et al., 2023, #2). Engineers, architects, and

scientists can benefit from this by creating realistic models of specific parts or structures, saving time

and money by experimenting virtually with graphics. One way to achieve photorealism in computer

graphics is through Ray Tracing, a technique for simulating light in computer graphics that simulates

how light behaves in the real world to generate photorealistic images.

Ray tracing is a prolonged process requiring many resources. A way to reduce the time to render using

ray tracing is to use acceleration structures such as a Bounding Volume Hierarchy (BVH), significantly

reducing the rendering time for ray tracing applications. A BVH can be considered a sorting tree with

child and parent nodes, except in three dimensions.

This essay will focus on how changing the number of child nodes in a BVH affects the Surface Area

Heuristic Ratio and the build time of BVH. Through the analysis, the aim is to focus on the

implications that efficient BVHs can have in Computer Science applications.
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2. Background Theory

2.1 Ray Tracing

Ray tracing is a technique for simulating light in computer graphics that simulates how light behaves in

the real world to generate photorealistic images. A ray is a path light follows in a virtual environment.

In the real world, light particles emanating from light sources bounce off of objects, and some of them

are thereafter captured by our eyes or cameras, which help us see physical objects. However, in ray

tracing, this process is reversed; Each pixel on the screen sends a virtual ray until it bounces off

surfaces, repeating until it hits light-emitting sources. This way, resources are minimized because,

theoretically, light sources scatter rays all around us, and when done in a virtual environment, the

computer has to calculate the light we cannot see from the image plane, thereby increasing the

computational power required. Multiple rays are cast from the camera through each pixel on the image

plane and travel in a specific direction until it hits an object in the scene. A vector represents this

trajectory, as the ray has both numerical value and direction. Interaction with different objects includes

reflection and refraction. Ray tracing focuses on the path of light rays, as shown in Figure 1.

Figure 1: Visualization of ray tracing (Nvidia)
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During ray generation, a ray is cast through each pixel on the image plane. The intersection of each ray

with objects in the scene is then tested by checking all objects for intersections with the ray. This

process is called Collision Detection. Once an intersection is detected, the coordinates are recorded.

The efficiency of finding intersections between rays and objects greatly influences the rendering speed.

2.2 Collision Detection

Collision Detection is a crucial component of the ray tracing algorithm, as it determines all the

intersections between rays and primitives in the scene (Dinas, 2009). The efficiency of collision

detection significantly impacts the rendering time and results produced, thus making it essential for

optimization in ray tracing applications. One way to efficiently achieve this is through Bounding

Volume Hierarchies.

2.3 Bounding Volume Hierarchies

Bounding Volume Hierarchies or BVHs are tree structures that organize geometric objects where

bounding volumes are recursively created. These objects are known as primitives. The term ‘Bounding

Volume’ refers to encapsulated primitives bound in volumes such as boxes or spheres. This enables the

computation of light interactions with these volumes, determining if they reach the leaf nodes

(Physically Based Rendering, Pharr, 2023). This is demonstrated in two dimensions in Figure 2.

Figure 2: Visualization of BVH trees (Nvidia)
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Here, N represents the bounding volumes, and O represents the primitives. Primitives in the context of

ray tracing refer to basic geometric objects such as spheres, planes, triangles, and cylinders that interact

with rays. Primitives can also be used to create more complex objects in a scene by combining or

transforming them. As shown in Figure 2, primitives are usually triangles since three-dimensional

objects can be constructed faster with triangles than any other shape (Küçükkarakurt, 2021). The boxes

are there to encapsulate the primitives as efficiently as possible. The main idea is to intersect with

parent nodes to reach child nodes. If we look at this tree from a binary search perspective, it can be

seen that the N represents nodes, and O represents the leaves.

Now, consider a virtual ray approaching Bounding Volume in Figure 2. Three possibilities can𝑁1

occur:

1) The ray can completely miss , thus bypassing all other volumes.𝑁1

2) The ray can intersect with , but may not hit any primitives. It may continue to intersect with𝑁1

other volumes without hitting a primitive.

3) The ray can intersect with , intersect with another volume, and eventually hit a primitive.𝑁1

Considering the second scenario, if a ray intersects with the outer bounding volume and also some of

the inner bounding volumes without actually intersecting with a primitive, then some of the computing

power is wasted since the algorithm has to note whenever a ray intersects with a bounding volume and

if a ray does not intersect, the computer terminates the process. Unfortunately, creating these

high-quality BVHs is difficult to parallelize and is computationally expensive, making them less

appropriate for situations where the scene geometry is constantly changing. This restriction impacts the

development of interactive apps. Due to this redundancy, it was logical to create algorithms that

account for the probability of finding a primitive inside a box. Although many types of BVHs are used
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in modern computing that may reach this potential to an extent, this essay will focus on the operational

efficiency and optimization of an algorithm called Surface Area Heuristic BVH.

2.4 Construction of Bounding Volume Hierarchies

The BVH tree is constructed hierarchically, and inner nodes help organize and efficiently enclose

groups of primitives, allowing for faster traversal during ray tracing. High-quality BVHs are typically

built using the "greedy top-down sweep" technique, which is thought to be the most effective method

for ray tracing. The "greedy top-down sweep" technique refers to optimizing the traversal of the

ray-tree data structure by making a locally optimal choice at each intersection stage to find the most

optimal solution (Md, 2023).

High quality in the context of Bounding Volumes refers to efficiency during tree construction. By

enhancing previously developed, lower-quality BVHs after they are formed, some more recent

techniques can produce comparable outcomes (Karras & Aila, n.d.). The goal is to minimize the cost

and minimize memory usage. The cost of making a partition between two nodes can be notated as:

𝐶 = 𝐶
𝑡𝑟𝑎𝑣

+ 𝑝
𝐴
𝐶
𝐴
+ 𝑝

𝐵
𝐶
𝐵

Equation 1: Total cost of making a partition between nodes (Visual Computing Systems, 2009)

Where:

● is the total cost𝐶

● is the cost of a ray traversing to an interior node𝐶
𝑡𝑟𝑎𝑣

● and are the costs of intersection with the resultant child subtrees𝐶
𝐴

𝐶
𝐵

● and are the probability that a ray will intersect with a bounding box of the child nodes A𝑝
𝐴

𝑝
𝐵

and B
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2.5 Spatial Splits

Spatial splits are a technique used in the construction of BVH for interactive ray tracing. During the

construction, the scene is divided into smaller bounding volumes until each Bounding Volume contains

only a few primitives. One way to implement this is using Surface Area Heuristic splits.

2.6 Surface Area Heuristic BVH

Surface Area Heuristic (SAH) is an algorithm used in the construction of BVH trees for

real-time/interactive ray tracing. It is a type of spatial split method that calculates the cost of splitting a

node into Volumes A and B based on the ratio of the surface area of the bounding volumes and

primitives. SAH is an algorithm used in the construction of BVH trees for real-time ray tracing. SAH

is fundamentally a cost estimation function that calculates the cost of traversing a BVH tree based on

the ratio of the surface area of the bounding volumes and primitives. The cost function predicts the cost

of a defined split position on a per-node basis and is used to minimize the number of intersection tests,

which can enable interactive ray tracing, where input and output are possible in real-time. The SAH is

based on probabilities and is calculated as the sum of the cost of traversing the parent node, the cost of

testing the shape against the ray, and the probabilities that the bounding volumes containing the

children nodes intersect the ray. By minimizing the cost function, SAH can create a very efficient BVH

tree structure which reduces the number of intersection tests required for real-time ray tracing

(Physically Based Rendering, Pharr, 2023). One efficient way to achieve this is to utilize the SAH cost

function. The SAH helps guide this construction by providing a quantitative measure to evaluate the

efficiency of different split positions. The model of the equation states that:

Equation 2: Equation for Surface Area Heuristic (Wiche, 2018)
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Where

● is the cost of splitting a node into volumes A and B𝐶(𝐴, 𝐵)

● is the time to traverse an interior node𝑡
𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙

● and are the probabilities that the ray passes through each volume𝑝
𝐴

𝑝
𝐵

● and are the number of triangles in each volume𝑁
𝐴

𝑁
𝐵

● and are the ith number of triangles in each volume (i.e. if i = 4, then = 4th triangle)𝑎
𝑖

𝑏
𝑖

𝑎
𝑖

● is the cost for one ray-triangle intersection.𝑡
𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡

The probabilities and can be computed by using this equation:𝑝
𝐴

𝑝
𝐵

Equation 3: the conditional probability that a ray passing through will also intersect𝑃

through - retrieved from (Wiche, 2018)𝐶

Here:

● and are surface areas of volumes C and P, where the surface area of a node can be simply𝑆
𝐶

𝑆
𝑃

computed by summing all faces of a node) (Wiche, 2018)

● is the conditional probability that a ray passing through P will also pass through C,𝑝(𝐶|𝑃)

where C is a convex volume in another convex volume P. (Wiche, 2018)

These two equations help convey that the lower the cost, the more efficient the computational

process will be. The goal is to decrease the number of intersection tests needed during ray

tracing, improving overall performance and rendering speed. Figure 4 shows how utilizing the

Surface Area Heuristic Ratio helps us lower the cost:
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Figure 4: Practical application of the SAH equation (Wiche, 2018)

In Figure 4, Roman Wiche, the article’s author, showed a practical example of this (Wiche,

2018). It can be seen that there are two objects constructed from triangles in this bounding

volume. One is a single triangle on the bottom left, and one is thirteen triangles stacked

together on the top right. We can say that these are small and large primitives respectively.

Here there are three different scenarios where the topmost left diagram in Figure 4 with a line

in the middle separates the two primitives. In the third case, we can see that the algorithm has

divided the two primitives unequally. Although the probability of a ray entering subsection A is

higher than B, the ratio of the surface area of subsection B to primitive is much larger than the

ratio of the primitive in subsection A to the primitive in that section. This indicates that if the

ray passes through subsection B, it has a higher chance of intersecting with the primitive

situated in B, thus effectively decreasing the cost function. It can be verified that in Figure 4,

the diagram on the rightmost has the lowest cost function .𝐶(𝐴, 𝐵) = 16. 38
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3. Experiment Methodology

Primary data was the main source of data for this experiment. An open-source kernel library

called Intel Embree will be used to experiment with SAH and build times of the Bounding

Volumes. Embree is a collection of high-performance ray tracing kernels that can be integrated

into another software to achieve efficient real-time ray tracing. However, we can use the

sample testing library provided within Embree. In one of the tutorial libraries in Embree, there

is an executable tutorial file called bvh_builder, and the source code of it is written in the

bvh_builder_device.cpp file, which contains a BVH algorithm. When run through the terminal,

it gives the Build Time, SAH ratio, and how many primitives the ray hits in a second. See

Appendix A1, which contains the process used for building Embree on the system to ensure

authenticity. ThemaxBranchingFactor is a function in bvh_builder_device.cpp file which

refers to the maximum number of children a BVH node can have. A .cpp file, for reference,

contains a C++ source code, which contains all the main variables. This directly relates to the

research question because by changing themaxBranchingFactor, we can get the desired

output of ray intersection tests and SAH ratio. In ray tracing applications, there are very limited

resources available in the amount of time given. So we tend to use only a normal quality

constructed BVH, and only a limited number of rays are cast. Code Snippet 1 shows the

argument ofmaxBranchingFactor.

Code Snippet 1: argument.maxBranchingFactor
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Code Snippet 2: Memory function added into bvh_builder_device.cpp

Code Snippet 3:Memory Output added into bvh_builder_device.cpp

The BVH build process will be CPU-based, because of the accuracy it has. The computer used

for testing is M1 MacBook Air with 8 gigabytes of RAM. The original code of the

bvh_builder_device.cpp file does not contain a memory function, which was added by the

author. This is shown in Code Snippet 2 and 3, and the entire modified code is shown in

Appendix A3. We could not have usedmaxBranchingFactor = 1 because it would create a

linear tree, which would be similar to a list, resulting in very inefficient collision detection. The

worst case scenario ofmaxBranchingFactor = 1 would be instead of .𝑂(𝑛) 𝑂(𝑛(𝑙𝑜𝑔(𝑛))

The result of the command ./embree_bvh_builder in the build folder is shown in Appendix A2

to provide a sample output of the code. The code provided in Appendix A3 constructs BVHs

randomly in a limited area. This could have been prevented however it was not necessary

because in interactive and real-time applications, the number of bounding volumes change

according to lighting and what is visible in the image plane of the user.
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4. Experimental Results

4.1 Data Sets Used

Table 1 shows the data retrieved from the bvh_builder. The ‘maxBranchingFactor’ is the

maximum number of children a BVH node can have.

Table 1: Data for Low, Medium, and High-Quality Bounding Volume Hierarchies
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4.2 Graphical Representation

To better understand the trends in Surface Area Heuristics, Memory usage, and build times, a

graphical representation will be used.

Graph 1: Low Quality BVH Graph 2:Med Quality BVH Graph 3: High Quality BVH

Graph 4: Memory Usage of Low, Medium, and High-Quality Bounding Volume Hierarch
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Graph 5: Surface Area Heuristic Ratio for all types of BVHs, lower is better

4.3 Result Analysis

Although the data for each is consistent, it has some discrepancies. It is to be noted the

executable file of bvh_builder was run several times to make sure the results represent the real

world scenarios, because the file bvh_builder_device.cpp generates bounding boxes randomly.
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Memory Usage

Graph 4 shows the memory usage by all the BVH builds. The memory usage generally

decreases as themaxBranchingFactor increases. This potentially suggests that the higher

maxBranchingFactor values we use, the more memory-efficient BVH structure will be.

This does not mean that we can increase themaxBranchingFactor indefinitely, because

every different scene will have a different BVH, and we have to take into account that the ray

intersection will be affected if the BVH has many children nodes. Memory usage also depends

on the number of leaf nodes and the scene complexity, instead of just the children nodes.

Build Time

The graph of all types of BVH builds seems to be trending downwards. Utilizing the data

above, it seems that HighermaxBranchingFactor value can lead to faster BVH construction

times because larger nodes are created reducing the overall number of nodes in the BVH. In

Graphs 1 and 2, for Low and Medium Quality BVHs, it can be seen that when

maxBranchingFactor > 4 , The data seems to appear counterintuitive, since increasing the

branching factor could be expected to decrease the times taken to build the BVHs. A logical

explanation behind this could be that as themaxBranchingFactor increases, the depth of the

tree increases as well, leading to traversal overhead during ray intersection tests, offsetting the

benefits of reduced build times. Larger branching factors also result in larger nodes, which

might not fit entirely within memory addresses, leading to counterintuitive results.
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Surface Area Heuristic

SAH seemed to decrease as themaxBranchingFactor increased. The difference between when

maxBranchingFactor was 2 compared to when it was 3 is quite a drastic difference. This is

because when it was 2, the BVH construction algorithm had a more limited choice when

splitting the nodes. This can result in inefficient splits, leading to higher SAH values. Overall,

the SAH value dramatically decreased, which is a positive sign because the lower the SAH

value the more likely the ray will intersect, reducing the computational requirements. Again,

the difference between 2 and 3 can also be explained by memory constraints because the higher

maxBranchingFactor, the more nodes the algorithm needs to create for the scene. This can

lead to uneven node partitioning, leading to higher SAH values.
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5. Potential Research Opportunities

Machine learning

Often in real time/interactive applications, machine learning is used to create the most efficient

Bounding Volume Hierarchies possible. Machine Learning Algorithms can be trained to learn

to optimally split heuristics based on factors such as hardware and scene complexity. Since

BVH construction involves several parameters, ML algorithms can be trained to set those

factors in real time to ensure the most efficient BVH construction process.

Hybrid Spatial Partitioning Schemes

There are other spatial partitioning algorithms that can be combined with BVHs to ensure

smoothness in a scene in real time ray tracing. Often in real-time applications, hybrid solutions

need to be created to ensure stability in Framerate.
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5. Conclusion & Evaluation

In conclusion, this paper analyzes the impact of increasing the number of child nodes in a

Bounding Volume Hierarchy, how it affects the Surface Area Heuristic Ratio, and the build

times for a BVH.

The results show that increasing the maxBranchingFactor generally decreases the resources

needed. The Surface Area Heuristic also generally decreases, with a few exceptions. Increasing

the maxBranchingFactor predominantly affects the SAH ratio. The algorithm used to carry out

this experiment was mainly a part of a high-performance Ray Tracing Kernel library called

Intel Embree. The author modified it to add memory usage to the resulting output. The data

also portray that a certain number of child nodes may work better for different scenes and

computers because when the number of nodes is increased, the algorithm gets more complex.

After all, traversing the BVH becomes more computationally intensive with each added node,

increasing the algorithm's run time. Although the Build Time in the data opposes that, it is

visible that when we increase the maxBranchingFactor past 4, the data starts to get

inconsistent.

This research in the field of Computer Graphics is necessary because Ray Tracing uses

acceleration structures like BVHs often. Usually, the more efficient BVH is, the smoother the

Ray Intersection process will be, resulting in more accurate results and faster rendering times.

Ray Tracing is very computationally expensive, and BVH structures help lower the

computational requirements while increasing the efficiency. However, it is to be noted that
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memory usage and traversal times depend mainly on the scene being used, the number of

pixels, and the sampling rate.

There are some limitations of this essay. First, the experimentation conducted primarily focuses

on varying the maxBranchingFactor parameter, although in a real world scenario, there are

other factors and parameters that optimize the BVH construction process. Although this was

beyond the scope of this essay, it is to be noted that factors such as

Another limitation was that the experiments were taken on only one type of Computer,

although BVH construction is accurate on CPU more than a GPU, usually GPUs are used to

render graphics because of their superior parallel processing power, which substitutes for their

inaccuracy. This limits the broader application of this paper.

This paper helps show that research demonstrates the potential of improving the efficiency of

BVH construction in Ray Tracing Applications by showing that increasing the

maxBranchingFactor generally decreases resource usage. However, as discussed previously, it

largely depends on many other factors excluding BVH.
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Appendices

A1

Intel Embree is under License Apache-2.0, which allows the use of collaboration and modification on
open source software (https://www.apache.org/licenses/LICENSE-2.0). Process of building Embree to
ensure authenticity. All steps were done through the macOS terminal.

● Cloning the repository from GitHub (https://github.com/embree/embree.git)
● Navigating to the directory where the repository was cloned
● Navigating to (embree/tutorials/bvh_builder) and modifying the code in bvh_builder_device.cpp

to add memory output
● Creating a build folder to store executable files
● Using the software Cmake (https://cmake.org/) to build Embree in the build repository
● Running the command ‘make’ to build the files so that they are executable

A2

Original code of bvh_builder_device.cpp
● GitHub link:

(https://github.com/embree/embree/blob/master/tutorials/bvh_builder/bvh_builder_device.cpp)

A3

Sample of running the command ‘./embree_bvh_builder’ to execute bvh_builder. Here is a sample
output of the modified code.

User@User-Air 5BREE % cd embree
User@User-Air embree % cd build
User@User- Air build % ./embree_bvh_builder
Low quality BVH build:
iteration 0: building BVH over 1000000 primitives, 57.4691ms, 17.4006 Mprims/s, sah = 4.62233, memory used: 98444 KB [DONE]
iteration 1: building BVH over 1000000 primitives, 24.1852ms, 41.3476 Mprims/s, sah = 4.62233, memory used: 98444 KB [DONE]
iteration 2: building BVH over 1000000 primitives, 22.054ms, 45.3433 Mprims/s, sah = 4.62233, memory used: 98444 KB [DONE]
iteration 3: building BVH over 1000000 primitives, 22.4121ms, 44.6188 Mprims/s, sah = 4.62233, memory used: 98444 KB [DONE]
iteration 4: building BVH over 1000000 primitives, 22.6839ms, 44.0842 Mprims/s, sah = 4.62233, memory used: 98444 KB [DONE]
iteration 5: building BVH over 1000000 primitives, 22.5792ms, 44.2886 Mprims/s, sah = 4.62233, memory used: 98444 KB [DONE]
iteration 6: building BVH over 1000000 primitives, 21.9052ms, 45.6513 Mprims/s, sah = 4.62233, memory used: 98444 KB [DONE]
iteration 7: building BVH over 1000000 primitives, 21.487ms, 46.5398 Mprims/s, sah = 4.62233, memory used: 98444 KB [DONE]
iteration 8: building BVH over 1000000 primitives, 22.141ms, 45.1651 Mprims/s, sah = 4.62233, memory used: 98444 KB [DONE]
iteration 9: building BVH over 1000000 primitives, 22.0878ms, 45.2738 Mprims/s, sah = 4.62233, memory used: 98444 KB [DONE]
Normal quality BVH build:
iteration 0: building BVH over 1000000 primitives, 99.412ms, 10.0592 Mprims/s, sah = 14.1499, memory used: 182825 KB [DONE]
iteration 1: building BVH over 1000000 primitives, 97.1558ms, 10.2927 Mprims/s, sah = 14.1499, memory used: 182825 KB [DONE]
iteration 2: building BVH over 1000000 primitives, 97.9311ms, 10.2113 Mprims/s, sah = 14.1499, memory used: 182825 KB [DONE]
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iteration 3: building BVH over 1000000 primitives, 99.4711ms, 10.0532 Mprims/s, sah = 14.1499, memory used: 182825 KB [DONE]
iteration 4: building BVH over 1000000 primitives, 99.3719ms, 10.0632 Mprims/s, sah = 14.1499, memory used: 182825 KB [DONE]
iteration 5: building BVH over 1000000 primitives, 103.78ms, 9.63577 Mprims/s, sah = 14.1499, memory used: 182825 KB [DONE]
iteration 6: building BVH over 1000000 primitives, 116.66ms, 8.57193 Mprims/s, sah = 14.1499, memory used: 182825 KB [DONE]
iteration 7: building BVH over 1000000 primitives, 146.533ms, 6.8244 Mprims/s, sah = 14.1499, memory used: 182825 KB [DONE]
iteration 8: building BVH over 1000000 primitives, 117.867ms, 8.48414 Mprims/s, sah = 14.1499, memory used: 182825 KB [DONE]
iteration 9: building BVH over 1000000 primitives, 113.807ms, 8.78681 Mprims/s, sah = 14.1499, memory used: 182825 KB [DONE]
High quality BVH build:
iteration 0: building BVH over 1000000 primitives, 193.737ms, 5.16164 Mprims/s, sah = 14.1522, memory used: 267207 KB [DONE]
iteration 1: building BVH over 1000000 primitives, 184.681ms, 5.41474 Mprims/s, sah = 14.1522, memory used: 267207 KB [DONE]
iteration 2: building BVH over 1000000 primitives, 173.039ms, 5.77905 Mprims/s, sah = 14.1522, memory used: 267207 KB [DONE]
iteration 3: building BVH over 1000000 primitives, 171.064ms, 5.84576 Mprims/s, sah = 14.1522, memory used: 267207 KB [DONE]
iteration 4: building BVH over 1000000 primitives, 185.291ms, 5.39691 Mprims/s, sah = 14.1522, memory used: 267207 KB [DONE]
iteration 5: building BVH over 1000000 primitives, 198.328ms, 5.04215 Mprims/s, sah = 14.1522, memory used: 267207 KB [DONE]
iteration 6: building BVH over 1000000 primitives, 175.067ms, 5.7121 Mprims/s, sah = 14.1522, memory used: 267207 KB [DONE]
iteration 7: building BVH over 1000000 primitives, 176.677ms, 5.66005 Mprims/s, sah = 14.1522, memory used: 267207 KB [DONE]
iteration 8: building BVH over 1000000 primitives, 175.739ms, 5.69025 Mprims/s, sah = 14.1522, memory used: 267207 KB [DONE]
iteration 9: building BVH over 1000000 primitives, 175.391ms, 5.70155 Mprims/s, sah = 14.1522, memory used: 267207 KB [DONE]

A4

→ Modified code of bvh_builder_device.cpp (modified by the author). Here the
arguments.maxBranchingFactor was changed to experiment with.

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "../common/tutorial/tutorial_device.h"
namespace embree
{
RTCScene g_scene = nullptr;
ssize_t totalMemoryConsumed = 0; /*This Variable was added to track total memory consumed by the
algorithm*/
/* This function is called by the builder to signal progress and to
* report memory consumption. */
bool memoryMonitor(void* userPtr, ssize_t bytes, bool post) {
if (!post)
totalMemoryConsumed += bytes;

return true;
}
bool buildProgress (void* userPtr, double f) {
return true;
}
void splitPrimitive (const RTCBuildPrimitive* prim, unsigned int dim, float pos, RTCBounds* lprim,
RTCBounds* rprim, void* userPtr)
{
assert(dim < 3);
assert(prim->geomID == 0);

24



*(BBox3fa*) lprim = *(BBox3fa*) prim;
*(BBox3fa*) rprim = *(BBox3fa*) prim;
(&lprim->upper_x)[dim] = pos;
(&rprim->lower_x)[dim] = pos;
}
struct Node
{
virtual float sah() = 0;
};
struct InnerNode : public Node
{
BBox3fa bounds[2];
Node* children[2];
InnerNode() {
bounds[0] = bounds[1] = empty;
children[0] = children[1] = nullptr;
}
float sah() {
return 1.0f + (area(bounds[0])*children[0]->sah() +

area(bounds[1])*children[1]->sah())/area(merge(bounds[0],bounds[1]));
}
static void* create (RTCThreadLocalAllocator alloc, unsigned int numChildren, void* userPtr)
{
assert(numChildren == 2);
void* ptr = rtcThreadLocalAlloc(alloc,sizeof(InnerNode),16);
return (void*) new (ptr) InnerNode;
}
static void setChildren (void* nodePtr, void** childPtr, unsigned int numChildren, void* userPtr)
{
assert(numChildren == 2);
for (size_t i=0; i<2; i++)
((InnerNode*)nodePtr)->children[i] = (Node*) childPtr[i];

}
static void setBounds (void* nodePtr, const RTCBounds** bounds, unsigned int numChildren, void*

userPtr)
{
assert(numChildren == 2);
for (size_t i=0; i<2; i++)
((InnerNode*)nodePtr)->bounds[i] = *(const BBox3fa*) bounds[i];

}
};
struct LeafNode : public Node
{
unsigned id;
BBox3fa bounds;
LeafNode (unsigned id, const BBox3fa& bounds)
: id(id), bounds(bounds) {}
float sah() {
return 1.0f;
}
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static void* create (RTCThreadLocalAllocator alloc, const RTCBuildPrimitive* prims, size_t numPrims, void*
userPtr)
{
assert(numPrims == 1);
void* ptr = rtcThreadLocalAlloc(alloc,sizeof(LeafNode),16);
return (void*) new (ptr) LeafNode(prims->primID,*(BBox3fa*)prims);
}
};
void build(RTCBuildQuality quality, avector<RTCBuildPrimitive>& prims_i, char* cfg, size_t extraSpace = 0)
{
rtcSetDeviceMemoryMonitorFunction(g_device,memoryMonitor,nullptr);
RTCBVH bvh = rtcNewBVH(g_device);
avector<RTCBuildPrimitive> prims;
prims.reserve(prims_i.size()+extraSpace);
prims.resize(prims_i.size());
/* settings for BVH build */
RTCBuildArguments arguments = rtcDefaultBuildArguments();
arguments.byteSize = sizeof(arguments);
arguments.buildFlags = RTC_BUILD_FLAG_DYNAMIC;
arguments.buildQuality = quality;
arguments.maxBranchingFactor = 2; /* maximum number of children nodes*
arguments.maxDepth = 1024;
arguments.sahBlockSize = 1;
arguments.minLeafSize = 1;
arguments.maxLeafSize = 1;
arguments.traversalCost = 1.0f;
arguments.intersectionCost = 1.0f;
arguments.bvh = bvh;
arguments.primitives = prims.data();
arguments.primitiveCount = prims.size();
arguments.primitiveArrayCapacity = prims.capacity();
arguments.createNode = InnerNode::create;
arguments.setNodeChildren = InnerNode::setChildren;
arguments.setNodeBounds = InnerNode::setBounds;
arguments.createLeaf = LeafNode::create;
arguments.splitPrimitive = splitPrimitive;
arguments.buildProgress = buildProgress;
arguments.userPtr = nullptr;

for (size_t i=0; i<10; i++)
{
/* we recreate the prims array here, as the builders modify this array */
for (size_t j=0; j<prims.size(); j++) prims[j] = prims_i[j];
std::cout << "iteration " << i << ": building BVH over " << prims.size() << " primitives, " << std::flush;
double t0 = getSeconds();
Node* root = (Node*) rtcBuildBVH(&arguments);
double t1 = getSeconds();
const float sah = root ? root->sah() : 0.0f;
std::cout << 1000.0f*(t1-t0) << "ms, " << 1E-6*double(prims.size())/(t1-t0) << " Mprims/s, sah = " << sah;
std::cout << ", memory used: " << totalMemoryConsumed / 1024 << " KB [DONE]" << std::endl;
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}

rtcReleaseBVH(bvh);
}
/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
/* create random bounding boxes. 100000 was an arbitrary number */
const size_t N = 1000000;
const size_t extraSpace = 1000000;
avector<RTCBuildPrimitive> prims;
prims.resize(N);
for (size_t i=0; i<N; i++)
{
const float x = float(drand48());
const float y = float(drand48());
const float z = float(drand48());
const Vec3fa p = 1000.0f*Vec3fa(x,y,z);
const BBox3fa b = BBox3fa(p,p+Vec3fa(1.0f));
RTCBuildPrimitive prim;
prim.lower_x = b.lower.x;
prim.lower_y = b.lower.y;
prim.lower_z = b.lower.z;
prim.geomID = 0;
prim.upper_x = b.upper.x;
prim.upper_y = b.upper.y;
prim.upper_z = b.upper.z;
prim.primID = (unsigned) i;
prims[i] = prim;
}
std::cout << "Low quality BVH build:" << std::endl;
build(RTC_BUILD_QUALITY_LOW,prims,cfg);
std::cout << "Normal quality BVH build:" << std::endl;
build(RTC_BUILD_QUALITY_MEDIUM,prims,cfg);
std::cout << "High quality BVH build:" << std::endl;
build(RTC_BUILD_QUALITY_HIGH,prims,cfg,extraSpace);
}
void renderFrameStandard (int* pixels,

const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)

{
}

/* called by the C++ code to render */
extern "C" void device_render (int* pixels,

const int width,
const int height,
const float time,
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const ISPCCamera& camera)
{
}
/* called by the C++ code for cleanup */
extern "C" void device_cleanup () {
}
}
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