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1. Introduction

The primary focus of this essay is to investigate the computational complexities or the sorting 

efficiencies of binary-tree based sorting algorithms, a class of algorithms based on binary 

abstract data structures. Today, sorting is one of the most popular and useful computational 

processes, and hence, performing a comparative study between a specific set of these 

algorithms is crucial. Thus, this essay will look specifically into two sorting algorithms: Tree 

Sort, which is based on Binary Search Trees (BST) and the Heap Sort, which is based on Binary 

Heaps. These algorithms will be compared in terms of their time complexity: the time taken 

for algorithm execution based on the input dataset size. Hence, this gives rise to the research 

question: “How does the sorting efficiency of the Tree Sort compare to that of the Heap 

Sort in terms of time complexity for increasing sizes of randomized integer datasets?” 

2. Theory

2.1   Sorting Algorithms 

Sorting algorithms are one of the simplest but most unique classes of algorithms. A sorting 

algorithm performs a series of operations on a set of integers and outputs them, in sorted or 

ascending order. For example –  

[𝟓, 𝟑, 𝟐, 𝟒, 𝟏]  → [𝟏, 𝟐, 𝟑, 𝟒, 𝟓]

As shown above, the concept of sorting is straightforward. However, the approaches taken to 

sorting can be very diverse. Hence, sorting algorithms can further be classified into 

Comparison Sorts and Integer Sorts.1 Comparison sorts are based on comparing two 

elements to determine if one should be before or after the other in the sorted list. A few 

1 “Difference between Comparison (QuickSort) and Non-Comparison (Counting Sort) Based Sorting Algorithms?,” 
Javarevisited, accessed July 12, 2020, https://javarevisited.blogspot.com/2017/02/difference-between-comparison-
quicksort-and-non-comparison-counting-sort-algorithms.html#axzz6nplsEjux.  
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examples are the Heap Sort and Merge Sort. On the contrary, Integer Sorts determine the 

number of elements which are lesser in value than a selected element, based on its integer key, 

to identify the correct position of this element in the list without requiring extensive 

comparisons.2 A few examples are the Radix Sort and Bucket Sort.3 An example of a 

comparison sorting algorithm is shown below –   

 

 

 

 

 

 

 

 

 

 

Figure 1 is a depiction of the merge sort which4 portrays single comparisons between pairs of 

integers as a means to sort an array. This brings into picture sorting algorithm design paradigms 

such as divide & conquer and recursion,5 and also introduces time complexity as a means for 

algorithmic analysis. 

 
2 ibid. 
3 ibid. 
4 Nikhil Joshi, “Implementation and Analysis of Merge Sort,” Dotnetlovers (Dotnetlovers, October 29, 2018), accessed July 
12, 2020, https://www.dotnetlovers.com/article/128/implementation-and-analysis-of-merge-sort. 
5 TimTim 1, “Divide and Conquer and Recursion,” Stack Overflow, January 1, 2009, accessed July 12, 2020, 
https://www.stackoverflow.com/questions/2249767/divide-and-conquer-and-recursion. 

Comparison between 

integers 

Figure 1 – Visualization of Merge Sort4 
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The primary method of measuring the efficiency of a sorting algorithms it to measure its time 

complexity. However, asymptotic time complexity – algorithm execution time as dataset size 

approaches infinity – can be used for a better understanding of algorithm efficiency. It can be 

divided into three parameters - 𝑶(𝒏) the upper bound or worst-case complexity, 𝜴(𝒏) the 

lower bound or best-case complexity, and 𝜽(𝒏) the average-case complexity.6 These functions 

tell us the limits of, and the average running time of any algorithm as depicted below – 

 

 

 

 

 

 

Therefore, before experimentally determining the running-time of Tree Sort and Heap Sort, 

which are both comparison sorts, we can mathematically derive the best-case complexity to 

preordain a trend in running-time.7 

 
6 “Asymptotic Analysis: Big-O Notation and More,” Programiz, accessed July 12, 2020, https://www.programiz.com/dsa/ 
asymptotic-notations. 
7 “Big-O Notation (Article) | Algorithms,” Khan Academy, Khan Academy, accessed July 12, 2020, 
https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/big-o-notation.  

𝑶(𝒏) 𝜽(𝒏) 

𝜴(𝒏)  

Figure 2 – Asymptotic Time Complexity Parameters7 
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Taking a decision tree, where the leaves are all possible permutations (𝒏!) of a set of integers 

and the comparison sort is modelled by the root-to-leaf path where each step is a comparison, 

then the number of comparisons is limited by the height of the tree.8 As 𝟐𝒉 is the number of 

leaves of the decision tree as a function of the height –  

𝟐𝒉 ≥ 𝒏!         ⇒         𝒉 ≥ 𝐥𝐨 𝐠(𝒏!) 

Using Stirling’s Approximation –  

⇒ 𝒏! > (
𝒏

𝒆
)

𝒏

 

∴ 𝒉 ≥ 𝒍𝒐𝒈 (
𝒏

𝒆
)

𝒏

= 𝒏 ⋅ 𝒍𝒐𝒈 (
𝒏

𝒆
) 

=  𝒏 ⋅ 𝒍𝒐𝒈(𝒏) − 𝒏 ⋅ 𝒍𝒐𝒈(𝒆) 

= 𝜴(𝒏 ⋅ 𝒍𝒐𝒈(𝒏)) 

Consequently, we know that9 the 10running time of both Tree Sort and Heap Sort will not be 

better that 𝒏 ⋅ 𝒍𝒐𝒈(𝒏). 

 

2.2   Tree Sort & Binary Search Trees 

A binary tree is an abstract data structure composed of nodes. Each node has some data 

(integers in this case), and has pointers to a left and right child node. The topmost node is called 

the root, and a node with no child nodes is called a leaf. A Binary Search Tree (BST) is a 

special binary tree with certain properties. The value of any left child must always be less than 

the value of its parent node, and the value of any right child must always be greater than the 

value of its parent node.11 An example is shown below –  

 
8 Karleigh Moore, “Sorting Algorithms,” Brilliant Math & Science Wiki, accessed July 24, 2020, https://www.brilliant.org/ 
wiki/sorting-algorithms/. 
9 ibid. 
10 ibid. 
11 “Data Structure - Binary Search Tree,” Tutorialspoint, accessed July 24, 2020, https://www.tutorialspoint.com/data_ 
structures_algorithms/binary_search_tree.htm. 

Equation 1 – Relationship 

Between Number of 

Comparisons and Height 

of a Binary Tree9 

Equation 2 – Deriving the 

Lower-Bound Time 

Complexity of Comparison 

Sorts10 
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For sorting an integer dataset with tree sort, the integers must first be inserted into the BST 

through the following procedure – 

1. If the root node is null i.e., the BST is empty, then the root node is set to this value.  

2. If the root node is present, the value being inserted is less than the root, and the left child 

node is null, then the left child will be set to this value.  

3.  If the root node is present, the value being inserted is greater than the root, and the right 

child node is null, then the right child will be set to this value. 

4. If the child nodes already exist, this logic will occur recursively until a null child is found.12 

This value will then be assigned to a new leaf node. A sample insertion is shown below. 

 

  

  

 

 

 
12 Robert Sedgewick, and Kevin Wayne, “Binary Search Trees,” Princeton University, The Trustees of Princeton University, 
accessed July 24, 2020, https://algs4.cs.princeton.edu/32bst/, 

Figure 3 – Binary Search Tree Example 

Less than root node 

Figure 4 – Binary Search Tree Insertion (Comparison with Root Node) 
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It is to be noted that BSTs are not naturally self-balancing. There is no restriction on tree height.  

After insertion, the second half of tree sort entails performing a traversal on the BST. A Depth-

First Traversal algorithm, which traverses a BST branch-wise rather than level-wise (Breadth-

First Traversal) would be more appropriate in this case since we need to access the leaves of 

the BST (lowest and highest values) in lower time. Furthermore, an Inorder traversal, which 

first traverses the left sub-tree, visits the root, and then traverse the right sub-tree, would allow 

the BST values to be returned in sorted order.13 This is shown below – 

 

 
13 Javinpaul, “How to Implement Inorder Traversal in a Binary Search Tree?,” DEV Community (DEV Community, August 14, 
2019), accessed July 24, 2020, https://www.dev.to/javinpaul/how-to-implement-inorder-traversal-in-a-binary-search-tree-
1787. 

Greater than internal 

node 

Right child is null 

Figure 5 – Binary Search Tree Insertion (Comparison with Internal Node) 

Figure 6 – Binary Search Tree Final Insertion 
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Hence the algorithm is divided into two methods, the insert() method and dfs() method. Each 

node is represented by an object with three instance variables. One being the integer value of 

the node, and the other two being pointers14 to the left and right child nodes. The insert() method 

has two parameters: the root node object, and the integer value to be inserted into the Binary 

Search Tree. 

1. public Node insert(Node node, int key) { 

2.         if (node == null) { 

3.             node = new Node(key); // Creating a new tree 

4.             return node; 

5.         } 

6.         if (key < node.key)  

7.             node.left = insert(node.left, key);  

8.   

9.         else if (key > node.key) 

10.         node.right = insert(node.right, key); 

11.   

12.     return node; 

13. } 

 

If a root node is not present, a new BST is created. However, if the value to be inserted is less 

than the value of the root node, then the insert() method is recursively called on the left sub-

 
14 Vibin M, “Tree Sort,” GeeksforGeeks, April 20, 2020, accessed August 1, 2020, https://www.geeksforgeeks.org/tree-sort/. 

0 

1 

2

3

4

5

6

0 1 2  3 4 5 6

Figure 7 – Sorted Binary Search Tree 

Figure 8 – Tree Sort Insert Function (Appendix A)14 



9 
 

tree until a base case is reached where the left or right child nodes are empty, after which a new 

node is inserted as a leaf. If the value to be inserted is greater than the value of the root node, 

then the insert() method is recursively called on the15 right sub-tree instead and the process is 

repeated. 

1. public void dfs(Node node) { 

2.         if (node != null) { 

3.             dfs(node.left); // Recursing down the left sub-tree 

4.             System.out.print(node.key + ", "); 

5.             dfs(node.right); // Recursing down the right sub-tree 

6.         } 

7.     }  

 

 

In the dfs() method, the method recurses down the left sub-tree until the base case, a left child 

leaf is reached, in which case its value is printed, followed by the value of the parent node, 

followed by the value of the right child leaf. After the left sub-tree is recursively traversed, the 

root node is printed, and finally, the method recurses down the right-sub-tree. This would 

output the BST in sorted order. 

The average time complexity of the Tree Sort 𝜽(𝒏𝒍𝒐𝒈(𝒏)) can be broken down. The time 

complexity of both insert() and dfs() is 𝑶(𝒏𝒍𝒐𝒈(𝒏)). For these functions, 𝒏 integers must be 

inputted into and outputted from the trees respectively and the time taken to recurse down the 

tree to insert and traverse each node are both 𝑶(𝒍𝒐𝒈(𝒏)) since the number of levels in a BST 

increases logarithmically with respect to the number of nodes. Therefore by adding the 

complexities, the constant can be ignored and the overall complexity comes to 𝑶(𝒏𝒍𝒐𝒈(𝒏)). 

  

 

 

 
15 ibid. 

Figure 9 – Inorder Traversal Function (Appendix A)15 
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2.3   Heap Sort and Binary Heaps 

A Binary Heap, specifically a Max Heap, is a binary tree with properties different to those of a 

BST. The value of each node must be greater than or equal to the values of the child nodes. 

Hence unlike a BST, a values in a max heap increase from bottom to top instead of from left 

to right. This property of a Max Heap also allows it to be naturally self-balancing.16 An example 

is shown below – 

 

 

 

 

 

 

 

This naturally self-balancing property allows Max Heaps to be represented through arrays, 

where if a node is an index 𝒊, then the left child is at index 𝟐𝒊 + 𝟏, and the right child is at index 

𝟐𝒊 + 𝟐.17 For Heap Sort, a Max Heap must first be built by rearranging the array using a reverse 

breadth first traversal –  

1. Beginning from the last node in the 𝒏 − 𝟏 level of the tree (𝒏 is the number of levels), if 

the node is greater than both child nodes, the sub-tree is already heapified. 

2. However, if the node is less than either or both child nodes, it is swapped with the greater 

child node. Similarly all sub-trees on the 𝒏 − 𝟏 level must be heapified. 

 
16 Navjot Singh, “Why Is Binary Heap Never Unbalanced?,” Computer Science Stack Exchange, May 2, 2019, accessed 
August 18, 2020, https://cs.stackexchange.com/questions/108852/why-is-binary-heap-never-unbalanced. 
17 “Binary Heaps,” Heaps, Andrew CMU, accessed August 18, 2020, http://www.andrew.cmu.edu/course/15-121/ 
lectures/Binary%20Heaps/heaps.html.  

Figure 10 – Max Binary Heap Example 
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3. Move to level 𝒏 − 𝟐 and repeat the process from right to left. If nodes are swapped, the 

affected sub-trees must be recursively re-heapified. 

4. Once the traversal reaches the root node, the binary tree has been heapified into a Max 

Heap as depicted below – 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒏 − 𝟏 sub-level Swapped – Less 

than right child 

Figure 11 – Max Heap Heapification (Comparison and Swap Within Right Sub-Tree) 

Swapped – Less 

than right child 

Figure 12 – Max Heap Heapification (Comparison and Swap Within Left Sub-Tree) 

Heapified 

Swapped – Less 

than right child 

Figure 13 – Max Heap Heapification (Comparison with Root Node and Re-Heapification) 
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After the tree has been heapified, the root node is swapped with the last leaf node and added 

to the end of the array.  The reduced heap is then re-heapified. This process of swapping the 

root with the last leaf and re-heapifying is repeated until the array is sorted –  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                               

Max Heap 

Figure 14 – Complete Max Heap after Heapification 

Swapped 

Removed 

from Heap 

Swap to          

Re – Heapify  

Figure 15 – Swapping of Root with Last Leaf Node and Re-Heapification 

01 23

4 5

6

0 1 2 3 4 5 6

Figure 16 – Sorted Max Binary Heap 
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Hence, the primary method in Heap Sort is heapify() which restores the Max Heap structure  of 

the Binary Heap. This method is iteratively called by two loops in the sort() method, one that 

builds the Max Heap, and18    one that repeatedly extracts the root node and sorts the array. 

Heapify() has three parameters: the array to be sorted, the array length, and the array index of 

the root of a sub-tree to be heapified. 

1. void heapify(int arr[], int n, int i) {  

2.         int largest = i; // Initializing largest as root  

3.         int l = 2*i + 1; // Left Child = 2*i + 1  

4.         int r = 2*i + 2; // Right Child = 2*i + 2  

5.    

6.          if (l < n && arr[l] > arr[largest])  

7.              largest = l;  

8.    

9.          if (r < n && arr[r] > arr[largest])  

10.         largest = r;  

11.    

12.     if (largest != i) {  

13.         int swap = arr[i];  

14.         arr[i] = arr[largest];  

15.         arr[largest] = swap;  

16.    

17.          heapify(arr, n, largest); // Recursively heapifying 

18.       }  

19. }  

 

The indices of an internal node and its children and represented by the variables largest, l, and 

r. If either child node is larger than the other child and the parent node, then largest is 

reassigned to that node, the indices of the child and parent node are swapped, and the affected 

sub-tree19 rooted at the largest node is recursively heapified until a base case is reached where 

both child nodes are lesser than the parent node.  

1. public void sort(int arr[]) {  

2.         int n = arr.length;  

3.    

4.         for (int i = n / 2 - 1; i >= 0; i--) // Building max heap 

5.             heapify(arr, n, i);  

 
18 Shivi Aggarwal, “HeapSort,” GeeksforGeeks, Last Modified November 16, 2020, accessed August 18, 2020, 
https://www.geeksforgeeks.org/heap-sort/. 
19 ibid. 

Figure 17 – Heap Sort Heapify Function (Appendix B)18 
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6.    

7.         for (int i=n-1; i>0; i--) {  

8.              int temp = arr[0]; // Moving current root to end  

9.              arr[0] = arr[i];  

10.         arr[i] = temp;  

11.     

12.     heapify(arr, i, 0); // Heapifying reduced heap 

13.     }  

14. }  

 

The first 20 loop performs a breadth first traversal by calling heapify() on all sub-trees rooted at 

nodes level-wise, from node 𝒊 =
𝒏

𝟐
− 𝟏 (where 𝒏 is the array length) to node 𝒊 = 𝟎 in order to 

construct a Max Heap, i.e., the loop disregards the leaves of the heap. The second loop performs 

the actual Heap Sort by iteratively executing a simple swapping algorithm to swap the indices 

of the first and last nodes, and then calling heapify() on the root of the reduced heap whose 

number of nodes decrease from 𝒏 − 𝟏 to 𝟎 throughout loop execution as the array is sorted. 

The average time complexity of Heap Sort is 𝜽(𝒏𝒍𝒐𝒈(𝒏)). The heapify() function happens in 

𝑶(𝒍𝒐𝒈(𝒏)) time since the number of levels to be recursed down in a heap or a sub-tree 

increases logarithmically with respect to the number of nodes. Hence, when building and 

sorting the Max Heap, 𝒏 integers must be inserted and outputted respectively and re-

heapification takes place after each. Therefore, by adding both linearithmic complexities, the 

constant can be ignored and the overall complexity becomes 𝑶(𝒏𝒍𝒐𝒈(𝒏)). 

 

3. Hypothesis 

It is evident that both sorting algorithms have an average time complexity of 𝜽(𝒏𝒍𝒐𝒈(𝒏)). 

However, multiple stark contrasts are present in the properties of both data structures and the 

respective algorithm designs, such as the contrast between a Binary Heap’s self-balancing21 to 

 
20 ibid. 
21 “CS 312 Lecture 25: Priority Queues and Binary Heaps,” Lecture 25: Priority Queues and Binary Heaps, accessed August 
18, 2020, https://www.cs.cornell.edu/courses/cs312/2007sp/lectures/lec25.html. 

Figure 18 – Sort Function: Building and Sorting Max Heap (Appendix B)20 
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a normal BST’s unbalanced nature or the contrast between the Heap Sort’s partially iterative 

logic to a Tree sort’s purely recursive logic. As a result, while the trends in algorithm execution 

time might be similar between both algorithms, the actual execution times for sorting very large 

integer datasets could be substantially different, perhaps lower for Heap Sort due to its 

asymptotically balanced nature and space-efficient array implementation.22          

Therefore, the aim of this experiment is to test the effect of increasing randomized dataset size 

𝒏 on the time taken 𝒕 by both Tree Sort and Heap Sort to sort the dataset in increasing order. 

The relationships between the two variables will be comparatively analyzed between both 

algorithms. Moreover, for deeper analysis, the range 𝑹 of the datasets will be changed as an 

auxiliary independent variable to determine any additional effect on sorting performance. 

I hypothesize that the Heap Sort will sort the dataset in lower time than the Tree Sort. There 

will be a linearthimic relationship between 𝒏 and 𝒕. 

 

4. Methodology 

4.1  Independent Variable 

The independent variable is the size of the integer datasets 𝒏. The sizes will increase from 

𝟏𝟎𝟎𝟎𝟎 integers to 𝟏𝟎𝟎𝟎𝟎𝟎 integers in increments of 𝟏𝟎𝟎𝟎0 in order to acquire a significant 

number of data points to plot more accurate and precise graphs. Furthermore, for each size 𝒏 

three datasets will be generated with ranges of  𝟐 × 𝟏𝟎𝟓, 𝟒 × 𝟏𝟎𝟓, and 𝟔 × 𝟏𝟎𝟓 respectively. 

All integer datasets will have completely randomized distribution (discrete uniform). 

Moreover, the datasets will also contain both positive and negative integers. An online random 

number generator will be used for the same. 

 

 
22 “OpenDSA Data Structures and Algorithms Modules Collection,” 13.12. Heapsort - OpenDSA Data Structures and 
Algorithms Modules Collection, accessed August 20, 2020, https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ 
Heapsort.html. 
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4.2   Dependent Variable 

The dependent variable is the time taken 𝒕 by each algorithm to sort integer datasets of 

increasing size and the three respective ranges in nanoseconds. The nanoTime() method in the 

Stopwatch class will be used in order to determine the difference in time before and after the 

sorting execution with high precision and reduced random and systematic errors. 

 

4.3   Controlled Variables 

Variable Description Specifications 

Computer and 

Operating System 

The algorithms will be run on a 

Dell G3 3500 with Windows 10 

Home. 

Processor: Intel Core i7-

10750U @ 3.0 GHz 

OS: Windows 10 x64 

Memory: 8GB RAM (DDR3 – 

12800) 

Integrated 

Development 

Environment 

The IntelliJ IDEA IDE will be 

used under the Apache 2 license. 

Version: Community Edition 

2020.2.1 

JDK and JRE: Java SE 8u261 

 

Probability 

Distribution of 

Datasets 

All datasets will have discrete 

uniform distribution within the 

given ranges. 

RNG: PineTools 

Mean of Datasets The mean for all datasets will be 

within [-100, 100]. 

The mean will be fairly constant 

since the datasets will be 

randomly distributed on both 

sides of the mid-range. 

Data types Only the int (32 bit) primitive 

data type will be used to 

represent the numbers. long (64 

bit) will be used to store the 

sorting times in nanoseconds. 

 

 

 

Table 1 – List of Controlled Variables 
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4.4   Procedure 

1. Set up both TreeSort.java and HeapSort.java files (refer Appendix A, B) in an IntelliJ 

project folder. 

2. Using the PineTools random number generator, generate 10 randomized integer datasets 

each for the ranges of [−𝟏 × 𝟏𝟎𝟓, 𝟏 × 𝟏𝟎𝟓], [−𝟐 × 𝟏𝟎𝟓, 𝟐 × 𝟏𝟎𝟓], and [−𝟑 × 𝟏𝟎𝟓, 𝟑 ×

𝟏𝟎𝟓] with number of integers 𝒏 ranging from 𝟏𝟎𝟎𝟎𝟎 to 𝟏𝟎𝟎𝟎𝟎𝟎 (30 datasets in total). 

3. Transfer 30 datasets as properties (key-value pairs) in a .properties file (refer Appendix D) 

4. Create a new file SortLauncher.java (refer Appendix C) and using the Properties and 

FileInputStream classes, load all 30 datasets into an instance of the Properties class. 

5. Access the required dataset using the getProperty() method of the Properties class and 

convert it into a String array.  

6. Use the convertStringToIntegerArray() method to parse the String array and convert it into 

an integer array.  

7. Finally create instances of the HeapSort and TreeSort classes and run the sort() methods 

with the integer array (unsorted dataset) as the argument.  

8. Refer to the terminal to record the sorting times for both the Heap Sort and the Tree Sort.  

9. Re-run SortLauncher.java for all 30 datasets by changing the property being accessed in 

IntelliJ’s debug configuration. Perform 3 trials for each dataset and take average times for 

both sorting algorithms. 

 

5. Data Processing and Graphing 

5.1 Raw Data Collection 

It must noted that both the sorting algorithms chosen are reliable, efficient, and concisely 

follow the expected algorithm paradigms. All applications were closed during algorithm 

execution and startup programs were disabled to free up RAM.  

. 
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Tree Sort (𝑹 = 𝟐 × 𝟏𝟎𝟓) 

Size of Integer 

Dataset (n) 

Time 1 /ns Time 2 /ns Time 3 /ns Average Time 

(t) /ns 

10000 5180800 5552200 4887200 5206733 

20000 6906800 8257100 6790100 7318000 

30000 10384800 11157500 9796600 10446300 

40000 13978400 13087600 13268100 13444700 

50000 16832100 17881100 17600200 17437800 

60000 20705700 19277100 20636100 20206300 

70000 26992600 24162600 24371900 25175700 

80000 30919700 28979400 27821400 29240167 

90000 32581000 34838000 32718600 33379200 

100000 36683100 37547000 38884900 37705000 

 

 
 

 

Tree Sort (𝑹 = 𝟒 × 𝟏𝟎𝟓) 

Size of Integer 

Dataset (n) 

Time 1 /ns Time 2 /ns Time 3 /ns Average Time 

(t) /ns 

10000 5549400 5294000 5268000 5370467 

20000 8860400 6638000 6802800 7433733 

30000 10220600 10049500 10121800 10130633 

40000 12858600 13255600 13372200 13162133 

50000 18960000 16757900 16434400 17384100 

60000 22185400 20818300 20075100 21026267 

70000 24875900 24466000 29302900 26214933 

80000 30017000 28094700 28928600 29013433 

90000 34962100 30965200 33269600 33065633 

100000 40465600 35123900 37169900 37586467 

 

 
 

 

Tree Sort (𝑹 = 𝟔 × 𝟏𝟎𝟓) 

Size of Integer 

Dataset (n) 

Time 1 /ns Time 2 /ns Time 3 /ns Average Time 

(t) /ns 

Table 2 – Tree Sort Sorting Times for Dataset Range of 2 × 105 

Table 3 – Tree Sort Sorting Times for Dataset Range of 4 × 105 
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10000 5091700 5427700 5304200 5274533 

20000 8692600 6833000 7104800 7543467 

30000 10113000 10327300 9529500 9989933 

40000 13037200 13377000 13058100 13157433 

50000 17986600 17751900 17198000 17645500 

60000 20253300 22187500 21088400 21176400 

70000 26975100 24872600 24872600 25573433 

80000 28565400 27309300 29578600 28484433 

90000 32314900 31227900 32442500 31995100 

100000 35997400 37716000 36756000 36823133 

  

 
 

 

Heap Sort (𝑹 = 𝟐 × 𝟏𝟎𝟓) 

Size of Integer 

Dataset (n) 

Time 1 /ns Time 2 /ns Time 3 /ns Average Time 

(t) /ns 

10000 3368400 3075900 3037200 3160500 

20000 4787400 5692900 5325300 5268533 

30000 7649300 6399900 6786700 6945300 

40000 7996800 9042800 8338200 8459267 

50000 11089600 9162200 10031800 10094533 

60000 12513000 12316200 13213400 12680867 

70000 14394300 14172500 15126500 14564433 

80000 16780200 16651600 15549900 16327233 

90000 18654000 20902600 19026000 19527533 

100000 22983400 23409800 22394000 22929067 

 

 
 

 

Heap Sort (𝑹 = 𝟒 × 𝟏𝟎𝟓) 

Size of Integer 

Dataset (n) 

Time 1 /ns Time 2 /ns Time 3 /ns Average Time 

(t) /ns 

10000 4263500 3449400 2873100 3528667 

20000 4763900 5012500 5104200 4960200 

30000 6562400 6802300 7014200 6792967 

40000 8907500 9081900 8131600 8707000 

Table 4 – Tree Sort Sorting Times for Dataset Range of 6 × 105 

 

Table 5 – Heap Sort Sorting Times for Dataset Range of 2 × 105 
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50000 10824800 10007900 11792000 10874900 

60000 13105800 12784400 12922700 12937633 

70000 14211300 15064200 14191600 14489033 

80000 16805600 15610600 15613800 16010000 

90000 17475000 19076200 19892500 18814567 

100000 21968100 20979500 22872300 21939967 

 

 
 

 

Heap Sort (𝑹 = 𝟔 × 𝟏𝟎𝟓) 

Size of Integer 

Dataset (n) 

Time 1 /ns Time 2 /ns Time 3 /ns Average Time 

(t) /ns 

10000 4030400 3227700 3234700 3497600 

20000 4942000 5500100 4996900 5146333 

30000 7501900 6442900 6890100 6944967 

40000 8816200 8823800 9018200 8886067 

50000 10778800 10092000 11111700 10660833 

60000 11765900 12241500 12317200 12108200 

70000 13450000 15232200 13602900 14095033 

80000 16182800 17037500 15025700 16082000 

90000 18873500 17315100 18102500 18097033 

100000 21992000 21936400 21617100 21848500 

 
 

5.2  Graphs and Curve Fitting 

The above average times have been graphed first comparatively between the two algorithms 

for each range, and then for each algorithm individually with all three ranges. Since all trends 

followed a linearithmic pattern, only some minor transformations were required in order to 

curve fit 𝒏 𝐥𝐨𝐠𝟐 𝒏 effectively. The two primary function transformations shown throughout 

are vertical dilation by a certain factor and vertical translation upwards by a certain number 

due to systematic error. 

 

Table 6 – Heap Sort Sorting Times for Dataset Range of 4 × 105 

 

Table 7 – Heap Sort Sorting Times for Dataset Range of 6 × 105 
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Tree Sort vs Heap Sort (𝑹 = 𝟐 × 𝟏𝟎𝟓) 

 

 

 

Tree Sort vs Heap Sort (𝑹 = 𝟒 × 𝟏𝟎𝟓) 
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Graph 1 – Size of Dataset vs Sorting Time for Dataset Range of 2 × 105 

Graph 2 – Size of Dataset vs Sorting Time for Dataset Range of 4 × 105 
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Tree Sort vs Heap Sort (𝑹 = 𝟔 × 𝟏𝟎𝟓)  

 

 

 

Tree Sort All 3 Ranges  

 

Heap Sort All 3 Ranges 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 3 – Size of Dataset vs Sorting Time for Dataset Range of 6 × 105 
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Graph 4 – Size of Dataset vs Tree Sort Sorting Time for All 3 Dataset Ranges 
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Heap Sort All 3 Ranges 

 

6. Analysis 

Therefore, in every trend present in the above graphs, it is evident that a linearthimic function 

is able to effectively model the data. However, to quantify the goodness of fit we must find the 

coefficient of determination, using the Pearson correlation coefficient, which has been 

computed and shown in the table below. 

 

Algorithm Type 
 

𝑹 = 𝟐 × 𝟏𝟎𝟓 
 

𝑹 = 𝟒 × 𝟏𝟎𝟓 
 

𝑹 = 𝟔 × 𝟏𝟎𝟓 
 

Tree Sort 
 

0.9918 
 

0.9921 
 

0.9939 
 

Heap Sort 
 

0.9858 
 

0.9924 
 

0.9894 

 

This shows that there is a very strong linearithmic relationship between the input dataset 

size and the sorting time. However, due to the inconclusiveness of Pearson correlation for non- 

linear relationships, nonparametric Spearman rank-order correlation coefficients 𝝆 must also 

be computed. 

Table 8 – Coefficients of Determination for Best Fit Curves 

Graph 5 – Size of Dataset vs Heap Sort Sorting Time for All 3 Dataset Ranges 
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Algorithm Type 
 

𝑹 = 𝟐 × 𝟏𝟎𝟓 
 

𝑹 = 𝟒 × 𝟏𝟎𝟓 
 

𝑹 = 𝟔 × 𝟏𝟎𝟓 
 

Tree Sort 
 

1.0000 
 

1.0000 
 

1.0000 
 

Heap Sort 
 

1.0000 
 

1.0000 
 

1.0000 

 

This shows that along with goodness of fit, all the XY (size vs time) values can be perfectly 

modelled with a monotonically increasing function23, which in this case is linearithmic, hence 

proving the efficacy of our model. 

Finally, to determine the appropriacy of the linearithmic model, we must also use T-tests in 

order to find P-values for the data. 

 

Algorithm Type 
 

𝑹 = 𝟐 × 𝟏𝟎𝟓 
 

𝑹 = 𝟒 × 𝟏𝟎𝟓 
 

𝑹 = 𝟔 × 𝟏𝟎𝟓 
 

Tree Sort 
 

1.23 × 10-9 
 

1.06 × 10-9 
 

3.71 × 10-10 
 

Heap Sort 
 

1.13 × 10-8 
 

9.00 × 10-10 
 

3.50 × 10-9 

 

This shows that the data is highly statistically significant. Hence, assuming that the null 

hypothesis is that there is NOT a significant linearithmic relationship between 𝒏 and 𝒕, this low 

P-value < 0.05 (𝜶 − significance level) indicates that there is extremely high probability that 

the alternate hypothesis is true i.e., the presence of a strong linearithmic relationship, which 

our best fit functions clearly support.  

Contrarily, the Heap Sort evidently has lower sorting times than the Tree Sort for all dataset 

sizes and all three ranges. For example, for 𝑹 = 𝟐 × 𝟏𝟎𝟓, the average time taken to sort 10000 

integers by Heap Sort was 3160500 nanoseconds, around 39% lower than the 5206733 

nanoseconds sorting time for the Heap Sort. In fact, as the size of the dataset increases, the 

average and instantaneous sorting time per integer for Heap Sort changes much slower than the 

 
23 A.W. Bowman, M. C. Jones, and I. Gijbels, "Testing Monotonicity of Regression," Journal of Computational and Graphical 
Statistics 7, no. 4 (1998): 489-500, accessed November 4, 2020, https://doi.org/10.2307/1390678. 

Table 9 – Spearman Rank-Order Correlation Coefficients for Best Fit Curves 

 

Table 10 – P-Values of Tree and Heap Sort Data 
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Tree Sort making the difference between the performances of both algorithms significantly 

more pronounced. To examine this, we can compute the derivatives of the best fit functions – 

Tree Sort (𝑹 = 𝟐 × 𝟏𝟎𝟓) −  

𝑻(𝒏) = 𝟐𝟏𝒏 𝐥𝐨𝐠𝟐 𝒏 + (𝟏. 𝟓 × 𝟏𝟎𝟔) 

⇒ 𝑻′(𝒏) = 𝟐𝟏 (𝐥𝐨𝐠𝟐 𝒏 +
𝟏

𝐥𝐧(𝟐) ∙ 𝒏
) 

Heap Sort (𝑹 = 𝟐 × 𝟏𝟎𝟓) − 

 𝑯(𝒏) = 𝟏𝟐. 𝟓𝒏 𝐥𝐨𝐠𝟐 𝒏 + (𝟏. 𝟏 × 𝟏𝟎𝟔) 

⇒ 𝑯′(𝒏) = 𝟏𝟐. 𝟓 (𝐥𝐨𝐠𝟐 𝒏 +
𝟏

𝐥𝐧(𝟐) ∙ 𝒏
) 

 

Tree Sort vs Heap Sort Derivatives (𝑹 = 𝟐 × 𝟏𝟎𝟓) 

 

For example, at 𝒏 = 10000, Tree sort took 521 nanoseconds per integer on average and Heap 

Sort took 316 nanoseconds per integer on average (≈
𝑯(𝟏𝟎𝟎𝟎)

𝟏𝟎𝟎𝟎
). However, at 𝒏 = 100000, 

average times of 377 nanoseconds and 229 nanoseconds per integer were taken respectively. 

Using the 

Chain Rule 

Graph 6 – Size of Dataset vs Tree and Heap Sort Instantaneous Sorting Times 
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According to Graph 6, at 𝒏 = 10000, Tree sort had an instantaneous sorting rate of 279 

nanoseconds per integer, 68% greater than the Heap Sort’s rate of 166 nanoseconds per integer 

(𝑯′(𝟏𝟎𝟎𝟎)). However, at 𝒏 = 100000, the instantaneous sorting rates were 349 and 207 

nanoseconds per integer respectively. This proves that the Heap Sort is sorting in significantly 

lower time and also scaling up at a much lower rate than the Tree Sort as depicted in the graph.  

Furthermore, it is also evident that for both Tree Sort and Heap Sort, the sorting time trends for 

the three ranges barely vary. Apart from a slightly increases and decreases in sorting times 

across ranges, we cannot conclusively say whether 𝒕 is proportionally related to 𝑹. In this case, 

a Kruskal-Wallis one-way ANOVA test can be done on the data collected for the three ranges 

for both algorithms. Tree Sort had a P-value of 0.9961 and Heap Sort had a P-value of 0.9885. 

Hence, we can say that the probability of the null hypothesis being true i.e., there is no 

relationship between 𝑹 and 𝒕, is very high. 

Finally, some random and systematic error is present in the data. As seen with the graphs for 

𝑹 = 𝟐 × 𝟏𝟎𝟓, the y-intercept of the Tree Sort best fit function of 1.5 × 106 is around 36% 

greater than the y-intercept of the Heap Sort best fit function of 1.1 × 106. Furthermore, points 

such as (60000, 20206300) for Tree Sort and (50000, 10094533) for Heap Sort show significant 

deviation from the best fit function. The reasons for these random and systematic errors will 

be discussed in Evaluation. 

 

7. Results Discussion & Evaluation 

Hence, as conclusive results have been obtained, numerous means can be used to justify the 

same. Firstly, it is apparent that the naturally self-balancing nature of the binary heap gives it 

an advantage. This is because for a similar number of inserted integers, a max-heap constructs 

a tree with the minimum number of levels required (since the comparisons between adjacent 
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nodes are only done after the integers are inserted) while a BST is not concerned with the same 

(since the comparisons between existing nodes and a to-be-inserted integers are done before 

they are inserted). The same is illustrated below –  

 

 

 

 

 

 

 

 

 

 

 

As shown, the max heap has the minimum of 3 levels as required by 5 nodes, whereas the BST 

has 4 levels due to its unbalanced nature therefore making it take longer to carry out a depth 

first traversal. This is also supported by the fact that the worst-case complexity of an 

unbalanced Tree Sort is 𝑶(𝒏𝟐)24 (showing that a BST can be constructed as a straight chain: 

having as many levels as nodes) while the Heap Sort’s is 𝑶(𝒏𝐥𝐨𝐠𝟐 𝒏). 

Another perspective that must be considered is that of Recursion vs Iteration. The Tree Sort is 

a purely recursive algorithm with both the insertion and traversal of every node being done 

recursively. The Heap Sort, contrarily, does heapification/insertion recursively but conducts 

the traversal iteratively. The heapification is also optimized since the algorithm iteratively visits 

the roots of sub-trees that need to be heapified after which recursion takes over.  

The reason recursion is slower than iteration is that, when considering depth-first traversals as  

 
24 Alexa Ryder, “Tree Sort Algorithm,” OpenGenus IQ: Learn Computer Science (OpenGenus IQ: Learn Computer Science, 
March 18, 2018), accessed November 12, 2020, https://iq.opengenus.org/tree-sort/. 

Binary Search Tree Max Heap 

Figure 19 – Balanced vs Unbalanced Binary Search Tree Example 
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used by the BST, each successive recursive call to the insert() or dfs() (refer Appendix A) 

functions gets added as a stack frame to the top of a call stack (a linear data structure that 

follows the last in first out principle)25 from which the recursive subroutines take place. This 

call stack thus necessitates the allocation of excess overhead time and memory (iteration does 

not require this) consequently explaining why the tree sort is more time-intensive. 

By the same token, it must also be realized that that the 𝑶(𝟏) space complexity26 of the Heap 

Sort is also a massive advantage compared to the 𝑶(𝒏) space complexity of the Tree Sort. The 

fact that the Heap Sort can use array indices as node pointers allows it to quickly sort the dataset 

within the array itself. Contrarily, integers in the Tree Sort must be assigned to an object along 

with two other pointers. Hence not only does a larger dataset require more time and memory 

to create more objects, the fact that an integer itself has a 12 byte overhead in an object27 is a 

huge memory allocation time-waste for the Tree Sort. 

Finally, the minimal systematic error can obviously be attributed to the javac compile time of 

the algorithms since at 𝒏 = 𝟎, the runtime is negligible yet the y-intercept of the linearithmic 

functions is not 0. Virtual memory stored on the PC could have also contributed to compiler 

lag. The random errors could have been caused by algorithm runtime being affected by 

constantly changing CPU clock-speeds due to the varying processing consumption. 

 

8. Conclusion 

Therefore, with reference to my hypothesis “I hypothesize that the Heap Sort will sort the 

dataset in lower time than the Tree Sort. There will be a linearthimic relationship between 𝒏 

 
25 “4.3. What Is a Stack?” 4.3. What Is a Stack? - Problem Solving with Algorithms and Data Structures, accessed November 
12, 2020, https://www.runestone.academy/runestone/books/published/pythonds/BasicDS/WhatisaStack.html.  
26 Time Complexity and Space Complexity comparison of Sorting Algorithms, Scanftree, accessed November 12, 2020, 
https://www.scanftree.com/Data_Structure/time-complexity-and-space-complexity-comparison-of-sorting-algorithms. 
27 Java Tips By Vladimir Roubtsov and Vladimir Roubtsov, “Java Tip 130: Do You Know Your Data Size?,” InfoWorld 
(JavaWorld, August 16, 2002), accessed November 12, 2020, https://www.infoworld.com/article/2077496/java-tip-130--
do-you-know-your-data-size-.html. 
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and 𝒕”, this experiment was able to comparatively determine the time complexities and hence 

the sorting efficiency of both algorithms and provide conclusive evidence for the fact that the 

Heap Sort always sorts in lower time than the Tree Sort and that the relationship between size 

of the randomized integer dataset (𝒏) and time taken to sort (𝒕) is most closely linearithmic: 

proving my hypothesis correct.  

 

9. Further Scope 

Therefore, considering that the primary limitation of the BST is that it is unbalanced, the 

performance of the BST can be improved by using a self-balancing red-black tree for insertions 

in order to avoid skewed trees and consequently worst-case complexities. In addition to this, 

adaptive variants of both sorting algorithms (adaptive heap sorts and splay sorts)28 could also 

reduce running time by exploiting any partially ordered input data. 

Furthermore, the tree sort’s space inefficient recursive logic can be solved using an iterative 

variant of the algorithm so that additional time required by the call stack can be avoided. 

Contrarily, utilizing a ternary instead of a binary heap could be useful since the height of the 

tree could now be decreased to 𝐥𝐨𝐠𝟑 𝒏 from 𝐥𝐨𝐠𝟐 𝒏.29 So, while the comparisons per level 

would increase, the number of levels recursed through itself would be lower. 

Ultimately, the differences between the running times for datasets of various ranges could have 

been made more significant if larger ranges of long data type integers were used. The type of 

integer distribution used such as Gaussian or Poisson distributions could also be added as 

another complex parameter. 

 

 
28 Alistair Moffat, Splaysort: Fast, Versatile, Practical, accessed November 12, 2020, https://people.eng.unimelb.edu.au/ 
ammoffat/abstracts/spe.splay.html.  
29 Kosmopo, “set3solutions,” University of Texas at Arlington, accessed November 12, 2020, http://ranger.uta.edu/ 
~kosmopo/cse5311/homework/set3solution.pdf. 
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Appendices 

Appendix A – TreeSort.java30 

1. package com.company; 

2.   

3. public class TreeSort { 

4.   

5.         public static class Node { 

6.             int key; // Integer value of the node 

7.             Node left, right; // Pointers to left and right child nodes 

8.   

9.             public Node(int item) { 

10.            key = item; 

11.            left = right = null; 

12.        } 

13.     } 

14.     

15.     Node root; 

16.   

17.     public TreeSort() { 

18.         root = null; 

19.     } 

20.   

21.     public Node insert(Node node, int key) { 

22.         if (node == null) { 

23.             node = new Node(key); // Creating a new tree 

24.             return node; 

25.         } 

26.         if (key < node.key) 

27.             node.left = insert(node.left, key);  

28.   

29.         else if (key > node.key) 

30.             node.right = insert(node.right, key); 

31.   

32.         return node; 

33.     } 

34.   

35.     public void dfs(Node node) { 

36.         if (node != null) { 

37.             dfs(node.left); // Recursing down the left sub-tree 

38.             int nodeValue = node.key; 

39.             dfs(node.right); // Recursing down the right sub-tree 

40.         } 

41.     } 

42.   

43.     public void sort(int[] arr) { 

44.         long startTime = System.nanoTime(); // Stopwatch start 

45.   

46.         for (int j : arr) { 

 
30 Vibin M, “Tree Sort,” GeeksforGeeks, April 20, 2020, accessed August 1, 2020, https://www.geeksforgeeks.org/tree-sort/. 
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47.             root = insert(root, j); 

48.         } 

49.   

50.         dfs(root); 

51.    

52.         long stopTime = System.nanoTime(); // Stopwatch stop 

53.   

54.         System.out.println("\n\nTree Sort Start Time: " + 

startTime); 

55.         System.out.println("\nTree Sort Stop Time: " + stopTime); 

56.         System.out.println("\nTime Taken To Tree Sort: " + 

(stopTime - startTime)); 

57.     } 

58. } 

  

Appendix B – HeapSort.java31 

1. package com.company; 

2.   

3. public class HeapSort { 

4.   

5.         public void sort(int[] arr) { 

6.             int n = arr.length; 

7.   

8.             long startTime = System.nanoTime(); // Stopwatch start 

9.   

10.         for(int i = n / 2 - 1; i >= 0; i--) // Building max heap 

11.             heapify(arr, n, i); 

12.   

13.         for(int i = n - 1; i > 0; i--) { 

14.             int temp = arr[0]; // Moving current root to end 

15.             arr[0] = arr[i]; 

16.             arr[i] = temp; 

17.   

18.             heapify(arr, i, 0); // Heapifying reduced heap 

19.         } 

20.         long stopTime = System.nanoTime(); // Stopwatch stop 

21.   

22.         System.out.println("\nHeap Sort Start Time: " + startTime); 

23.         System.out.println("\nHeap Sort Stop Time: " + stopTime); 

24.         System.out.println("\nTime Taken To Heap sort: " + 

(stopTime - startTime)); 

25.   

26.         System.out.println("\nHeap Sorted Array Is: "); 

27.         printArray(arr); 

28.     } 

29.   

30.     void heapify(int[] arr, int n, int i) { 

 
31 Shivi Aggarwal, “HeapSort,” GeeksforGeeks, Last Modified November 16, 2020, accessed August 18, 2020, 
https://www.geeksforgeeks.org/heap-sort/. 
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31.         int largest = i; // Initializing largest as root 

32.         int l = 2*i + 1; // Left Child = 2*i + 1 

33.         int r = 2*i + 2; // Right Child = 2*i + 2 

34.   

35.         if(l < n && arr[l] > arr[largest]) 

36.             largest = l; 

37.   

38.         if(r < n && arr[r] > arr[largest]) 

39.             largest = r; 

40.   

41.         if(largest != i) { 

42.             int swap = arr[i]; 

43.             arr[i] = arr[largest]; 

44.             arr[largest] = swap; 

45.   

46.             heapify(arr, n, largest); // Recursively heapifying 

47.         } 

48.     } 

49.   

50.     public void printArray(int[] arr) {  

51.         for (int j : arr) { 

52.             System.out.print(j + ", "); 

53.         } 

54.         System.out.println(); 

55.     } 

56. }   

 

Appendix C – SortLauncher.java 

1. package com.company; 

2.   

3. import java.io.IOException; 

4. import java.io.FileInputStream; 

5. import java.util.Properties;32
 

6.   

7. public class SortLauncher { // Program to run both sorting algorithms 

8.   

9.         public static int[] convertStringToIntegerArray(String[] string) 

{ 

10.         int[] arr = new int[string.length]; 

11.   

12.         for(int i = 0; i < string.length; i++) 

13.             arr[i] = Integer.parseInt(string[i]); 

14.   

15.         return arr; 

16.     } 

17.   

18.     public static void main(String[] args) throws IOException { 

 
32 “Properties Class (Java Platform SE 8),” Oracle Java Documentation, accessed October 24, 2020, https://docs.oracle.com/ 
javase/8/docs/api/java/util/Properties.html. 
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19.         FileInputStream fis = new 

FileInputStream("src/com/company/numbers.properties"); 

20.         Properties prop = new Properties(); 

21.         prop.load(fis); // Loading number.properties file 

22.   

23.         System.out.println(args[0] + " Input Array: " + 

prop.getProperty(args[0])); // This argument is the property’s key 

24.   

25.         String[] inputNumber = prop.getProperty(args[0]).split(", 

"); 

26.         int[] unsortedArray = 

convertStringToIntegerArray(inputNumber); 

27.   

28.         HeapSort heap = new HeapSort(); 

29.         heap.sort(unsortedArray); // Inputting preferred dataset 

30.   

31.         unsortedArray = convertStringToIntegerArray(inputNumber); 

32.         TreeSort tree = new TreeSort(); 

33.         tree.sort(unsortedArray); // Inputting preferred dataset 

34.     } 

35. }  

 

Appendix D – number.properties (screenshot) 

 


