
Extended Essay in Computer Science

Examination Session – May 2021

Title – Investigating the Algorithmic Efficiency of Binary Search Tree and

Binary Heap Based Sorting Algorithms

Research Question - How does the sorting efficiency of the Tree Sort compare

to that of the Heap Sort in terms of time complexity for increasing sizes of

randomized integer datasets?

Word Count - 3997

CS EE World
https://cseeworld.wixsite.com/home
May 2021
28/34
A
Submitter Info:
Anonymous

1

Table of Contents

1. Introduction …………………………………………………………………………............. 2

2. Theory ………………………………………………………………………………….……. 2

2.1. Sorting Algorithms …………………………………………………………….…….…. 2

2.2. Tree Sort & Binary Search Trees ………………………………………..……….…….. 5

2.3. Heap Sort & Binary Heaps …………………………………………………………… 10

3. Hypothesis ………………………………………………………………………….………. 14

4. Methodology ……………………………………………………………………….………. 15

4.1. Independent Variable ……………………………………………………….……........ 15

4.2. Dependent Variables ……………………………………………………….…………. 16

4.3. Controlled Variables ………………………………………………………….………. 16

4.4. Procedure ………………………………………………………………………...…… 17

5. Data Processing and Graphing ……………………………………………………...……. 17

5.1. Raw Data Collection ……………………………………………………………..…… 17

5.2. Graphing and Curve Fitting …………………………………………………………… 20

6. Analysis …………………………………………………………………………………….. 23

7. Results Discussion & Evaluation ………………………………………………………….. 26

8. Conclusion …………………………………………………………………………………. 28

9. Further Scope …….……………………………………………………………………...… 29

10. Bibliography ………………………………………………………………………….……. 30

11. Appendices …………………………………………………………………………………. 33

11.1. Appendix A …………………………………………………………………..………. 33

11.2. Appendix B ……………………………………………………………………...…… 34

11.3. Appendix C ……………………………………………………………………...…… 35

11.4. Appendix D ………………………………………………………………………...… 36

2

1. Introduction

The primary focus of this essay is to investigate the computational complexities or the sorting

efficiencies of binary-tree based sorting algorithms, a class of algorithms based on binary

abstract data structures. Today, sorting is one of the most popular and useful computational

processes, and hence, performing a comparative study between a specific set of these

algorithms is crucial. Thus, this essay will look specifically into two sorting algorithms: Tree

Sort, which is based on Binary Search Trees (BST) and the Heap Sort, which is based on Binary

Heaps. These algorithms will be compared in terms of their time complexity: the time taken

for algorithm execution based on the input dataset size. Hence, this gives rise to the research

question: “How does the sorting efficiency of the Tree Sort compare to that of the Heap

Sort in terms of time complexity for increasing sizes of randomized integer datasets?”

2. Theory

2.1 Sorting Algorithms

Sorting algorithms are one of the simplest but most unique classes of algorithms. A sorting

algorithm performs a series of operations on a set of integers and outputs them, in sorted or

ascending order. For example –

[𝟓, 𝟑, 𝟐, 𝟒, 𝟏] → [𝟏, 𝟐, 𝟑, 𝟒, 𝟓]

As shown above, the concept of sorting is straightforward. However, the approaches taken to

sorting can be very diverse. Hence, sorting algorithms can further be classified into

Comparison Sorts and Integer Sorts.1 Comparison sorts are based on comparing two

elements to determine if one should be before or after the other in the sorted list. A few

1 “Difference between Comparison (QuickSort) and Non-Comparison (Counting Sort) Based Sorting Algorithms?,”
Javarevisited, accessed July 12, 2020, https://javarevisited.blogspot.com/2017/02/difference-between-comparison-
quicksort-and-non-comparison-counting-sort-algorithms.html#axzz6nplsEjux.

3

examples are the Heap Sort and Merge Sort. On the contrary, Integer Sorts determine the

number of elements which are lesser in value than a selected element, based on its integer key,

to identify the correct position of this element in the list without requiring extensive

comparisons.2 A few examples are the Radix Sort and Bucket Sort.3 An example of a

comparison sorting algorithm is shown below –

Figure 1 is a depiction of the merge sort which4 portrays single comparisons between pairs of

integers as a means to sort an array. This brings into picture sorting algorithm design paradigms

such as divide & conquer and recursion,5 and also introduces time complexity as a means for

algorithmic analysis.

2 ibid.
3 ibid.
4 Nikhil Joshi, “Implementation and Analysis of Merge Sort,” Dotnetlovers (Dotnetlovers, October 29, 2018), accessed July
12, 2020, https://www.dotnetlovers.com/article/128/implementation-and-analysis-of-merge-sort.
5 TimTim 1, “Divide and Conquer and Recursion,” Stack Overflow, January 1, 2009, accessed July 12, 2020,
https://www.stackoverflow.com/questions/2249767/divide-and-conquer-and-recursion.

Comparison between

integers

Figure 1 – Visualization of Merge Sort4

4

The primary method of measuring the efficiency of a sorting algorithms it to measure its time

complexity. However, asymptotic time complexity – algorithm execution time as dataset size

approaches infinity – can be used for a better understanding of algorithm efficiency. It can be

divided into three parameters - 𝑶(𝒏) the upper bound or worst-case complexity, 𝜴(𝒏) the

lower bound or best-case complexity, and 𝜽(𝒏) the average-case complexity.6 These functions

tell us the limits of, and the average running time of any algorithm as depicted below –

Therefore, before experimentally determining the running-time of Tree Sort and Heap Sort,

which are both comparison sorts, we can mathematically derive the best-case complexity to

preordain a trend in running-time.7

6 “Asymptotic Analysis: Big-O Notation and More,” Programiz, accessed July 12, 2020, https://www.programiz.com/dsa/
asymptotic-notations.
7 “Big-O Notation (Article) | Algorithms,” Khan Academy, Khan Academy, accessed July 12, 2020,
https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/big-o-notation.

𝑶(𝒏) 𝜽(𝒏)

𝜴(𝒏)

Figure 2 – Asymptotic Time Complexity Parameters7

5

Taking a decision tree, where the leaves are all possible permutations (𝒏!) of a set of integers

and the comparison sort is modelled by the root-to-leaf path where each step is a comparison,

then the number of comparisons is limited by the height of the tree.8 As 𝟐𝒉 is the number of

leaves of the decision tree as a function of the height –

𝟐𝒉 ≥ 𝒏! ⇒ 𝒉 ≥ 𝐥𝐨 𝐠(𝒏!)

Using Stirling’s Approximation –

⇒ 𝒏! > (
𝒏

𝒆
)

𝒏

∴ 𝒉 ≥ 𝒍𝒐𝒈 (
𝒏

𝒆
)

𝒏

= 𝒏 ⋅ 𝒍𝒐𝒈 (
𝒏

𝒆
)

= 𝒏 ⋅ 𝒍𝒐𝒈(𝒏) − 𝒏 ⋅ 𝒍𝒐𝒈(𝒆)

= 𝜴(𝒏 ⋅ 𝒍𝒐𝒈(𝒏))

Consequently, we know that9 the 10running time of both Tree Sort and Heap Sort will not be

better that 𝒏 ⋅ 𝒍𝒐𝒈(𝒏).

2.2 Tree Sort & Binary Search Trees

A binary tree is an abstract data structure composed of nodes. Each node has some data

(integers in this case), and has pointers to a left and right child node. The topmost node is called

the root, and a node with no child nodes is called a leaf. A Binary Search Tree (BST) is a

special binary tree with certain properties. The value of any left child must always be less than

the value of its parent node, and the value of any right child must always be greater than the

value of its parent node.11 An example is shown below –

8 Karleigh Moore, “Sorting Algorithms,” Brilliant Math & Science Wiki, accessed July 24, 2020, https://www.brilliant.org/
wiki/sorting-algorithms/.
9 ibid.
10 ibid.
11 “Data Structure - Binary Search Tree,” Tutorialspoint, accessed July 24, 2020, https://www.tutorialspoint.com/data_
structures_algorithms/binary_search_tree.htm.

Equation 1 – Relationship

Between Number of

Comparisons and Height

of a Binary Tree9

Equation 2 – Deriving the

Lower-Bound Time

Complexity of Comparison

Sorts10

6

For sorting an integer dataset with tree sort, the integers must first be inserted into the BST

through the following procedure –

1. If the root node is null i.e., the BST is empty, then the root node is set to this value.

2. If the root node is present, the value being inserted is less than the root, and the left child

node is null, then the left child will be set to this value.

3. If the root node is present, the value being inserted is greater than the root, and the right

child node is null, then the right child will be set to this value.

4. If the child nodes already exist, this logic will occur recursively until a null child is found.12

This value will then be assigned to a new leaf node. A sample insertion is shown below.

12 Robert Sedgewick, and Kevin Wayne, “Binary Search Trees,” Princeton University, The Trustees of Princeton University,
accessed July 24, 2020, https://algs4.cs.princeton.edu/32bst/,

Figure 3 – Binary Search Tree Example

Less than root node

Figure 4 – Binary Search Tree Insertion (Comparison with Root Node)

7

It is to be noted that BSTs are not naturally self-balancing. There is no restriction on tree height.

After insertion, the second half of tree sort entails performing a traversal on the BST. A Depth-

First Traversal algorithm, which traverses a BST branch-wise rather than level-wise (Breadth-

First Traversal) would be more appropriate in this case since we need to access the leaves of

the BST (lowest and highest values) in lower time. Furthermore, an Inorder traversal, which

first traverses the left sub-tree, visits the root, and then traverse the right sub-tree, would allow

the BST values to be returned in sorted order.13 This is shown below –

13 Javinpaul, “How to Implement Inorder Traversal in a Binary Search Tree?,” DEV Community (DEV Community, August 14,
2019), accessed July 24, 2020, https://www.dev.to/javinpaul/how-to-implement-inorder-traversal-in-a-binary-search-tree-
1787.

Greater than internal

node

Right child is null

Figure 5 – Binary Search Tree Insertion (Comparison with Internal Node)

Figure 6 – Binary Search Tree Final Insertion

8

Hence the algorithm is divided into two methods, the insert() method and dfs() method. Each

node is represented by an object with three instance variables. One being the integer value of

the node, and the other two being pointers14 to the left and right child nodes. The insert() method

has two parameters: the root node object, and the integer value to be inserted into the Binary

Search Tree.

1. public Node insert(Node node, int key) {

2. if (node == null) {

3. node = new Node(key); // Creating a new tree

4. return node;

5. }

6. if (key < node.key)

7. node.left = insert(node.left, key);

8.

9. else if (key > node.key)

10. node.right = insert(node.right, key);

11.

12. return node;

13. }

If a root node is not present, a new BST is created. However, if the value to be inserted is less

than the value of the root node, then the insert() method is recursively called on the left sub-

14 Vibin M, “Tree Sort,” GeeksforGeeks, April 20, 2020, accessed August 1, 2020, https://www.geeksforgeeks.org/tree-sort/.

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Figure 7 – Sorted Binary Search Tree

Figure 8 – Tree Sort Insert Function (Appendix A)14

9

tree until a base case is reached where the left or right child nodes are empty, after which a new

node is inserted as a leaf. If the value to be inserted is greater than the value of the root node,

then the insert() method is recursively called on the15 right sub-tree instead and the process is

repeated.

1. public void dfs(Node node) {

2. if (node != null) {

3. dfs(node.left); // Recursing down the left sub-tree

4. System.out.print(node.key + ", ");

5. dfs(node.right); // Recursing down the right sub-tree

6. }

7. }

In the dfs() method, the method recurses down the left sub-tree until the base case, a left child

leaf is reached, in which case its value is printed, followed by the value of the parent node,

followed by the value of the right child leaf. After the left sub-tree is recursively traversed, the

root node is printed, and finally, the method recurses down the right-sub-tree. This would

output the BST in sorted order.

The average time complexity of the Tree Sort 𝜽(𝒏𝒍𝒐𝒈(𝒏)) can be broken down. The time

complexity of both insert() and dfs() is 𝑶(𝒏𝒍𝒐𝒈(𝒏)). For these functions, 𝒏 integers must be

inputted into and outputted from the trees respectively and the time taken to recurse down the

tree to insert and traverse each node are both 𝑶(𝒍𝒐𝒈(𝒏)) since the number of levels in a BST

increases logarithmically with respect to the number of nodes. Therefore by adding the

complexities, the constant can be ignored and the overall complexity comes to 𝑶(𝒏𝒍𝒐𝒈(𝒏)).

15 ibid.

Figure 9 – Inorder Traversal Function (Appendix A)15

10

2.3 Heap Sort and Binary Heaps

A Binary Heap, specifically a Max Heap, is a binary tree with properties different to those of a

BST. The value of each node must be greater than or equal to the values of the child nodes.

Hence unlike a BST, a values in a max heap increase from bottom to top instead of from left

to right. This property of a Max Heap also allows it to be naturally self-balancing.16 An example

is shown below –

This naturally self-balancing property allows Max Heaps to be represented through arrays,

where if a node is an index 𝒊, then the left child is at index 𝟐𝒊 + 𝟏, and the right child is at index

𝟐𝒊 + 𝟐.17 For Heap Sort, a Max Heap must first be built by rearranging the array using a reverse

breadth first traversal –

1. Beginning from the last node in the 𝒏 − 𝟏 level of the tree (𝒏 is the number of levels), if

the node is greater than both child nodes, the sub-tree is already heapified.

2. However, if the node is less than either or both child nodes, it is swapped with the greater

child node. Similarly all sub-trees on the 𝒏 − 𝟏 level must be heapified.

16 Navjot Singh, “Why Is Binary Heap Never Unbalanced?,” Computer Science Stack Exchange, May 2, 2019, accessed
August 18, 2020, https://cs.stackexchange.com/questions/108852/why-is-binary-heap-never-unbalanced.
17 “Binary Heaps,” Heaps, Andrew CMU, accessed August 18, 2020, http://www.andrew.cmu.edu/course/15-121/
lectures/Binary%20Heaps/heaps.html.

Figure 10 – Max Binary Heap Example

11

3. Move to level 𝒏 − 𝟐 and repeat the process from right to left. If nodes are swapped, the

affected sub-trees must be recursively re-heapified.

4. Once the traversal reaches the root node, the binary tree has been heapified into a Max

Heap as depicted below –

𝒏 − 𝟏 sub-level Swapped – Less

than right child

Figure 11 – Max Heap Heapification (Comparison and Swap Within Right Sub-Tree)

Swapped – Less

than right child

Figure 12 – Max Heap Heapification (Comparison and Swap Within Left Sub-Tree)

Heapified

Swapped – Less

than right child

Figure 13 – Max Heap Heapification (Comparison with Root Node and Re-Heapification)

12

After the tree has been heapified, the root node is swapped with the last leaf node and added

to the end of the array. The reduced heap is then re-heapified. This process of swapping the

root with the last leaf and re-heapifying is repeated until the array is sorted –

Max Heap

Figure 14 – Complete Max Heap after Heapification

Swapped

Removed

from Heap

Swap to

Re – Heapify

Figure 15 – Swapping of Root with Last Leaf Node and Re-Heapification

01 23

4 5

6

0 1 2 3 4 5 6

Figure 16 – Sorted Max Binary Heap

13

Hence, the primary method in Heap Sort is heapify() which restores the Max Heap structure of

the Binary Heap. This method is iteratively called by two loops in the sort() method, one that

builds the Max Heap, and18 one that repeatedly extracts the root node and sorts the array.

Heapify() has three parameters: the array to be sorted, the array length, and the array index of

the root of a sub-tree to be heapified.

1. void heapify(int arr[], int n, int i) {

2. int largest = i; // Initializing largest as root

3. int l = 2*i + 1; // Left Child = 2*i + 1

4. int r = 2*i + 2; // Right Child = 2*i + 2

5.

6. if (l < n && arr[l] > arr[largest])

7. largest = l;

8.

9. if (r < n && arr[r] > arr[largest])

10. largest = r;

11.

12. if (largest != i) {

13. int swap = arr[i];

14. arr[i] = arr[largest];

15. arr[largest] = swap;

16.

17. heapify(arr, n, largest); // Recursively heapifying

18. }

19. }

The indices of an internal node and its children and represented by the variables largest, l, and

r. If either child node is larger than the other child and the parent node, then largest is

reassigned to that node, the indices of the child and parent node are swapped, and the affected

sub-tree19 rooted at the largest node is recursively heapified until a base case is reached where

both child nodes are lesser than the parent node.

1. public void sort(int arr[]) {

2. int n = arr.length;

3.

4. for (int i = n / 2 - 1; i >= 0; i--) // Building max heap

5. heapify(arr, n, i);

18 Shivi Aggarwal, “HeapSort,” GeeksforGeeks, Last Modified November 16, 2020, accessed August 18, 2020,
https://www.geeksforgeeks.org/heap-sort/.
19 ibid.

Figure 17 – Heap Sort Heapify Function (Appendix B)18

14

6.

7. for (int i=n-1; i>0; i--) {

8. int temp = arr[0]; // Moving current root to end

9. arr[0] = arr[i];

10. arr[i] = temp;

11.

12. heapify(arr, i, 0); // Heapifying reduced heap

13. }

14. }

The first 20 loop performs a breadth first traversal by calling heapify() on all sub-trees rooted at

nodes level-wise, from node 𝒊 =
𝒏

𝟐
− 𝟏 (where 𝒏 is the array length) to node 𝒊 = 𝟎 in order to

construct a Max Heap, i.e., the loop disregards the leaves of the heap. The second loop performs

the actual Heap Sort by iteratively executing a simple swapping algorithm to swap the indices

of the first and last nodes, and then calling heapify() on the root of the reduced heap whose

number of nodes decrease from 𝒏 − 𝟏 to 𝟎 throughout loop execution as the array is sorted.

The average time complexity of Heap Sort is 𝜽(𝒏𝒍𝒐𝒈(𝒏)). The heapify() function happens in

𝑶(𝒍𝒐𝒈(𝒏)) time since the number of levels to be recursed down in a heap or a sub-tree

increases logarithmically with respect to the number of nodes. Hence, when building and

sorting the Max Heap, 𝒏 integers must be inserted and outputted respectively and re-

heapification takes place after each. Therefore, by adding both linearithmic complexities, the

constant can be ignored and the overall complexity becomes 𝑶(𝒏𝒍𝒐𝒈(𝒏)).

3. Hypothesis

It is evident that both sorting algorithms have an average time complexity of 𝜽(𝒏𝒍𝒐𝒈(𝒏)).

However, multiple stark contrasts are present in the properties of both data structures and the

respective algorithm designs, such as the contrast between a Binary Heap’s self-balancing21 to

20 ibid.
21 “CS 312 Lecture 25: Priority Queues and Binary Heaps,” Lecture 25: Priority Queues and Binary Heaps, accessed August
18, 2020, https://www.cs.cornell.edu/courses/cs312/2007sp/lectures/lec25.html.

Figure 18 – Sort Function: Building and Sorting Max Heap (Appendix B)20

15

a normal BST’s unbalanced nature or the contrast between the Heap Sort’s partially iterative

logic to a Tree sort’s purely recursive logic. As a result, while the trends in algorithm execution

time might be similar between both algorithms, the actual execution times for sorting very large

integer datasets could be substantially different, perhaps lower for Heap Sort due to its

asymptotically balanced nature and space-efficient array implementation.22

Therefore, the aim of this experiment is to test the effect of increasing randomized dataset size

𝒏 on the time taken 𝒕 by both Tree Sort and Heap Sort to sort the dataset in increasing order.

The relationships between the two variables will be comparatively analyzed between both

algorithms. Moreover, for deeper analysis, the range 𝑹 of the datasets will be changed as an

auxiliary independent variable to determine any additional effect on sorting performance.

I hypothesize that the Heap Sort will sort the dataset in lower time than the Tree Sort. There

will be a linearthimic relationship between 𝒏 and 𝒕.

4. Methodology

4.1 Independent Variable

The independent variable is the size of the integer datasets 𝒏. The sizes will increase from

𝟏𝟎𝟎𝟎𝟎 integers to 𝟏𝟎𝟎𝟎𝟎𝟎 integers in increments of 𝟏𝟎𝟎𝟎0 in order to acquire a significant

number of data points to plot more accurate and precise graphs. Furthermore, for each size 𝒏

three datasets will be generated with ranges of 𝟐 × 𝟏𝟎𝟓, 𝟒 × 𝟏𝟎𝟓, and 𝟔 × 𝟏𝟎𝟓 respectively.

All integer datasets will have completely randomized distribution (discrete uniform).

Moreover, the datasets will also contain both positive and negative integers. An online random

number generator will be used for the same.

22 “OpenDSA Data Structures and Algorithms Modules Collection,” 13.12. Heapsort - OpenDSA Data Structures and
Algorithms Modules Collection, accessed August 20, 2020, https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/
Heapsort.html.

16

4.2 Dependent Variable

The dependent variable is the time taken 𝒕 by each algorithm to sort integer datasets of

increasing size and the three respective ranges in nanoseconds. The nanoTime() method in the

Stopwatch class will be used in order to determine the difference in time before and after the

sorting execution with high precision and reduced random and systematic errors.

4.3 Controlled Variables

Variable Description Specifications

Computer and

Operating System

The algorithms will be run on a

Dell G3 3500 with Windows 10

Home.

Processor: Intel Core i7-

10750U @ 3.0 GHz

OS: Windows 10 x64

Memory: 8GB RAM (DDR3 –

12800)

Integrated

Development

Environment

The IntelliJ IDEA IDE will be

used under the Apache 2 license.

Version: Community Edition

2020.2.1

JDK and JRE: Java SE 8u261

Probability

Distribution of

Datasets

All datasets will have discrete

uniform distribution within the

given ranges.

RNG: PineTools

Mean of Datasets The mean for all datasets will be

within [-100, 100].

The mean will be fairly constant

since the datasets will be

randomly distributed on both

sides of the mid-range.

Data types Only the int (32 bit) primitive

data type will be used to

represent the numbers. long (64

bit) will be used to store the

sorting times in nanoseconds.

Table 1 – List of Controlled Variables

17

4.4 Procedure

1. Set up both TreeSort.java and HeapSort.java files (refer Appendix A, B) in an IntelliJ

project folder.

2. Using the PineTools random number generator, generate 10 randomized integer datasets

each for the ranges of [−𝟏 × 𝟏𝟎𝟓, 𝟏 × 𝟏𝟎𝟓], [−𝟐 × 𝟏𝟎𝟓, 𝟐 × 𝟏𝟎𝟓], and [−𝟑 × 𝟏𝟎𝟓, 𝟑 ×

𝟏𝟎𝟓] with number of integers 𝒏 ranging from 𝟏𝟎𝟎𝟎𝟎 to 𝟏𝟎𝟎𝟎𝟎𝟎 (30 datasets in total).

3. Transfer 30 datasets as properties (key-value pairs) in a .properties file (refer Appendix D)

4. Create a new file SortLauncher.java (refer Appendix C) and using the Properties and

FileInputStream classes, load all 30 datasets into an instance of the Properties class.

5. Access the required dataset using the getProperty() method of the Properties class and

convert it into a String array.

6. Use the convertStringToIntegerArray() method to parse the String array and convert it into

an integer array.

7. Finally create instances of the HeapSort and TreeSort classes and run the sort() methods

with the integer array (unsorted dataset) as the argument.

8. Refer to the terminal to record the sorting times for both the Heap Sort and the Tree Sort.

9. Re-run SortLauncher.java for all 30 datasets by changing the property being accessed in

IntelliJ’s debug configuration. Perform 3 trials for each dataset and take average times for

both sorting algorithms.

5. Data Processing and Graphing

5.1 Raw Data Collection

It must noted that both the sorting algorithms chosen are reliable, efficient, and concisely

follow the expected algorithm paradigms. All applications were closed during algorithm

execution and startup programs were disabled to free up RAM.

.

18

Tree Sort (𝑹 = 𝟐 × 𝟏𝟎𝟓)

Size of Integer

Dataset (n)

Time 1 /ns Time 2 /ns Time 3 /ns Average Time

(t) /ns

10000 5180800 5552200 4887200 5206733

20000 6906800 8257100 6790100 7318000

30000 10384800 11157500 9796600 10446300

40000 13978400 13087600 13268100 13444700

50000 16832100 17881100 17600200 17437800

60000 20705700 19277100 20636100 20206300

70000 26992600 24162600 24371900 25175700

80000 30919700 28979400 27821400 29240167

90000 32581000 34838000 32718600 33379200

100000 36683100 37547000 38884900 37705000

Tree Sort (𝑹 = 𝟒 × 𝟏𝟎𝟓)

Size of Integer

Dataset (n)

Time 1 /ns Time 2 /ns Time 3 /ns Average Time

(t) /ns

10000 5549400 5294000 5268000 5370467

20000 8860400 6638000 6802800 7433733

30000 10220600 10049500 10121800 10130633

40000 12858600 13255600 13372200 13162133

50000 18960000 16757900 16434400 17384100

60000 22185400 20818300 20075100 21026267

70000 24875900 24466000 29302900 26214933

80000 30017000 28094700 28928600 29013433

90000 34962100 30965200 33269600 33065633

100000 40465600 35123900 37169900 37586467

Tree Sort (𝑹 = 𝟔 × 𝟏𝟎𝟓)

Size of Integer

Dataset (n)

Time 1 /ns Time 2 /ns Time 3 /ns Average Time

(t) /ns

Table 2 – Tree Sort Sorting Times for Dataset Range of 2 × 105

Table 3 – Tree Sort Sorting Times for Dataset Range of 4 × 105

19

10000 5091700 5427700 5304200 5274533

20000 8692600 6833000 7104800 7543467

30000 10113000 10327300 9529500 9989933

40000 13037200 13377000 13058100 13157433

50000 17986600 17751900 17198000 17645500

60000 20253300 22187500 21088400 21176400

70000 26975100 24872600 24872600 25573433

80000 28565400 27309300 29578600 28484433

90000 32314900 31227900 32442500 31995100

100000 35997400 37716000 36756000 36823133

Heap Sort (𝑹 = 𝟐 × 𝟏𝟎𝟓)

Size of Integer

Dataset (n)

Time 1 /ns Time 2 /ns Time 3 /ns Average Time

(t) /ns

10000 3368400 3075900 3037200 3160500

20000 4787400 5692900 5325300 5268533

30000 7649300 6399900 6786700 6945300

40000 7996800 9042800 8338200 8459267

50000 11089600 9162200 10031800 10094533

60000 12513000 12316200 13213400 12680867

70000 14394300 14172500 15126500 14564433

80000 16780200 16651600 15549900 16327233

90000 18654000 20902600 19026000 19527533

100000 22983400 23409800 22394000 22929067

Heap Sort (𝑹 = 𝟒 × 𝟏𝟎𝟓)

Size of Integer

Dataset (n)

Time 1 /ns Time 2 /ns Time 3 /ns Average Time

(t) /ns

10000 4263500 3449400 2873100 3528667

20000 4763900 5012500 5104200 4960200

30000 6562400 6802300 7014200 6792967

40000 8907500 9081900 8131600 8707000

Table 4 – Tree Sort Sorting Times for Dataset Range of 6 × 105

Table 5 – Heap Sort Sorting Times for Dataset Range of 2 × 105

20

50000 10824800 10007900 11792000 10874900

60000 13105800 12784400 12922700 12937633

70000 14211300 15064200 14191600 14489033

80000 16805600 15610600 15613800 16010000

90000 17475000 19076200 19892500 18814567

100000 21968100 20979500 22872300 21939967

Heap Sort (𝑹 = 𝟔 × 𝟏𝟎𝟓)

Size of Integer

Dataset (n)

Time 1 /ns Time 2 /ns Time 3 /ns Average Time

(t) /ns

10000 4030400 3227700 3234700 3497600

20000 4942000 5500100 4996900 5146333

30000 7501900 6442900 6890100 6944967

40000 8816200 8823800 9018200 8886067

50000 10778800 10092000 11111700 10660833

60000 11765900 12241500 12317200 12108200

70000 13450000 15232200 13602900 14095033

80000 16182800 17037500 15025700 16082000

90000 18873500 17315100 18102500 18097033

100000 21992000 21936400 21617100 21848500

5.2 Graphs and Curve Fitting

The above average times have been graphed first comparatively between the two algorithms

for each range, and then for each algorithm individually with all three ranges. Since all trends

followed a linearithmic pattern, only some minor transformations were required in order to

curve fit 𝒏 𝐥𝐨𝐠𝟐 𝒏 effectively. The two primary function transformations shown throughout

are vertical dilation by a certain factor and vertical translation upwards by a certain number

due to systematic error.

Table 6 – Heap Sort Sorting Times for Dataset Range of 4 × 105

Table 7 – Heap Sort Sorting Times for Dataset Range of 6 × 105

21

Tree Sort vs Heap Sort (𝑹 = 𝟐 × 𝟏𝟎𝟓)

Tree Sort vs Heap Sort (𝑹 = 𝟒 × 𝟏𝟎𝟓)

Size of Integer Dataset (n)

R
u

n
n

in
g

Ti
m

e
(t

)
/n

s

Red X – Tree Sort

Purple O – Heap

Sort

21𝑛 log2 𝑛 + (1.5 × 106)

12.5𝑛 log2 𝑛 + (1.1 × 106)

Graph 1 – Size of Dataset vs Sorting Time for Dataset Range of 2 × 105

Graph 2 – Size of Dataset vs Sorting Time for Dataset Range of 4 × 105

Size of Integer Dataset (n)

R
u

n
n

in
g

Ti
m

e
(t

)
/n

s

Red X – Tree Sort

Purple O – Heap

Sort

21𝑛 log2 𝑛 + (1.65 × 106)

12𝑛 log2 𝑛 + (1.4 × 106)

22

Tree Sort vs Heap Sort (𝑹 = 𝟔 × 𝟏𝟎𝟓)

Tree Sort All 3 Ranges

Heap Sort All 3 Ranges

Graph 3 – Size of Dataset vs Sorting Time for Dataset Range of 6 × 105

Size of Integer Dataset (n)

R
u

n
n

in
g

Ti
m

e
(t

)
/n

s

Red X – Tree Sort

Purple O – Heap

Sort

20.5𝑛 log2 𝑛 + (1.75 × 106)

12𝑛 log2 𝑛 + (1.3 × 106)

Graph 4 – Size of Dataset vs Tree Sort Sorting Time for All 3 Dataset Ranges

Size of Integer Dataset (n)

R
u

n
n

in
g

Ti
m

e
(t

)
/n

s

Red X – (R = 6 × 105)

Green X – (R = 4 × 105)

Blue X – (R = 2 × 105)

23

Heap Sort All 3 Ranges

6. Analysis

Therefore, in every trend present in the above graphs, it is evident that a linearthimic function

is able to effectively model the data. However, to quantify the goodness of fit we must find the

coefficient of determination, using the Pearson correlation coefficient, which has been

computed and shown in the table below.

Algorithm Type

𝑹 = 𝟐 × 𝟏𝟎𝟓

𝑹 = 𝟒 × 𝟏𝟎𝟓

𝑹 = 𝟔 × 𝟏𝟎𝟓

Tree Sort

0.9918

0.9921

0.9939

Heap Sort

0.9858

0.9924

0.9894

This shows that there is a very strong linearithmic relationship between the input dataset

size and the sorting time. However, due to the inconclusiveness of Pearson correlation for non-

linear relationships, nonparametric Spearman rank-order correlation coefficients 𝝆 must also

be computed.

Table 8 – Coefficients of Determination for Best Fit Curves

Graph 5 – Size of Dataset vs Heap Sort Sorting Time for All 3 Dataset Ranges

Size of Integer Dataset (n)

R
u

n
n

in
g

Ti
m

e
(t

)
/n

s

Red X – (R = 6 × 105)

Green X – (R = 4 × 105)

Blue X – (R = 2 × 105)

24

Algorithm Type

𝑹 = 𝟐 × 𝟏𝟎𝟓

𝑹 = 𝟒 × 𝟏𝟎𝟓

𝑹 = 𝟔 × 𝟏𝟎𝟓

Tree Sort

1.0000

1.0000

1.0000

Heap Sort

1.0000

1.0000

1.0000

This shows that along with goodness of fit, all the XY (size vs time) values can be perfectly

modelled with a monotonically increasing function23, which in this case is linearithmic, hence

proving the efficacy of our model.

Finally, to determine the appropriacy of the linearithmic model, we must also use T-tests in

order to find P-values for the data.

Algorithm Type

𝑹 = 𝟐 × 𝟏𝟎𝟓

𝑹 = 𝟒 × 𝟏𝟎𝟓

𝑹 = 𝟔 × 𝟏𝟎𝟓

Tree Sort

1.23 × 10-9

1.06 × 10-9

3.71 × 10-10

Heap Sort

1.13 × 10-8

9.00 × 10-10

3.50 × 10-9

This shows that the data is highly statistically significant. Hence, assuming that the null

hypothesis is that there is NOT a significant linearithmic relationship between 𝒏 and 𝒕, this low

P-value < 0.05 (𝜶 − significance level) indicates that there is extremely high probability that

the alternate hypothesis is true i.e., the presence of a strong linearithmic relationship, which

our best fit functions clearly support.

Contrarily, the Heap Sort evidently has lower sorting times than the Tree Sort for all dataset

sizes and all three ranges. For example, for 𝑹 = 𝟐 × 𝟏𝟎𝟓, the average time taken to sort 10000

integers by Heap Sort was 3160500 nanoseconds, around 39% lower than the 5206733

nanoseconds sorting time for the Heap Sort. In fact, as the size of the dataset increases, the

average and instantaneous sorting time per integer for Heap Sort changes much slower than the

23 A.W. Bowman, M. C. Jones, and I. Gijbels, "Testing Monotonicity of Regression," Journal of Computational and Graphical
Statistics 7, no. 4 (1998): 489-500, accessed November 4, 2020, https://doi.org/10.2307/1390678.

Table 9 – Spearman Rank-Order Correlation Coefficients for Best Fit Curves

Table 10 – P-Values of Tree and Heap Sort Data

25

Tree Sort making the difference between the performances of both algorithms significantly

more pronounced. To examine this, we can compute the derivatives of the best fit functions –

Tree Sort (𝑹 = 𝟐 × 𝟏𝟎𝟓) −

𝑻(𝒏) = 𝟐𝟏𝒏 𝐥𝐨𝐠𝟐 𝒏 + (𝟏. 𝟓 × 𝟏𝟎𝟔)

⇒ 𝑻′(𝒏) = 𝟐𝟏 (𝐥𝐨𝐠𝟐 𝒏 +
𝟏

𝐥𝐧(𝟐) ∙ 𝒏
)

Heap Sort (𝑹 = 𝟐 × 𝟏𝟎𝟓) −

 𝑯(𝒏) = 𝟏𝟐. 𝟓𝒏 𝐥𝐨𝐠𝟐 𝒏 + (𝟏. 𝟏 × 𝟏𝟎𝟔)

⇒ 𝑯′(𝒏) = 𝟏𝟐. 𝟓 (𝐥𝐨𝐠𝟐 𝒏 +
𝟏

𝐥𝐧(𝟐) ∙ 𝒏
)

Tree Sort vs Heap Sort Derivatives (𝑹 = 𝟐 × 𝟏𝟎𝟓)

For example, at 𝒏 = 10000, Tree sort took 521 nanoseconds per integer on average and Heap

Sort took 316 nanoseconds per integer on average (≈
𝑯(𝟏𝟎𝟎𝟎)

𝟏𝟎𝟎𝟎
). However, at 𝒏 = 100000,

average times of 377 nanoseconds and 229 nanoseconds per integer were taken respectively.

Using the

Chain Rule

Graph 6 – Size of Dataset vs Tree and Heap Sort Instantaneous Sorting Times

Size of Integer Dataset (n)

In
st

an
ta

n
eo

u
s

So
rt

in
g

R
at

e
(r

)
/n

s
p

er
 in

te
ge

r

Red – Tree Sort

Purple – Heap Sort 21 (log2 𝑛 +
1

ln 2 ∙ 𝑛
)

12.5 (log2 𝑛 +
1

ln 2 ∙ 𝑛
)

Equation 3 – Tree Sort

Trend Line Derivative

Equation 4 – Heap Sort

Trend Line Derivative

26

According to Graph 6, at 𝒏 = 10000, Tree sort had an instantaneous sorting rate of 279

nanoseconds per integer, 68% greater than the Heap Sort’s rate of 166 nanoseconds per integer

(𝑯′(𝟏𝟎𝟎𝟎)). However, at 𝒏 = 100000, the instantaneous sorting rates were 349 and 207

nanoseconds per integer respectively. This proves that the Heap Sort is sorting in significantly

lower time and also scaling up at a much lower rate than the Tree Sort as depicted in the graph.

Furthermore, it is also evident that for both Tree Sort and Heap Sort, the sorting time trends for

the three ranges barely vary. Apart from a slightly increases and decreases in sorting times

across ranges, we cannot conclusively say whether 𝒕 is proportionally related to 𝑹. In this case,

a Kruskal-Wallis one-way ANOVA test can be done on the data collected for the three ranges

for both algorithms. Tree Sort had a P-value of 0.9961 and Heap Sort had a P-value of 0.9885.

Hence, we can say that the probability of the null hypothesis being true i.e., there is no

relationship between 𝑹 and 𝒕, is very high.

Finally, some random and systematic error is present in the data. As seen with the graphs for

𝑹 = 𝟐 × 𝟏𝟎𝟓, the y-intercept of the Tree Sort best fit function of 1.5 × 106 is around 36%

greater than the y-intercept of the Heap Sort best fit function of 1.1 × 106. Furthermore, points

such as (60000, 20206300) for Tree Sort and (50000, 10094533) for Heap Sort show significant

deviation from the best fit function. The reasons for these random and systematic errors will

be discussed in Evaluation.

7. Results Discussion & Evaluation

Hence, as conclusive results have been obtained, numerous means can be used to justify the

same. Firstly, it is apparent that the naturally self-balancing nature of the binary heap gives it

an advantage. This is because for a similar number of inserted integers, a max-heap constructs

a tree with the minimum number of levels required (since the comparisons between adjacent

27

nodes are only done after the integers are inserted) while a BST is not concerned with the same

(since the comparisons between existing nodes and a to-be-inserted integers are done before

they are inserted). The same is illustrated below –

As shown, the max heap has the minimum of 3 levels as required by 5 nodes, whereas the BST

has 4 levels due to its unbalanced nature therefore making it take longer to carry out a depth

first traversal. This is also supported by the fact that the worst-case complexity of an

unbalanced Tree Sort is 𝑶(𝒏𝟐)24 (showing that a BST can be constructed as a straight chain:

having as many levels as nodes) while the Heap Sort’s is 𝑶(𝒏𝐥𝐨𝐠𝟐 𝒏).

Another perspective that must be considered is that of Recursion vs Iteration. The Tree Sort is

a purely recursive algorithm with both the insertion and traversal of every node being done

recursively. The Heap Sort, contrarily, does heapification/insertion recursively but conducts

the traversal iteratively. The heapification is also optimized since the algorithm iteratively visits

the roots of sub-trees that need to be heapified after which recursion takes over.

The reason recursion is slower than iteration is that, when considering depth-first traversals as

24 Alexa Ryder, “Tree Sort Algorithm,” OpenGenus IQ: Learn Computer Science (OpenGenus IQ: Learn Computer Science,
March 18, 2018), accessed November 12, 2020, https://iq.opengenus.org/tree-sort/.

Binary Search Tree Max Heap

Figure 19 – Balanced vs Unbalanced Binary Search Tree Example

28

used by the BST, each successive recursive call to the insert() or dfs() (refer Appendix A)

functions gets added as a stack frame to the top of a call stack (a linear data structure that

follows the last in first out principle)25 from which the recursive subroutines take place. This

call stack thus necessitates the allocation of excess overhead time and memory (iteration does

not require this) consequently explaining why the tree sort is more time-intensive.

By the same token, it must also be realized that that the 𝑶(𝟏) space complexity26 of the Heap

Sort is also a massive advantage compared to the 𝑶(𝒏) space complexity of the Tree Sort. The

fact that the Heap Sort can use array indices as node pointers allows it to quickly sort the dataset

within the array itself. Contrarily, integers in the Tree Sort must be assigned to an object along

with two other pointers. Hence not only does a larger dataset require more time and memory

to create more objects, the fact that an integer itself has a 12 byte overhead in an object27 is a

huge memory allocation time-waste for the Tree Sort.

Finally, the minimal systematic error can obviously be attributed to the javac compile time of

the algorithms since at 𝒏 = 𝟎, the runtime is negligible yet the y-intercept of the linearithmic

functions is not 0. Virtual memory stored on the PC could have also contributed to compiler

lag. The random errors could have been caused by algorithm runtime being affected by

constantly changing CPU clock-speeds due to the varying processing consumption.

8. Conclusion

Therefore, with reference to my hypothesis “I hypothesize that the Heap Sort will sort the

dataset in lower time than the Tree Sort. There will be a linearthimic relationship between 𝒏

25 “4.3. What Is a Stack?” 4.3. What Is a Stack? - Problem Solving with Algorithms and Data Structures, accessed November
12, 2020, https://www.runestone.academy/runestone/books/published/pythonds/BasicDS/WhatisaStack.html.
26 Time Complexity and Space Complexity comparison of Sorting Algorithms, Scanftree, accessed November 12, 2020,
https://www.scanftree.com/Data_Structure/time-complexity-and-space-complexity-comparison-of-sorting-algorithms.
27 Java Tips By Vladimir Roubtsov and Vladimir Roubtsov, “Java Tip 130: Do You Know Your Data Size?,” InfoWorld
(JavaWorld, August 16, 2002), accessed November 12, 2020, https://www.infoworld.com/article/2077496/java-tip-130--
do-you-know-your-data-size-.html.

29

and 𝒕”, this experiment was able to comparatively determine the time complexities and hence

the sorting efficiency of both algorithms and provide conclusive evidence for the fact that the

Heap Sort always sorts in lower time than the Tree Sort and that the relationship between size

of the randomized integer dataset (𝒏) and time taken to sort (𝒕) is most closely linearithmic:

proving my hypothesis correct.

9. Further Scope

Therefore, considering that the primary limitation of the BST is that it is unbalanced, the

performance of the BST can be improved by using a self-balancing red-black tree for insertions

in order to avoid skewed trees and consequently worst-case complexities. In addition to this,

adaptive variants of both sorting algorithms (adaptive heap sorts and splay sorts)28 could also

reduce running time by exploiting any partially ordered input data.

Furthermore, the tree sort’s space inefficient recursive logic can be solved using an iterative

variant of the algorithm so that additional time required by the call stack can be avoided.

Contrarily, utilizing a ternary instead of a binary heap could be useful since the height of the

tree could now be decreased to 𝐥𝐨𝐠𝟑 𝒏 from 𝐥𝐨𝐠𝟐 𝒏.29 So, while the comparisons per level

would increase, the number of levels recursed through itself would be lower.

Ultimately, the differences between the running times for datasets of various ranges could have

been made more significant if larger ranges of long data type integers were used. The type of

integer distribution used such as Gaussian or Poisson distributions could also be added as

another complex parameter.

28 Alistair Moffat, Splaysort: Fast, Versatile, Practical, accessed November 12, 2020, https://people.eng.unimelb.edu.au/
ammoffat/abstracts/spe.splay.html.
29 Kosmopo, “set3solutions,” University of Texas at Arlington, accessed November 12, 2020, http://ranger.uta.edu/
~kosmopo/cse5311/homework/set3solution.pdf.

30

Bibliography

Aggarwal, Shivi. “HeapSort.” GeeksforGeeks, Last Modified November 16, 2020. Accessed

August 18, 2020. https://www.geeksforgeeks.org/heap-sort/.

“Asymptotic Analysis: Big-O Notation and More.” Programiz. Accessed July 12, 2020.

https://www.programiz.com/dsa/asymptotic-notations.

“Big-O Notation (Article) | Algorithms.” Khan Academy, Khan Academy. Accessed July 12,

2020. https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-

notation/a/big-o-notation.

“Binary Heaps.” Heaps, Andrew CMU. Accessed August 18, 2020.

http://www.andrew.cmu.edu/course/15-121/lectures/Binary%20Heaps/heaps.html.

Bowman, A. W., M. C. Jones, and I. Gijbels. "Testing Monotonicity of Regression." Journal of

Computational and Graphical Statistics 7, no. 4 (1998): 489-500. Accessed November 4, 2020.

https://doi.org/10.2307/1390678.

“CS 312 Lecture 25: Priority Queues and Binary Heaps.” Lecture 25: Priority Queues and

Binary Heaps. Accessed August 18, 2020. https://www.cs.cornell.edu/courses/cs312/2007sp/

lectures/lec25.html.

“Data Structure - Binary Search Tree.” Tutorialspoint. Accessed July 24, 2020.

https://www.tutorialspoint.com/data_structures_algorithms/binary_search_tree.htm.

“Difference between Comparison (QuickSort) and Non-Comparison (Counting Sort) Based

Sorting Algorithms?” Javarevisited. Accessed July 12, 2020.

https://javarevisited.blogspot.com/2017/02/difference-between-comparison-quicksort-and-

non-comparison-counting-sort-algorithms.html#axzz6nplsEjux.

Javinpaul. “How to Implement Inorder Traversal in a Binary Search Tree?” DEV Community,

DEV Community, August 14, 2019. Accessed July 24, 2020. https://www.dev.to/javinpaul/

how-to-implement-inorder-traversal-in-a-binary-search-tree-1787.

Joshi, Nikhil. “Implementation and Analysis of Merge Sort.” Dotnetlovers, Dotnetlovers,

October 29, 2018. Accessed July 12, 2020. https://www.dotnetlovers.com/article/128/

implementation-and-analysis-of-merge-sort.

Kosmopo. “set3solutions.” University of Texas at Arlington. Accessed November 12, 2020.

http://ranger.uta.edu/~kosmopo/cse5311/homework/set3solution.pdf.

31

Moffat, Alistair. Splaysort: Fast, Versatile, Practical. Accessed November 12, 2020.

https://people.eng.unimelb.edu.au/ammoffat/abstracts/spe.splay.html.

Moore, Karleigh. “Sorting Algorithms.” Brilliant Math & Science Wiki. Accessed July 24,

2020. https://www.brilliant.org/wiki/sorting-algorithms/.

M, Vibin. “Tree Sort.” GeeksforGeeks, April 20, 2020. Accessed August 1, 2020.

https://www.geeksforgeeks.org/tree-sort/.

“OpenDSA Data Structures and Algorithms Modules Collection.” 13.12. Heapsort -

OpenDSA Data Structures and Algorithms Modules Collection. Accessed August 20, 2020.

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/Heapsort.html.

“Properties Class (Java Platform SE 8).” Oracle Java Documentation. Accessed October 24,

2020. https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html.

Roubtsov, Java Tips By Vladimir, and Vladimir Roubtsov. “Java Tip 130: Do You Know

Your Data Size?” InfoWorld, JavaWorld, August 16, 2020. Accessed November 12, 2020.

https://www.infoworld.com/article/2077496/java-tip-130--do-you-know-your-data-size-.html.

Ryder, Alexa. “Tree Sort Algorithm.” OpenGenus IQ: Learn Computer Science, OpenGenus

IQ: Learn Computer Science, March 18, 2018. Accessed November 12, 2020.

https://iq.opengenus.org/tree-sort/.

Sedgewick, Robert, and Kevin Wayne. “Binary Search Trees.” Princeton University, The

Trustees of Princeton University. Accessed July 24, 2020. https://algs4.cs.princeton.edu/

32bst/.

Singh, Navjot. “Why Is Binary Heap Never Unbalanced?” Computer Science Stack

Exchange, May 2, 2019. Accessed August 18, 2020. https://cs.stackexchange.com/

questions/108852/why-is-binary-heap-never-unbalanced.

Time Complexity and Space Complexity comparison of Sorting Algorithms. Scanftree.

Accessed November 12, 2020. https://www.scanftree.com/Data_Structure/time-complexity-

and-space-complexity-comparison-of-sorting-algorithms.

TimTim 1. “Divide and Conquer and Recursion.” Stack Overflow, January 1, 2009. Accessed

July 12, 2020. https://www.stackoverflow.com/questions/2249767/divide-and-conquer-and-

recursion.

“4.3. What Is a Stack?” 4.3. What Is a Stack? - Problem Solving with Algorithms and Data

Structures. Accessed November 12, 2020. https://www.runestone.academy/runestone/books/

published/pythonds/BasicDS/WhatisaStack.html.

32

Software & Online Tools Used –

2011. Desmos Graphing Calculator. San Francisco, California, United States: Desmos Inc.

Accessed November 1, 2020. https://www.desmos.com/.

2001. IntelliJ Idea Community Edition. Prague, Czech Republic: JetBrains s.r.o. Accessed

October 21, 2020. https://www.jetbrains.com/idea/.

Melezinek, J., n.d. Binary Tree Visualizer. CTU FIT Web and Multimedia. Accessed July 24,

2020, and August 4, 2020. http://www.btv.melezinek.cz/binary-search-tree.html.

Pinetools – Online Random Number Generator. Pinetools. Accessed October 23, 2020.

https://www.pinetools.com/random-number-generator.

2011. Prism Free Trial. San Diego, California, United States: GraphPad Software Inc.

Accessed November 2, 2020. https://www.graphpad.com/scientific-software/prism/.

33

Appendices

Appendix A – TreeSort.java30

1. package com.company;

2.

3. public class TreeSort {

4.

5. public static class Node {

6. int key; // Integer value of the node

7. Node left, right; // Pointers to left and right child nodes

8.

9. public Node(int item) {

10. key = item;

11. left = right = null;

12. }

13. }

14.

15. Node root;

16.

17. public TreeSort() {

18. root = null;

19. }

20.

21. public Node insert(Node node, int key) {

22. if (node == null) {

23. node = new Node(key); // Creating a new tree

24. return node;

25. }

26. if (key < node.key)

27. node.left = insert(node.left, key);

28.

29. else if (key > node.key)

30. node.right = insert(node.right, key);

31.

32. return node;

33. }

34.

35. public void dfs(Node node) {

36. if (node != null) {

37. dfs(node.left); // Recursing down the left sub-tree

38. int nodeValue = node.key;

39. dfs(node.right); // Recursing down the right sub-tree

40. }

41. }

42.

43. public void sort(int[] arr) {

44. long startTime = System.nanoTime(); // Stopwatch start

45.

46. for (int j : arr) {

30 Vibin M, “Tree Sort,” GeeksforGeeks, April 20, 2020, accessed August 1, 2020, https://www.geeksforgeeks.org/tree-sort/.

34

47. root = insert(root, j);

48. }

49.

50. dfs(root);

51.

52. long stopTime = System.nanoTime(); // Stopwatch stop

53.

54. System.out.println("\n\nTree Sort Start Time: " +

startTime);

55. System.out.println("\nTree Sort Stop Time: " + stopTime);

56. System.out.println("\nTime Taken To Tree Sort: " +

(stopTime - startTime));

57. }

58. }

Appendix B – HeapSort.java31

1. package com.company;

2.

3. public class HeapSort {

4.

5. public void sort(int[] arr) {

6. int n = arr.length;

7.

8. long startTime = System.nanoTime(); // Stopwatch start

9.

10. for(int i = n / 2 - 1; i >= 0; i--) // Building max heap

11. heapify(arr, n, i);

12.

13. for(int i = n - 1; i > 0; i--) {

14. int temp = arr[0]; // Moving current root to end

15. arr[0] = arr[i];

16. arr[i] = temp;

17.

18. heapify(arr, i, 0); // Heapifying reduced heap

19. }

20. long stopTime = System.nanoTime(); // Stopwatch stop

21.

22. System.out.println("\nHeap Sort Start Time: " + startTime);

23. System.out.println("\nHeap Sort Stop Time: " + stopTime);

24. System.out.println("\nTime Taken To Heap sort: " +

(stopTime - startTime));

25.

26. System.out.println("\nHeap Sorted Array Is: ");

27. printArray(arr);

28. }

29.

30. void heapify(int[] arr, int n, int i) {

31 Shivi Aggarwal, “HeapSort,” GeeksforGeeks, Last Modified November 16, 2020, accessed August 18, 2020,
https://www.geeksforgeeks.org/heap-sort/.

35

31. int largest = i; // Initializing largest as root

32. int l = 2*i + 1; // Left Child = 2*i + 1

33. int r = 2*i + 2; // Right Child = 2*i + 2

34.

35. if(l < n && arr[l] > arr[largest])

36. largest = l;

37.

38. if(r < n && arr[r] > arr[largest])

39. largest = r;

40.

41. if(largest != i) {

42. int swap = arr[i];

43. arr[i] = arr[largest];

44. arr[largest] = swap;

45.

46. heapify(arr, n, largest); // Recursively heapifying

47. }

48. }

49.

50. public void printArray(int[] arr) {

51. for (int j : arr) {

52. System.out.print(j + ", ");

53. }

54. System.out.println();

55. }

56. }

Appendix C – SortLauncher.java

1. package com.company;

2.

3. import java.io.IOException;

4. import java.io.FileInputStream;

5. import java.util.Properties;32

6.

7. public class SortLauncher { // Program to run both sorting algorithms

8.

9. public static int[] convertStringToIntegerArray(String[] string)

{

10. int[] arr = new int[string.length];

11.

12. for(int i = 0; i < string.length; i++)

13. arr[i] = Integer.parseInt(string[i]);

14.

15. return arr;

16. }

17.

18. public static void main(String[] args) throws IOException {

32 “Properties Class (Java Platform SE 8),” Oracle Java Documentation, accessed October 24, 2020, https://docs.oracle.com/
javase/8/docs/api/java/util/Properties.html.

36

19. FileInputStream fis = new

FileInputStream("src/com/company/numbers.properties");

20. Properties prop = new Properties();

21. prop.load(fis); // Loading number.properties file

22.

23. System.out.println(args[0] + " Input Array: " +

prop.getProperty(args[0])); // This argument is the property’s key

24.

25. String[] inputNumber = prop.getProperty(args[0]).split(",

");

26. int[] unsortedArray =

convertStringToIntegerArray(inputNumber);

27.

28. HeapSort heap = new HeapSort();

29. heap.sort(unsortedArray); // Inputting preferred dataset

30.

31. unsortedArray = convertStringToIntegerArray(inputNumber);

32. TreeSort tree = new TreeSort();

33. tree.sort(unsortedArray); // Inputting preferred dataset

34. }

35. }

Appendix D – number.properties (screenshot)

