
Investigating the performance of neural

networks given mislabelled training data

To what extent is the performance of a neural network dependent on

the batch size and number of epochs at varying rates of training data

mislabelling?

Subject: Computer Science

Word Count: 3714

CS EE World
https://cseeworld.wixsite.com/home
May 2022
28/34
A

Submitter info:
Email: andrewp0809 [at] gmail [dot] com

2

Table of Contents

1. Introduction 3

2. Theoretical Background 5

2.1 Feedforward Neural Networks 5

2.2 Training a Neural Network 7

2.3 Batch Sizes 7

2.4 Number of Epochs 8

3. Experimental Methodology 8

3.1 The Dataset 9

3.2 The Structure of the Neural Network 10

3.3 The Activation Function 11

3.4 The Accuracy 12

3.5 The Loss Function 12

3.6 The Experimental Procedure 14

4. Experimental Results 14

4.1 Tabular Data Presentation 14

4.2 Graphical Data Presentation 18

4.3 Data Analysis 19

5. Limitations to Investigation 21

6. Conclusion 22

7. Works Cited 24

8. Appendix 27

8.1 Code for Neural Network 27

3

1. Introduction

The development of technology allowing computers to learn, specifically technology that is

able to learn from current data and apply to new data, can lend an invaluable hand to many

fields once thought to be dominated by manual labour. For instance, it has been shown that

this technology, known as machine learning, is able to accurately diagnose many common

diseases from medical data, providing an invaluable aid to medical professionals and further

automating many data-driven classification problems (Zeng et al. 227).

Supervised learning is a subcategory of machine learning where labelled datasets are used to

train algorithms to classify data or project outcomes, and one such commonly used method

efficient at image recognition and classification is a neural network (IBM Cloud Education,

What is supervised learning?; Schmidhuber 24). As labelled data is fundamental in the

function of a neural network, an ample quantity of quality labelled training data must be

sourced for a neural network to “learn” effectively.

Autonomous vehicles are one such field making use of neural networks to classify objects on

the road, and thus require massive amounts of data to be labelled for the purpose of training.

However, this job is a task often outsourced to cheaper labour, leading to generally lower

quality training data, usually presented as mislabelled data (Elliott). Cleaning such training

data can be an incredibly tedious process, and it may be infeasible to find and correct all

examples of mislabelled training data (Vincent). In the context of autonomous vehicles where

a computer wrongly classifying an object may lead to a fatal accident, a classification

algorithm must make as few errors as possible. Hence, the ability of machine learning models

to remain effective despite mislabelled data is extremely important in the further

implementation of classification algorithms to a wider scope.

4

This essay aims to investigate how two parameters often controlled in the training of a neural

network—the batch size and number of epochs—affect the effectiveness of a neural network

in environments with varying levels of training data mislabelling. Hence, my research

question is: “To what extent is the performance of a neural network dependent on the batch

size and number of epochs at varying rates of training data mislabelling?”. Based on

secondary research, the expected result is that the performance of the neural network would

increase as the batch size decreases, the number of epochs increases, and the rate of training

data mislabelling decreases.

To do so, a theoretical background of a generic feedforward neural network and the related

training process are first provided, before the procedure and results of experiments conducted

to determine the efficacy of several neural network training parameters at varying levels of

training data mislabelling are presented. Specifically, accuracy and loss will be used to

quantify the performance of the neural networks. These results would be analysed in order to

explain any apparent outcomes, and come to a conclusion on the investigation.

5

2. Theoretical Background

2.1 Feedforward Neural Networks

Figure 1: A simple feedforward neural network (Kerimbaev)

Neural networks are computing systems loosely based on the biological neural networks that

constitute animal brains. Neural networks consist of nodes (also known as artificial neurons

or perceptrons), which have a bias, and store a specific normalised value between 0 and 1

(IBM, What Are Neural Networks?). In a feedforward neural network, these nodes form two

or more layers, where all the nodes in each layer are connected to all the nodes in the next

layer, with each connection having its own weight. The data in each layer propagates

forwards, with each node in the next layer being calculated through a series of matrix

operations on the previous layer (IBM, What Are Neural Networks?). Through the

feedforward process, complicated logical “decisions” can arise from these simple

calculations, for example in how two nodes can act as logic gates. In the rest of the essay, it

can be presumed that all neural networks mentioned are feedforward neural networks.

6

Equation 1: The forward propagation matrix operation

The above equation represents the matrix operation performed on each layer in order to

calculate the activation of the next layer. In the equation, a1 to aj represent the activations of

the first neuron all the way to the jth neuron of the specific layer k. The weights of a

connection between the jth neuron in a specific layer to the ith neuron in the next layer is

represented by a wi,j, and the bias of a neuron ai in the next layer is given as bi. For example,

to calculate the new value of a node ai, the nodes in the previous layer from a1 to aj are

multiplied by their respective weights from wi,1 to wi,j. These values are then added together

along with the bias bi, to get the new weighted sum. The weighted sum is passed through

some form of non-linear activation function σ, the reason for which will be explained below,

thus giving the new normalised value for the node aj in the next layer. This is performed for

every node in the next layer, and for every layer following that, to get the final activations of

the nodes in the output layer.

The output layer of a neural network is made up of a number of nodes equaling the number of

possible categories the neural network is intended to classify (IBM, What Are Neural

Networks?). Theoretically, a perfect neural network should take an input and output only a

large positive number on the node corresponding to the desired output and a large negative

7

number on all other nodes (Riedmiller). However, in an untrained or insufficiently trained

neural network, a random set of nodes may fire weakly, or the wrong node may fire strongly,

which would result in a misclassification. Thus, the biases and weights of all the nodes and

connections in a neural network need to be tweaked, to reduce the likelihood of such events

occurring (Riedmiller). This is known as the training of a neural network.

2.2 Training a Neural Network

The process of training a multi-layered neural network generally consists of two stages. The

first stage is to simply calculate the current output of the neural network for a given training

sample, and does not seek to change anything. In the next stage, the output is compared to the

desired response of the neural network, and the deviations between the desired response and

those produced by the neural network for each output layer node are calculated (Riedmiller).

Following this, the weight of the connections between the output layer and the previous layer,

as well as the biases of the nodes in the previous layer, are updated depending on the

magnitude and direction of the deviations, with the aim of reducing the total error of the

output layer (Riedmiller). This process is then repeated for each previous layer consecutively.

This step, as seen from how the process steps backwards through the neural network, is called

backward propagation.

2.3 Batch Sizes

The backwards propagation step in the training of a neural network is a resource intensive

step due to the number and complexity of calculations needed to be performed. Hence, the

concept of a batch is often implemented in the training of neural networks, by performing the

backpropagation step on the cumulative desired change of the output nodes across numerous

data samples (Sharma). This cuts down on the number of times the computationally

8

expensive backpropagation calculation needs to be performed, speeding up the training of the

neural network.

2.4 Number of Epochs

In order to achieve the highest accuracy possible off of a limited dataset, a neural network

may be configured to train from a dataset multiple times, with each pass through the dataset

referred to as an epoch (Sharma). With each epoch, the weights and biases of the neural

network should be updated to more accurately fit the training data. Despite this, a greater

number of epochs may not have a fully positive impact on the ability of the neural network to

classify generalised testing data, due to issues such as overfitting—a process where the neural

network is trained to recognise features too specific to its training data, thus becoming less

applicable to more generalised testing data (IBM, What Is Overfitting?).

3. Experimental Methodology

To answer the research question, a neural network was trained on a public dataset at differing

combinations of batch size, number of epochs, and rates of mislabelling in the training

portion of the dataset. The accuracy and loss of the neural network in each case were

recorded. Due to the random nature of the error in the labels of the training data and the

setting of the original weights and biases, the performance of the neural network was not

consistent and prone to random fluctuations. Hence, each experimental combination was

performed 3 times and averaged to obtain more consistent results.

The independent variables refer to what is being changed to produce a result in the

experiment, and are the batch size, number of epochs, and rates of mislabelling in the

training portion of the dataset. The result produced by the altering of the independent

9

variables would lead to a change in the dependent variables, which are the accuracy and loss

of the neural network.

The specific details of each component of this experiment, as well as the procedure by which

this experiment was carried out, are described in this section. The code used in this

experiment is listed in the appendix.

3.1 The Dataset

The MNIST (Modified National Institute of Standards and Technology) dataset is a public

dataset of thousands of 28x28 labelled images of handwritten digits ranging from 0-9 by

LeCun et al. The 60,000 training images and 10,000 testing images were collected from a mix

of Census Bureau employees and high school students.

Figure 2: A few samples from the MNIST test dataset (Steppan)

The MNIST dataset is a dataset often used in the testing of neural networks due to the small

image sizes and number of classifications; each image is composed of only 784 pixels values

10

between 0 and 255, and has 10 possible categories. When compared to other datasets, for

example those with numerous colour channels, the MNIST dataset is significantly simpler. In

the case of this experiment, this simple dataset enables the performance of the neural network

to be tested without long training times, or the complexity of dealing with multiple colour

channels and many more first layer nodes.

In order to achieve the aims of this experiment, derivations of the MNIST dataset at varying

rates of mislabelling in the training data portion were produced. They were generated at run

time of the program, by altering a specified number of random training data labels to another

random classification before training the neural network.

3.2 The Structure of the Neural Network

The neural network was constructed with a singular hidden layer, along with the input and

output layers. This structure was chosen to keep the neural network simple, while still

providing enough complexity for the neural network to potentially fit the training data well.

The input layer had 784 nodes, corresponding to every pixel in each 28x28 image of the

MNIST dataset, and the output had 10 nodes, corresponding to the 10 possible classifications

(from 0 to 9) of each image. The hidden layer contained 16 nodes, an arbitrary number

chosen only because it was small enough to not complicate the neural network. The structure

of the neural network was rather basic due to the minimal requirements of this experiment. In

addition, this simpler neural network made analysing the effect that mislabelled training data

had on the performance of the neural network easier.

11

3.3 The Activation Function

The activation function in a neural network is a function that normalises the weights of the

nodes in the neural network. Without it, the neural network would remain a linear function of

its inputs, taking away the network’s ability to “learn” or perform complex functions

(Brownlee). The activation function chosen for the hidden layer of the neural network is the

rectified linear activation function, implemented in nodes known as rectified linear activation

units (ReLU).

Figure 3: Line Plot of Rectified Linear Activation for Negative and Positive Inputs

(Brownlee)

The rectified linear activation function can be described by the simple equation, f(x) = max(0,

x), meaning the output is the same as the input if the input is positive, otherwise the output is

12

0. As the calculations in a ReLU are computationally simple, the neural network can be

trained quicker; Many other common activation functions, such as the logistic (sigmoid) and

hyperbolic (tanh) functions, require significantly more computation to calculate their outputs

(Sycorax). In addition, due to the nature of these functions having outputs within smaller

ranges, they suffer from the vanishing gradient problem. This makes the backwards

propagation step much slower, especially in neural networks with many layers (Sycorax).

This is not the case for the rectified linear activation function, and is another reason why it

was chosen for this experiment.

3.4 The Accuracy

The accuracy recorded is the proportion of testing images the neural network correctly

classified after being trained. Considering that the role of a neural network is simply to

categorise data, accuracy is the most relevant metric in determining the performance of the

neural network, and can be used to compare the effect of different parameters on the real

world applicability of the neural network.

3.5 The Loss Function

The loss function is a function used to map the outputs of a neural network to some sort of

“cost” associated with the prediction, known as the loss. Generally, the lower the loss, the

better the prediction made by the neural network (Koech). The sparse categorical

cross-entropy loss function, used in this experiment, is one example of a cross-entropy loss

function, defined by the equation below (where LCE refers to the cross-entropy loss):

13

Equation 2: Mathematical definition of Cross-Entropy. Note the log is calculated to base 2.

(Koech)

In the context of this experiment, the value of pi is calculated by passing the raw values of the

output layer nodes through the softmax function (a function that converts the values of nodes

in a layer to probabilities) (Koech). However, considering that each data sample in the

MNIST dataset has only one label, all but one of the terms in equation 2 would equate to 0,

and a simplified equation for the loss specific to this experiment can be constructed, as shown

below:

, where p is the softmax probability for the correct class.𝐿𝑜𝑠𝑠 = − 𝑙𝑜𝑔
2

(𝑝)

Equation 3: Simplified Loss function used in this experiment.

From this equation, the resulting loss is clearly independent of the accuracy in this

experiment, and only describes how sure the neural network is of the correct classification.

Hence, it was chosen as one of the metrics in determining the performance of the neural

network as it may provide more insight into how the neural network is performing, even

when the accuracy remains constant.

14

3.6 The Experimental Procedure

The neural network was trained three times at each combination of the parameters listed

below. After each time being trained, the neural network was evaluated and the accuracy and

loss were recorded. In total, this means the neural network was trained at 27 combinations of

parameters 3 times, for a total of 81 times.

Training Data Mislabelling Rate: 0%, 25%, 50%

Batch Size: 16, 32, 64

Number of Epochs: 1, 5, 10

4. Experimental Results

4.1 Tabular Data Presentation

The tables below show the Accuracy and Loss for all 3 trials, and the average of all 3 trials,

for every combination of number of epochs and batch size. Each table shows the results at

different training data mislabelling rates.

15

0% Training

Data

mislabelling

Accuracy (out of 1) Loss

Epoch

Count

Batch

Size
Trial 1 Trial 2 Trial 3 Average Trial 1 Trial 2 Trial 3 Average

1

16 0.9614 0.9625 0.9649 0.9629 0.123 0.1224 0.1192 0.1215

32 0.9614 0.9587 0.9567 0.9589 0.1354 0.1396 0.1416 0.1389

64 0.9506 0.9511 0.9552 0.9523 0.172 0.1655 0.1554 0.1643

5

16 0.9773 0.9758 0.9781 0.9771 0.0779 0.0758 0.0745 0.0761

32 0.9772 0.9779 0.975 0.9767 0.0756 0.0759 0.079 0.0768

64 0.9763 0.9744 0.9742 0.9750 0.0813 0.0871 0.0826 0.0837

10

16 0.9775 0.9748 0.9779 0.9767 0.0909 0.1054 0.1003 0.0988

32 0.9776 0.9787 0.977 0.9778 0.0845 0.0811 0.0843 0.0833

64 0.9777 0.9779 0.9775 0.9777 0.0766 0.0763 0.0778 0.0769

Table 1: 0% Training Data mislabelling Rate Results

16

25% Training

Data

mislabelling

Accuracy (out of 1) Loss

Epoch

Count

Batch

Size
Trial 1 Trial 2 Trial 3 Average Trial 1 Trial 2 Trial 3 Average

1

16 0.9465 0.9461 0.9508 0.9478 0.5449 0.4654 0.4735 0.4946

32 0.9478 0.9476 0.948 0.9478 0.5251 0.5105 0.5242 0.5199

64 0.9424 0.945 0.9488 0.9454 0.5303 0.4984 0.4973 0.5086

5

16 0.9615 0.9651 0.9664 0.9643 0.416 0.4343 0.4311 0.4271

32 0.9683 0.9643 0.9609 0.9645 0.4626 0.4152 0.4405 0.4395

64 0.9685 0.9608 0.9673 0.9655 0.4179 0.4768 0.3955 0.4301

10

16 0.9581 0.9576 0.9571 0.9576 0.4084 0.4516 0.4046 0.4215

32 0.9617 0.9612 0.9584 0.9604 0.4014 0.3914 0.4128 0.4019

64 0.9651 0.9618 0.9613 0.9627 0.4355 0.4293 0.4415 0.4354

Table 2: 25% Training Data mislabelling Rate Results

17

50% Training

Data

mislabelling

Accuracy (out of 1) Loss

Epoch

Count

Batch

Size
Trial 1 Trial 2 Trial 3 Average Trial 1 Trial 2 Trial 3 Average

1

16 0.9341 0.921 0.926 0.927 0.9053 0.9777 0.9553 0.9461

32 0.9166 0.922 0.9347 0.9244 1.017 0.9593 0.9094 0.9619

64 0.9284 0.9237 0.9311 0.9277 1.0124 0.9423 1.016 0.9902

5

16 0.9449 0.943 0.9395 0.9425 0.9122 0.905 0.8871 0.9014

32 0.9491 0.9372 0.9458 0.944 0.838 0.9069 0.8716 0.8722

64 0.9468 0.947 0.9537 0.9492 0.8405 0.8727 0.8516 0.8549

10

16 0.9342 0.9275 0.9321 0.9313 0.8209 0.8606 0.8674 0.8496

32 0.9366 0.925 0.9328 0.9315 0.8223 0.8991 0.8682 0.8632

64 0.9394 0.9403 0.9382 0.9393 0.8731 0.8028 0.8143 0.8301

Table 3: 50% Training Data mislabelling Rate Results

18

4.2 Graphical Data Presentation

The experimental data below is presented graphically so as to visually illustrate the trends in

the data, and more easily come to conclusions on how the independent variables affect the

dependent variables of this experiment.

In each bar chart, 9 bars representing the 9 possible combinations of batch size and epoch

size are presented, with the height of the bar chart either signifying the accuracy or the loss of

the neural network with each combination of parameters. The 9 bars are separated into 3

clusters with different numbers of epochs, as labelled underneath the bars. In addition, the 3

bars in each cluster correspond to different batch sizes, as detailed by the legend above the

bar chart. The data in the graphs are the averaged values presented in the tables above.

Figure 4 (Left): Accuracy of neural network given 0% mislabelled training data

Figure 5 (Right): Loss of neural network given 0% mislabelled training data

19

Figure 6 (Left): Accuracy of neural network given 25% mislabelled training data

Figure 7 (Right): Loss of neural network given 25% mislabelled training data

Figure 8 (Left): Accuracy of neural network given 50% mislabelled training data

Figure 9 (Right): Loss of neural network given 50% mislabelled training data

4.3 Data Analysis

Firstly, the results clearly indicate that the mislabelling rate of the training data provided to

the neural network has the largest impact on the accuracy and loss of the neural network. The

neural network always performs better at lower rates of training data mislabelling, meaning

20

the accuracy is always higher and the loss is always lower in the neural network trained with

lower rates of data mislabelling when all other parameters are kept constant.

As explained in the theoretical background, training a neural network for a greater number of

epochs generally increases accuracy and decreases loss. However, not only would each pass

through the training data bring diminishing returns to the accuracy and loss of the neural

network, training the neural network for too many epochs may cause the neural network to

overfit to the training data and become less effective at classifying unseen testing data.

Although this is present when the neural network is trained on 0% mislabelled training data,

it is most clearly demonstrated when the neural network is trained on 25% and 50%

mislabelled training data. This is because the neural network memorises the label noise

present in the training data, thus fitting the noisy training data but becoming unable to

classify the unseen cleaner testing data as effectively. Basically, the neural network is more

prone to overfitting when trained with training data containing information irrelevant or

inapplicable to the general testing data, such as in mislabelled training data, as it is able to

learn the noise present in the training data but missing in the testing data (Richter).

Generally, as the accuracy of a neural network decreases, it can be expected that the loss

would increase. Although this is supported on a rough scale by the data, the above statement

is simply a generalisation rather than an actual rule. Thus, counterintuitively, the loss of the

neural network continues to decrease as the neural network overfits to the training data. This

is likely due to the neural network becoming more confident in the correct answer even while

occasionally being even more confident in other answers, meaning that although the neural

network is wrongly classifying the testing data in these instances, it still seems to be

correlating the testing data with the correct answer.

21

When the training data mislabelling rates and number of epochs are low during the training of

a neural network, increasing the batch size appears to decrease the accuracy and increase the

loss of the neural network. However, this relationship appears to swap as the training data

mislabelling rate and number of epochs increases. For example, when the neural network was

trained for 1 epoch and with training data mislabelled at 0%, the accuracy fell and loss rose as

the batch size increased. However, when the neural network was trained for 10 epochs and

with training data mislabelled at 50%, the accuracy fell and loss rose as the batch size

decreased instead.

For a neural network trained with training data that is 0% mislabelled, having smaller batch

sizes would allow the neural network to train more thoroughly on each piece of data, and thus

would be more accurate and have less loss. However, under different parameters where the

neural network is prone to being overfit to the training data, having larger batch sizes can

actually benefit the neural network. When the batch sizes are larger, the incorrect loss of

wrongly labelled testing data would be averaged out by the loss of correctly labelled data

samples, and thus the impact that each wrongly labelled testing data would have on the

backpropagation step would be minimised. Thus, having larger batch sizes can actually allow

the neural network to be more resistant to mislabelled training data.

5. Limitations to Investigation

The limitations to my investigation include the following:

1. Due to limited time and computational resources, only 3 values for each independent

variable could be included in my experiment. As only 3 data points is not enough to

reveal a full relationship between these variables, this limited the analysis that could

22

be made on the impact that the 3 independent variables had on the 2 dependent

variables.

2. A component with a likely bigger impact on the performance of a neural network at

varying levels of training data misclassification is the structure of the neural network

itself, and it would be interesting to investigate how the structure of a neural network

could be reorganised to produce the best results in a situation where training data

available is mislabelled at a high rate. This would reveal more about neural networks

that can be designed to combat mislabelled training data and would benefit research

into implementing neural networks in environments where available data is

mislabelled at a high rate.

6. Conclusion

Through the experimental procedure in this paper, the performance of neural networks trained

with training data at varying levels of mislabelling were analysed. Specifically, the effect that

the batch size and number of epochs had on the effectiveness of neural networks under such

conditions were ascertained. Overall, the performance of a neural network is shown to be

highly dependent on the batch size and number of epochs at all rates of training data

mislabelling. The results of the experimental procedure were used to back explanations to this

statement.

The experimental results show that the effect both the epoch count and batch size have in the

training of a neural network depends on the mislabelling rate of the training data, and that

these two parameters can be adjusted according to the prominence of mislabelled data in a set

of training data so as to ensure the neural network functions as effectively as realistically

attainable given the structure of the neural network.

23

Firstly, it was shown that neural networks trained with data at higher rates of mislabelling are

more prone to overfitting. Thus, the issue of overfitting should be considered more carefully

when available data for training a neural network is mislabelled at a high rate, such as by

reducing the number of epochs a neural network is trained for.

In addition, the results show that the effect batch sizes have on the performance of a neural

network depends on the mislabelling rate of the training data. For training data labelled

accurately, decreasing the batch size would likely bring a positive benefit to a neural

network’s performance. However, for training data mislabelled at higher rates, decreasing the

batch size would likely decrease the performance of the neural network instead.

Hopefully the insight from this paper can help guide the design choices of neural networks

intended to be used when available data has a high rate of mislabelling, enabling neural

networks to be implemented into a wider array of fields.

24

7. Works Cited

Brownlee, Jason. "A Gentle Introduction to the Rectified Linear Unit (ReLU)."

Machine Learning Mastery, 20 Aug. 2020,

machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-n

eural-networks/.

Elliott, Vittoria. "Training Self-driving Cars for $1 an Hour." Rest of World, 3 Aug.

2021, restofworld.org/2021/self-driving-cars-outsourcing/.

IBM Cloud Education. "What Are Neural Networks?" IBM - United States, 17 Aug.

2020, www.ibm.com/cloud/learn/neural-networks.

---. "What is Overfitting?" IBM - United States, 3 Mar. 2021,

www.ibm.com/cloud/learn/overfitting.

---. "What is Supervised Learning?" IBM - United States, 19 Aug. 2020,

www.ibm.com/cloud/learn/supervised-learning.

Kerimbaev, Bolot. "Neural Network Diagram." Figure.

https://bignerdranch.com/blog/neural-networks-in-ios-10-and-macos/, 28 June 2016,

4bj5ozxzwtu3i1od01ulxmj1-wpengine.netdna-ssl.com/assets/img/blog/2016/06/neur

al_network_diagram.png.

Koech, Kiprono E. "Cross-Entropy Loss Function." Medium, 3 Oct. 2020,

towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e.

LeCun, Yann, et al. "MNIST Handwritten Digit Database." Yann LeCun's Home

Page, yann.lecun.com/exdb/mnist/.

25

Richter, Till. "Data Noise and Label Noise in Machine Learning." Medium, 1 July

2021,

towardsdatascience.com/data-noise-and-label-noise-in-machine-learning-98c8a3c832

2e.

Riedmiller, Martin. "Advanced supervised learning in multi-layer perceptrons —

From backpropagation to adaptive learning algorithms." Computer Standards &

Interfaces, vol. 16, no. 3, 1994, pp. 265-278.

Schmidhuber, Jürgen. "Deep learning in neural networks: An overview." Neural

Networks, vol. 61, 2015, pp. 85-117.

Sharma, Sagar. "Epoch Vs Batch Size Vs Iterations." Medium, 23 Sept. 2017,

towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9.

Steppan, Josef. "MnistExamples." Graph. Wikipedia, 14 Dec. 2017,

commons.wikimedia.org/wiki/File:MnistExamples.png.

Sycorax. "Why Do We Use ReLU in Neural Networks and How Do We Use It?"

Stack Exchange, 2 Aug. 2016,

stats.stackexchange.com/questions/226923/why-do-we-use-relu-in-neural-networks-a

nd-how-do-we-use-it. Accessed 5 Nov. 2021.

Tensorflow. "Basic Classification: Classify Images of Clothing." TensorFlow,

www.tensorflow.org/tutorials/keras/classification. Accessed 7 Nov. 2021.

Vincent, James. "The Biggest Headache in Machine Learning? Cleaning Dirty Data

off the Spreadsheets." The Verge, 1 Nov. 2017,

26

www.theverge.com/2017/11/1/16589246/machine-learning-data-science-dirty-data-k

aggle-survey-2017.

Zeng, Min, et al. "Effective prediction of three common diseases by combining

SMOTE with Tomek links technique for imbalanced medical data." 2016 IEEE

International Conference of Online Analysis and Computing Science (ICOACS),

2016.

27

8. Appendix

8.1 Code for Neural Network

The following code was used to generate, train, and evaluate the neural network in my

experiment, as well as randomise a portion of the MNIST dataset training labels. It makes use

of the tensorflow library, a free and open-source software library for machine learning and

artificial intelligence. This particular code was adapted from code available on the tensor

flow website (Tensorflow).

#imports the required modules

import tensorflow as tf

import random

#imports the dataset and normalises pixel values to between 0 and 1.

mnist = tf.keras.datasets.mnist

(training_images, training_labels), (testing_images, testing_labels) =

mnist.load_data()

training_images, testing_images = training_images / 255.0, testing_images /

255.0

#the independent variables changed throughout the experiment

epochs = 5

batch_size = 32

misclassified = 0.5

#randomly alters some of the training labels according to the misclassified

rate

mislabelled_labels = training_labels.copy()

28

randomlist = random.sample(range(60000), int(misclassified * 60000))

for x in randomlist:

new_label = random.randint(0, 9)

while new_label == mislabelled_labels[x]:

new_label = random.randint(0, 9)

mislabelled_labels[x] = new_label

#creates the neural network structure

model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(input_shape=(28, 28)),

tf.keras.layers.Dense(128, activation='relu'),

tf.keras.layers.Dense(10)

])

#initialises the training parameters the neural network will use

model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

metrics=['accuracy'])

#trains the neural network on the training data

model.fit(training_images, mislabelled_labels, epochs=epochs,

batch_size=batch_size, verbose=0)

#evaluates the accuracy and loss of the neural network

loss, accuracy = model.evaluate(testing_images, testing_labels, verbose=0)

#outputs the values measured from the experiment

print("Accuracy: " + str(accuracy))

print("Loss: " + str(loss))

