

COMPARISON OF
PERFORMANCE OF ARIMA AND

LSTM MODELS FOR STOCK
PRICE PREDICTION

Which model, ARIMA or LSTM, demonstrates superior accuracy in predicting
stock prices based on empirical evidence?

Computer Science

Word Count: 3,867

Anderson Addo
CS EE World
https://cseeworld.wixsite.com/home
May 2024
30/34
A

Submitter Info:
megatimate [at] gmail [dot] com
University of Toronto CS 2024-2028

Page | 1

Table of Contents

TABLE OF CONTENTS ... 1

1 INTRODUCTION ... 4

2 METHODOLOGY ... 5

3 THEORETICAL BACKGROUND .. 6

3.1 TIME SERIES ... 6

3.2 TIME SERIES ANALYSIS AND FORECASTING ... 7

3.3 STATIONARITY ... 7

3.4 AUTO REGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODEL .. 7

3.4.1 ARIMA Forecasting Equation ... 8

3.4.2 ARIMA Order ... 9

3.4.3 Forecasting with ARIMA Models ... 9

3.4.4 Employing Search Methods ... 11

3.4.5 Software Libraries .. 11

3.5 LONG SHORT-TERM MEMORY (LSTM) .. 12

3.5.1 RNN .. 12

3.5.2 LSTM Neural Networks .. 13

3.5.3 Forecasting with LSTM Models ... 18

4 EXPERIMENTAL METHODOLOGY ... 20

4.1 STEP 1: DATA COLLECTION ... 20

4.2 STEP 2: DATA VISUALIZATION AND PREPROCESSING ... 21

4.2.1 Data Cleaning ... 21

4.2.2 Data Visualization .. 21

4.2.3 Pre-Processing of Data ... 26

Page | 2

4.2.4 Splitting the Data into Training and Testing Sets ... 26

4.3 STEP 3: MODEL IMPLEMENTATION ... 26

4.3.1 Finding Optimal Parameters for ARIMA .. 27

4.3.2 Estimation of ARIMA Model Parameters Using pmdarima Library ... 27

4.3.3 Hyperparameters Tuning for LSTM .. 27

4.4 STEP 4: PREDICTION .. 28

4.5 STEP 5: EVALUATION OF MODELS ... 28

5 RESULTS AND ANALYSIS .. 29

5.1 PERFORMANCE METRICS ON A PER-STOCK BASIS .. 29

5.1.1 Interpretation of Performance Metrics on a Per Stock basis .. 30

5.2 PERFORMANCE ON AGGREGATE BASIS .. 30

5.2.1 Interpretation of Aggregate Metrics ... 31

5.3 VISUALIZATION .. 32

5.3.1 Interpretation of Plots .. 33

5.3.2 Plots of ‘Actual versus Predicted Prices (using ARIMA and LSTM)’ of Other Stocks 34

6 CONCLUSION .. 43

7 LIMITATIONS AND FUTURE WORK ... 44

8 BIBLIOGRAPHY ... 46

9 APPENDIX A: PERFORMANCE EVALUATION OF ARIMA AND LSTM IN STOCK PRICE PREDICTION 50

9.1 STEP 1: IMPORTING THE REQUIRED LIBRARIES AND SETTING THE CONFIGURATION PARAMETERS. 51

9.2 STEP 2: IMPORTING THE DATASET FROM YAHOO FINANCE USING YFINANCE LIBRARY AND SAVING IT TO A CSV FILE

FOR LATER USE. ... 53

9.3 STEP 3: PERFORM ROLLING FORECAST ARIMA MODELING ON THE DATASET FOR EACH STOCK. 55

9.4 STEP 4: PERFORM ROLLING FORECAST USING LSTM AND SAVE THE PREDICTIONS AND PERFORMANCE METRICS TO

CSV FILES FOR FURTHER ANALYSIS. .. 62

Page | 3

9.5 STEP 5: COMPARE THE PERFORMANCE OF ARIMA AND LSTM MODELS USING THE AVERAGE RMSE, MAE, AND

MAPE METRICS. ... 68

9.6 CODE ACKNOWLEDGEMENTS .. 70

Page | 4

Comparison of Performance of ARIMA and LSTM Models for

Stock Price Prediction

1 Introduction

The prospect of making significant returns makes stock markets attractive to traders, investors

and professionals alike. Investing in the stock market is risky owing to many factors ranging

from macroeconomic to microeconomic factors, government policies, individual company's

financial performance, conflicts, and natural disasters.

Therefore, predicting stock prices is of significant interest to market participants as it can assist

in making predictable returns, deciding investment strategies, asset allocation and portfolio

management.

Over the years, experts have developed numerous mathematical models to identify underlying

patterns from market data and forecast stock prices. Auto-Regressive Integrated Moving Average

(ARIMA), a popular statistical model for forecasting a time series that can be made stationary.1

1 Fuqua School of Business. Introduction to ARIMA Models. https://people.duke.edu/~rnau/411arim.htm. Accessed

10 Dec 2023.

Page | 5

The recent advances in artificial intelligence brought to prominence Recurrent Neural Networks

(RNNs) such as Long Short-Term Memory (LSTM), which employ deep learning to identify

complex underlying data patterns and make predictions.2

However, despite their popularity, limited research is available which establishes the superiority

of ARIMA or LSTM in making accurate predictions of stock prices. Findings of Kobiela et al.

suggest that ARIMA is more accurate than LSTM, while findings of others, like Ma and Siami

Namini et al., suggest the opposite.3 4

This extended essay aims to compare the accuracy of both models in predicting stock prices to

determine which model offers superior performance based on empirical evidence by answering

the research question:

“Which model, ARIMA or LSTM, demonstrates superior accuracy in predicting stock prices

based on empirical evidence?”

2 Methodology

The study involved the following steps:

2 Kobiela, Dariusz, et al. “ARIMA Vs LSTM on NASDAQ Stock Exchange Data.” Procedia Computer Science, vol.

207, Jan. 2022, pp. 3836–45. https://doi.org/10.1016/j.procs.2022.09.445. Accessed 10 Dec 2023.

3 Kobiela, Dariusz, et al. “ARIMA Vs LSTM on NASDAQ Stock Exchange Data.” Procedia Computer Science, vol.

207, Jan. 2022, pp. 3836–45. https://doi.org/10.1016/j.procs.2022.09.445. Accessed 10 Dec 2023.

4 S. Siami-Namini, N. Tavakoli and A. Siami Namin, "A Comparison of ARIMA and LSTM in Forecasting Time

Series," 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL,

USA, 2018, pp. 1394-1401, doi: 10.1109/ICMLA.2018.00227. PDF available at https://sci-

hub.se/10.1109/ICMLA.2018.00227. Accessed 10 Dec 2023.

Page | 6

• Obtaining historical data for selected stocks and preprocessing it for use with

ARIMA/LSTM models.

• Splitting the pre-processed data into training/testing sets.

• Estimating optimal ARIMA and LSTM models and fitting them to the training data.

• Making predictions for the test set.

• Evaluating the performance of both models using statistical metrics such as Root Mean

Square Error (RMSE).

• Analyzing both models using the performance metrics to draw conclusions.

A more thorough discussion on Experimental methodology followed is given in Section 4.

3 Theoretical Background

A theoretical background of LSTM and ARIMA relevant to answering the research question is

discussed here.

3.1 Time Series

A time series is an ordered sequence of data points indexed by time, such as stock's daily closing

prices, product's monthly sales, and annual rainfall in a region. 5

5 Hayes, Adam. “What Is a Time Series and How Is It Used to Analyze Data?” Investopedia, 13 June 2022,

www.investopedia.com/terms/t/timeseries.asp.

Page | 7

3.2 Time Series Analysis and Forecasting

Time Series Analysis involves analyses to gain meaningful insights from time series data.6

Time Series Forecasting is the process of predicting future values of a time series based on

historical data.7

3.3 Stationarity

Time series data is often non-stationary, meaning that statistical properties like the mean and

variance change over time due to inherent trends, seasonality, cyclical fluctuations, and random

noise. Modelling and predicting non-stationary time series data is challenging needing

specialized techniques.8

3.4 Auto Regressive Integrated Moving Average (ARIMA) Model

ARIMA is a statistical model for forecasting time series data which can be made stationary by

employing techniques such as differencing or nonlinear transformations. A stationary time series

has no trend, constant amplitude, and consistent short-term random time patterns.9

6 Gupta, Sakshi. “What Is Time Series Forecasting? Overview, Models &Amp; Methods.” Springboard Blog, 28

Sept. 2023, https://www.springboard.com/blog/data-science/time-series-forecasting/. Accessed 10 Dec 2023.

7 Gupta, Sakshi. “What Is Time Series Forecasting? Overview, Models &Amp; Methods.” Springboard Blog, 28

Sept. 2023, https://www.springboard.com/blog/data-science/time-series-forecasting/. Accessed 10 Dec 2023.

8 Gupta, Sakshi. “What Is Time Series Forecasting? Overview, Models &Amp; Methods.” Springboard Blog, 28

Sept. 2023, https://www.springboard.com/blog/data-science/time-series-forecasting/. Accessed 10 Dec 2023.

9 Fuqua School of Business. Introduction to ARIMA Models. https://people.duke.edu/~rnau/411arim.htm. Accessed

10 Dec 2023.

Page | 8

3.4.1 ARIMA Forecasting Equation

A forecasted value of a stationary time series can be expressed as a weighted sum of previous

observations (referred as the lagged observations or the Autoregressive terms) and/or a weighted

sum of previous forecast errors (referred as the lagged errors or the Moving Average terms) and

a constant.10

The ARIMA forecasting equation can be expressed as:11

𝑦̂𝑡 = 𝜇 + 𝜙1𝑦𝑡−1 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 − 𝜃1𝑒𝑡−1 −⋯− 𝜃𝑞𝑒𝑡−𝑞

Where,

• 𝑦̂𝑡 is the predicted value at time 𝑡

• 𝜇 is the constant term representing the mean of the series.

• 𝑦𝑡−1, … , 𝑦𝑡−𝑝 are the past values of the series at times 𝑡 − 1,… , 𝑡 − 𝑝, also called lags of

the series or the AR terms.

• 𝑒𝑡−1, … , 𝑒𝑡−𝑞 are the past forecast errors at times 𝑡 − 1,… , 𝑡 − 𝑞, also called the MA

terms.

• 𝜙1, … , 𝜙𝑝 are the parameters of the AR terms.

• 𝜃1, … , 𝜃𝑞 are the parameters of the MA terms.

• 𝑝 is the number of AR terms, also called the AR order.

10 Fuqua School of Business. Introduction to ARIMA Models. https://people.duke.edu/~rnau/411arim.htm. Accessed

10 Dec 2023.

11 Fuqua School of Business. Introduction to ARIMA Models. https://people.duke.edu/~rnau/411arim.htm. Accessed

10 Dec 2023.

Page | 9

• 𝑞 is number of MA terms, also called the MA order.

3.4.2 ARIMA Order

 ARIMA, denoted as ARIMA(p,d,q), is thus a combination of the Autoregressive model (AR

terms) and the Moving Average model (MA terms). The time series that needs to be differenced

to be made stationary is the Integrated version of the stationary time series. The differencing is

done by subtracting the previous observation from the current observation. The parameter d

refers to the number of times the integrated version of the equation needs to be differenced to

make the time series stationary.12

The parameters p, d and q, collectively referred to as the order of the ARIMA model, must be

tuned prior for optimal results.

3.4.3 Forecasting with ARIMA Models

 Forecasting with ARIMA using the Box-Jenkins Methodology13 involves the following steps:

3.4.3.1 Identification.

Identification step entails estimating the order (values of p, d, and q). This is achieved by:

Differencing the data iteratively until stationarity is achieved, which can be confirmed by

statistical tests such as the Augmented Dickey-Fuller (ADF) test and the Kwiatkowski-Phillips-

12 Fuqua School of Business. Introduction to ARIMA Models. https://people.duke.edu/~rnau/411arim.htm. Accessed

10 Dec 2023.

13 “Box-Jenkins Methodology.” Columbia University Mailman School of Public Health, 3 Oct. 2022,

www.publichealth.columbia.edu/research/population-health-methods/box-jenkins-methodology.

Page | 10

Schmidt-Shin (KPSS) test. The number of times differencing is applied to make the data

stationary gives an estimate of the order of differencing, the d parameter in ARIMA(p,d,q).14

Visualizing data through decomposition, autocorrelation (ACF), and partial autocorrelation

(PACF) plots. The order of autoregression (p) and order of moving average (q) can be

determined by observing the lags in these plots.15

3.4.3.2 Estimation

The estimation step involves configuring and optimizing the ARIMA model with the estimated

values of p, d, and q from the previous step and the training data. The performance of the model

is evaluated using metrics such as the Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC), and the model which minimizes both AIC and BIC values is chosen

for forecasting.16

3.4.3.3 Validation.

The performance of the chosen ARIMA model is then evaluated on testing data. It involves:

• Forecasting.

14 Stationarity and Detrending (ADF/KPSS) - Statsmodels 0.15.0 (+200).

www.statsmodels.org/dev/examples/notebooks/generated/stationarity_detrending_adf_kpss.html.

15 Iamleonie. “Time Series: Interpreting ACF and PACF.” Kaggle, 15 Mar. 2022,

http://www.kaggle.com/code/iamleonie/time-series-interpreting-acf-and-pacf. Accessed 12 Dec 2023.

16 Brownlee, Jason. “Probabilistic Model Selection With AIC, BIC, and MDL.” MachineLearningMastery.com, 27

Aug. 2020, https://machinelearningmastery.com/probabilistic-model-selection-measures .20 Dec 2023.

Page | 11

• Evaluating the model's accuracy using metrics such as Root Mean Squared Error

(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE).17

3.4.4 Employing Search Methods

Alternately, the order of the ARIMA model can also be estimated employing search algorithms

like grid search or random search, seeking the optimal combination of parameters that

minimizes AIC and BIC values or offers better performance on training data using metrics such

as RMSE, MAE, and MAPE.

3.4.5 Software Libraries

The statsmodels library in Python provides tools for plotting ACF, PACF, and decomposition

plots, performing statistical tests (ADF, KPSS, AIC, and BIC), fitting the ARIMA model, and

performing forecasting and validation steps.18

The scikit-learn library offers methods for Grid Search, and Random Search etc.19

However, libraries like pmdarima provide specialized functions for finding the optimal ARIMA

model, eliminating the need for pre-processing and custom implementation, saving time, and

reducing the scope for errors.20

17 Sumi. “Understand ARIMA and Tune P, D, Q.” Kaggle, 20 Aug. 2018,

www.kaggle.com/code/sumi25/understand-arima-and-tune-p-d-q. Accessed 22 Dec 2023.

18 Time Series Analysis Tsa - Statsmodels 0.14.1. www.statsmodels.org/stable/tsa.html#descriptive-statistics-and-

tests. Accessed 27 Dec 2023.

19 Rendyk. “Tuning the Hyperparameters and Layers of Neural Network Deep Learning.” Analytics Vidhya, 12 Jan.

2024, www.analyticsvidhya.com/blog/2021/05/tuning-the-hyperparameters-and-layers-of-neural-network-deep-

learning. Accessed 21 Dec 2023.

20 pmdarima.arima.auto __ _arima — Pmdarima 2.0.4 Documentation. https://alkaline-

ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima.html. Accessed 20 Dec 2023.

Page | 12

3.5 Long Short-Term Memory (LSTM)

LSTM, on the other hand, is a type of Recurrent Neural Network (RNN)21 that addresses the

limitations of conventional RNNs, such as vanishing and exploding gradients, enabling them to

learn long-term dependencies in sequential data, which conventional RNNs fail to capture.22

3.5.1 RNN

 RNNs are deep learning models that can be trained to process sequential data and give an

output. Unlike traditional neural networks where dataflow is unidirectional, RNNs have a

feedback mechanism allowing the data to flow in both directions, allowing them to retain past

data for future use. Their ability to ‘memorize’ makes RNNs suitable for applications needing the

identification of dependencies and patterns in sequential data, such as time series forecasting,

speech recognition, and natural language processing.23

RNNs are made of neurons, organised into input, hidden, and output layers. The input layer

receives the incoming data and passes it to the hidden layers, one step at a time. The hidden

layer(s) process this incoming data, combining it with ‘memorized’ data to generate an output

that is then passed to the output layer. The feedback loop in the hidden layer(s) allows them to

retain previous inputs for combining with each incoming next input to generate an output

21 Barla, Nilesh. “Recurrent Neural Network Guide: A Deep Dive in RNN.” neptune.ai, 22 Aug. 2023,

https://neptune.ai/blog/recurrent-neural-network-guide. Accessed 20 Dec 2023.

22 Understanding LSTM Networks – Colah’s Blog. https://colah.github.io/posts/2015-08-Understanding-LSTMs.

Accessed 20 dec 2023.

23 Kalita, Debasish. “A Brief Overview of Recurrent Neural Networks (RNN).” Analytics Vidhya, 7 Nov. 2023,

www.analyticsvidhya.com/blog/2022/03/a-brief-overview-of-recurrent-neural-networks-rnn. Accessed 22 Dec 2023.

Page | 13

modulated by past observations, which is again fed back. This recurrent feedback mechanism

gives RNNs the ability to learn from past data.24

 However, when the incoming data changes too quickly or too slowly, an RNN may struggle to

adjust its parameters appropriately, leading to the exploding and vanishing gradient problems,

resulting in overfitting or underfitting of the model.25

3.5.2 LSTM Neural Networks

LSTM, a type of RNN with a modified architecture, addresses the above limitations of

conventional RNNs by incorporating additional memory cells and gates, allowing them to retain

or discard information selectively, making them suitable for applications such as time series

forecasting, where long-term dependencies are prevalent.26

24 Kalita, Debasish. “A Brief Overview of Recurrent Neural Networks (RNN).” Analytics Vidhya, 7 Nov. 2023,

www.analyticsvidhya.com/blog/2022/03/a-brief-overview-of-recurrent-neural-networks-rnn. Accessed 22 Dec 2023.

25 Kalita, Debasish. “A Brief Overview of Recurrent Neural Networks (RNN).” Analytics Vidhya, 7 Nov. 2023,

www.analyticsvidhya.com/blog/2022/03/a-brief-overview-of-recurrent-neural-networks-rnn. Accessed 22 Dec 2023.

26 Understanding LSTM Networks – Colah’s Blog. https://colah.github.io/posts/2015-08-Understanding-LSTMs.

Accessed 20 dec 2023.

Page | 14

3.5.2.1 Architecture

Figure 1: Architecture of LSTM (Source: Understanding LSTM Networks -- Colah’s Blog)

Figure 2: Symbol Notation in Fig 1 (Source: Understanding LSTM Networks -- Colah’s Blog)

In the architectural diagram of LSTM given in Fig 1, each line shown carries an entire data

vector, from the output of one node to the inputs of other nodes. The pink circles represent

pointwise operations, like vector addition and multiplication, while the yellow boxes are learned

neural network layers. Merging lines denote the concatenation of data, while forking lines denote

the copying and distribution of data to different locations.27

27 Understanding LSTM Networks – Colah’s Blog. https://colah.github.io/posts/2015-08-Understanding-LSTMs.

Accessed 20 dec 2023.

Page | 15

LSTMs have a chain-like structure with four layers comprising three gates and an update layer,

which operate on the input data sequentially, as depicted in Figure 3. The sequence of operations

is given in succeeding paras.

 Figure 3: Schematic Diagram of LSTM Representing Gates. The horizontal line on top represents the cell state

(Source: Understanding LSTM Networks -- Colah’s Blog)

Page | 16

3.5.2.2 Operation

Forget Gate: The forget gate layer (Figure 4) processes the combination of the previous hidden

state (h t-1) and the current input (xt). It decides which information from the cell state should be

discarded and which should be passed on. It is a Sigmoid layer.28

Figure 4: Schematic Representation of LSTM Forget Gate (Source: Understanding LSTM Networks -- Colah’s

Blog)

Input Gate: The input gate layer (Figure 5) processes the combination of the previous hidden

state (h t-1) and the current input (xt). It decides which new information should be stored in the

cell state. It comprises a sigmoid layer (to determine which values it to update) and a tanh layer

(to create a vector of new candidate values Ct).
29

28 Understanding LSTM Networks – Colah’s Blog. https://colah.github.io/posts/2015-08-Understanding-LSTMs.

Accessed 20 dec 2023.

29 Understanding LSTM Networks – Colah’s Blog. https://colah.github.io/posts/2015-08-Understanding-LSTMs.

Accessed 20 dec 2023.

Page | 17

Figure 5: Schematic Representation of LSTM Input Gate (Source: Understanding LSTM Networks -- Colah’s

Blog)

Cell State Update: The cell state (Figure 6) is updated by combining the information from the

forget gate (ft) and the information from the input gate (Ct-1). The forget gate decides what to

remove from the cell state, and the input gate decides what to add. This updated cell state

becomes the memory of the LSTM.30

Figure 6: Schematic Representation of LSTM Cell State Update Step (Source: Understanding LSTM Networks -

- Colah’s Blog)

30 Understanding LSTM Networks – Colah’s Blog. https://colah.github.io/posts/2015-08-Understanding-LSTMs.

Accessed 20 dec 2023.

Page | 18

Output Gate: The output gate layer (Figure 7) processes the combination of the previous hidden

state (ht-1) and the current input (xt), like the forget and input gates. It determines the next hidden

state (ht) based on the updated cell state. The output gate includes a sigmoid layer (to determine

which values of the cell state to output) and a tanh layer (to transform the values between -1 and

1).31

Figure 7: Schematic Representation of Output Gate (Source: Understanding LSTM Networks -- Colah’s Blog)

3.5.3 Forecasting with LSTM Models

3.5.3.1 Parameters and Hyperparameters of LSTM

In LSTM, parameters and hyperparameters are two different but related concepts. The model's

hyperparameters are top-level parameters that control the learning process and determine the

model parameters. They are to be determined by the model designer before training begins

and remain unchanged at the end of the learning process. The hyperparameters of the model

include the number of hidden layers, number of neurons in each hidden layer, number of epochs,

31 Understanding LSTM Networks – Colah’s Blog. https://colah.github.io/posts/2015-08-Understanding-LSTMs.

Accessed 20 dec 2023.

Page | 19

batch size, dropout rate, optimizer, loss function, stateful, shuffle, and reset states, each having

an impact on the performance of the model.32

On the other hand, the model's parameters are internal to the model and are learned by the

model during training based on the data and the hyperparameters. The parameters of the model

include the weights and biases of the model, which are updated during training, unlike the

hyperparameters, which remain unchanged.33

Optimal choice of the hyperparameters is crucial for the model to perform well.

3.5.3.2 Tuning the Hyperparameters of LSTM Models

The designer usually manually determines the hyperparameters of LSTM models based on

domain expertise and experience. An alternative approach is to employ search algorithms such as

grid search, random search, and Bayesian optimization to find the optimal combination of

hyperparameters that minimizes the loss function.34

The KerasTuner library in Python provides a flexible and efficient way to perform

hyperparameter tuning using grid search and random search, eliminating the need for custom

implementation, saving time, and reducing the scope for errors.35

32 Nyuytiymbiy, Kizito. “Parameters, Hyperparameters, Machine Learning | Towards Data Science.” Medium, 7

Mar. 2023, https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac. Accessed 20 Dec 2023.

33 Nyuytiymbiy, Kizito. “Parameters, Hyperparameters, Machine Learning | Towards Data Science.” Medium, 7

Mar. 2023, https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac. Accessed 20 Dec 2023.

34 Rendyk. “Tuning the Hyperparameters and Layers of Neural Network Deep Learning.” Analytics Vidhya, 12 Jan.

2024, www.analyticsvidhya.com/blog/2021/05/tuning-the-hyperparameters-and-layers-of-neural-network-deep-

learning. Accessed 21 Dec 2023.

35 Team, Keras. Keras Documentation: KerasTuner API. https://keras.io/api/keras_tuner. Accessed 12 Dec 2023.

Page | 20

4 Experimental Methodology

The experimental setup for the study was implemented in Python 3.11 in a Jupyter Notebook

environment. The steps followed to answer the research question are discussed below.

4.1 Step 1: Data Collection

Historical 5-year stock price data from 01 January 2018 to 01 January 2023 was obtained from

Yahoo Finance, using the yfinance library, for the following ten companies in the S&P 500

index, representing a diverse set of sectors to avoid sector bias, account for macroeconomic

factors, and to make the results more generalizable.36 37

Ticker Symbol Company Name Sector

GOOG Alphabet Inc. Technology

JPM JPMorgan Chase & Co. Financial Services

JNJ Johnson & Johnson Healthcare

WMT Walmart Inc. Consumer Defensive

TSLA Tesla Inc. Automobiles

AMZN Amazon.com Inc. E-Commerce

BP BP plc Oil & Gas

NKE Nike Inc. Apparel

36 “Yahoo Finance - Stock Market Live, Quotes, Business and Finance News.” Yahoo Finance - Stock Market Live,

Quotes, Business & Finance News, finance.yahoo.com.

37 “Yfinance.” PyPI, 21 Jan. 2024, pypi.org/project/yfinance.

Page | 21

Ticker Symbol Company Name Sector

KO The Coca-Cola Company Beverages

PFE Pfizer Inc. Pharmaceuticals

(Table 1: List of stocks chosen for the study)

A period of five years was chosen as it provided sufficient data for analysis, and the

computational cost of the models was manageable.

4.2 Step 2: Data Visualization and Preprocessing

4.2.1 Data Cleaning

The data obtained from Yahoo Finance was cleaned by filling in missing values with the

previous day’s closing price, indexed by datetime, and sorted in ascending order. The Adj

Close prices of the stocks were filtered for further analysis, as they account for post-market

action, which can impact the price on the next trading day.

4.2.2 Data Visualization

The Adj Close prices, decomposed components (trend, seasonality, and residual), ACF, and

PACF plots for each stock were plotted to visualize the data and identify any patterns.

The plots revealed the presence of trends and seasonality in the data, indicating that the data is

not stationary. The plots for GOOG are provided below:

Page | 22

Figure 8: Adjusted Close Price of Alphabet Inc. (GOOG)

Figure 9: Plot of Rolling Mean and Standard Deviation of Adjusted Close Price of Alphabet Inc. (GOOG)

Page | 23

Figure 10: Decomposition of Adjusted Close Prices of GOOG to Trend, Seasonality and Residuals

Page | 24

Figure 11: ACF and PACF plots of Adjusted Close Prices of GOOG

Statistical tests such as the Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) using the statsmodels library also confirmed the same.

 Summary of ADF and KPSS test results for GOOG are given in Fig 12 below:

Performing Augmented Dickey-Fuller Test on GOOG

Results of Augmented Dickey-Fuller Test:GOOG

Test Statistic -1.210835

p-value 0.668918

Page | 25

#Lags Used 1.000000

Number of Observations Used 1257.000000

Critical Value (1%) -3.435563

Critical Value (5%) -2.863842

Critical Value (10%) -2.567996

dtype: float64

p-value: 0.6689176927500179

ADF test indicates that GOOG is not stationary as p-value is greater than 0.05

ADF test indicates that GOOG is not stationary as Test Statistic is greater than Critical Value

in 5%

End of Augmented Dickey-Fuller Test

Performing KPSS Test on GOOG

Results of KPSS Test:GOOG

Test Statistic 4.654283

p-value 0.010000

#Lags Used 21.000000

Critical Value (10%) 0.347000

Critical Value (5%) 0.463000

Critical Value (2.5%) 0.574000

Critical Value (1%) 0.739000

Page | 26

dtype: float64

KPSS test indicates that GOOG is not stationary as Test Statistic is greater than Critical Value

in 5%

End of KPSS Test

Figure 12: Output of Stationarity Test using ADF and KPSS Tests

4.2.3 Pre-Processing of Data

4.2.3.1 ARIMA

The data was made stationary by differencing the time series till effects of trends and seasonality

were removed, i.e., ADF and KPSS tests returned True.

4.2.3.2 LSTM

In the case of LSTM, data was scaled to the range [0,1] and then split into the training and

testing sets. MinMaxScaler function in the sklearn library was used to scale the data.

4.2.4 Splitting the Data into Training and Testing Sets

The differenced or scaled data of ARIMA and LSTM were split into training and testing data sets

using a split ratio of 95:5.

4.3 Step 3: Model Implementation

The training data was fitted to the ARIMA and LSTM models, and the testing data was used to

evaluate the performance of each model.

Page | 27

4.3.1 Finding Optimal Parameters for ARIMA

The number of times the data was differenced during the pre-processing stage to achieve

stationarity determined the order of differencing (d).

 The ACF and PACF plots of the differenced time series were analyzed to determine the

autoregression (p) and moving average (q) order, respectively.

The estimated values of p, q and q for Alphabet Inc. (GOOG) are p=1, d=1 and q=1, indicating

that the ARIMA model for GOOG is given by ARIMA(1,1,1).

4.3.2 Estimation of ARIMA Model Parameters Using pmdarima Library

The manual approach discussed above involved a non-scalable and error-prone process due to its

reliance on visualization and analysis of plots. Therefore, this method was applied solely to one

stock, Alphabet Inc., to understand the process involved.

However, to obtain the experimental results for this study, the auto_arima function of

the pmdarima library was preferred as it allowed for the determination of the optimal ARIMA

model using a programmatic approach and offered benefits as discussed in sub-section 3.4.5 in

the Theoretical Background.

The code used for experimentation is documented in Appendix A.

4.3.3 Hyperparameters Tuning for LSTM

Tuning hyperparameters in LSTM is a complex task requiring domain expertise, time, and

computational resources. The KerasTuner library, designed for hyperparameter optimization and

offering several benefits, as discussed in sub-section 3.5.3.2 in the Theoretical Background

section, was employed to tune the LSTM model.

Page | 28

 Stateful vs. Stateless LSTMs. A stateful LSTM was chosen for its ability to capture

the trends and seasonality in the data, if any, and improve the accuracy of the

predictions. Keras library was explicitly configured by setting the stateful parameter to True,

the batch_size parameter to 1 to preserve the state within the same epoch, the shuffle parameter

to False to preserve the order of the data, and the reset_states parameter to True to reset

the state after each epoch.

4.4 Step 4: Prediction

The time horizon for predictions, for example, a daily, weekly, monthly, or yearly forecast,

depends on the application’s need. However, forecasting far into the future reduces prediction

accuracy due to the absence of recent data and the compounding of errors.

A model’s forecast accuracy can be improved by using a rolling forecast by feeding back the

latest observed data to make the following prediction.38

This study employed a one-step rolling forecast to predict the stock price one day at a time,

continuously updating the model with the latest available data.

4.5 Step 5: Evaluation of Models

The training data was fitted to the ARIMA and LSTM models, and the testing data was used to

evaluate the model’s performance. Predictions were made using a one-step rolling forecast

38 Brownlee, Jason. “Time Series Forecasting With the Long Short-Term Memory Network in Python.”

MachineLearningMastery.com, 27 Aug. 2020, machinelearningmastery.com/time-series-forecasting-long-short-

term-memory-network-python. Accessed 25 Dec 2023.

Page | 29

approach. The performance of the models was evaluated by comparing the predicted values with

the actual values, using statistical metrics RMSE, MAE, and MAPE.

5 Results and Analysis

5.1 Performance Metrics on a Per-Stock Basis

The performance metrics obtained on a per-stock basis are tabulated below (output of Step 5 of

Appendix A)

 RMSE MAPE MAE

Symbol ARIMA LSTM ARIMA LSTM ARIMA LSTM

GOOG 2.5754 4.5959 2.0113 3.9893 1.9010 3.7554

JPM 2.1378 4.3924 1.3682 2.9673 1.6205 3.5093

JNJ 1.5489 2.6498 0.7146 1.3014 1.1852 2.1586

WMT 1.9617 3.2097 1.0048 1.8503 1.3913 2.5982

TSLA 8.2851 18.7155 3.4410 8.6554 6.2608 15.3805

AMZN 3.0969 5.7947 2.3246 4.7190 2.3032 4.6382

BP 0.5660 1.0318 1.4066 2.7565 0.4433 0.8559

NKE 2.7681 5.1574 1.9981 3.8467 1.9857 3.8372

KO 0.6674 1.2222 0.8930 1.5761 0.5143 0.9077

PFE 0.7239 1.2188 1.2161 2.2088 0.5469 0.9912

(Table 2: Comparison of ARIMA and LSTM performance on a per stock basis)

Page | 30

5.1.1 Interpretation of Performance Metrics on a Per Stock basis

From Table 2, it is seen that RMSE, MAE, and MAPE values are lower for ARIMA than LSTM

across all selected stocks, suggesting that the ARIMA was more effective in predicting stock

prices compared to LSTM for the underlying data.

This is likely to be owing to the following reasons:

• Time Series data of all the selected stocks could be made stationary by differencing,

making it amenable for the application of ARIMA.

• ARIMA relies on regression analysis, which is well-suited for fitting curves to stationary

data and apply forecasting methods.

• The forecasting was carried out on a one-step rolling basis, where the most recent data

(previous day’s Adjusted Closing Price) was available for forecasting the next day’s

stock price. As the next day’s stock prices are usually very closely dependendent on the

most recent data (barring exceptional scenarios), ARIMA which relies on regression-

based analysis could predict the next day’s stock price quite accurately.

• Further, LSTM is ideal for capturing long-term dependencies and complex patterns

inherent in sequential data. In predicting the next day’s stock prices, especially using a

one-step rolling forecast method, ARIMA fared better as recency of data was equally or

possibly more important than long-term dependencies.

5.2 Performance on Aggregate Basis

The results of the comparison on an aggregate basis are tabulated below (output of Step 5 of

Appendix A):

Page | 31

Metric ARIMA LSTM % Improvement Remarks

Average RMSE 2.43311 4.79882 49.298% ARIMA performed better

Average MAE 1.63783 3.38708 51.645% -do-

Average MAPE 1.81522 3.8632 53.013% -do-

(Table 3: Comparison of ARIMA and LSTM Performance on Aggregate Basis)

5.2.1 Interpretation of Aggregate Metrics

5.2.1.1 Overall Performance

ARIMA outperformed LSTM across all metrics—RMSE, MAE, and MAPE—at an aggregate

level, showing approximately 49.3%, 51.6%, and 53.0% improvement, respectively. This

indicates that ARIMA was more accurate in making predictions compared to LSTM for the

considered dataset as a whole.

5.2.1.2 RMSE

A lower RMSE of ARIMA indicates that ARIMA could predict stock prices closer to the actual

values than LSTM. This means that the average magnitude of errors in ARIMA's predictions was

smaller compared to LSTM, resulting in more precise forecasts.

5.2.1.3 MAE

Lower observed MAE of ARIMA signifies that ARIMA could predict stock prices closer to the

actual values on an absolute basis, and it made less biased predictions than LSTM. This suggests

that ARIMA's predictions were, on average, closer to the true values, with less systematic

overestimation or underestimation compared to LSTM.

Page | 32

5.2.1.4 MAPE

ARIMA had a lower aggregate MAPE than LSTM, implying that the ARIMA model's predicted

values had lesser percentage deviations from actual values on an absolute basis. This indicates

that ARIMA's predictions had, on average, smaller percentage errors compared to LSTM,

making it a more reliable model for forecasting stock prices.

5.2.1.5 Overall Assessment

The likely reasons for better observed performance of ARIMA compared to LSTM on aggregate

basis is also likely owing to similar reasons as explained in Section 5.1.1.

5.3 Visualization

Plots of predicted and actual test data values have been generated for all considered stocks for

visualization and analysis (outputs of steps 4 and 5 of Appendix A). Plots for Alphabet

Inc.(GOOG) are given below for discussion.

Figure 13: Actual vs Predicted Stock Prices GOOG: ARIMA (output of Step 3 of Appendix A)

Page | 33

Figure 14: Actual Vs Predicted Stock Prices GOOG: LSTM (output of Step 4 of Appendix A)

5.3.1 Interpretation of Plots

 The above plots for ‘Actual versus Predicted Stock Prices’ using ARIMA and LSTM

demonstrate the ability of both models to predict stock prices to varying degrees of accuracy. It

can also be seen that prices predicted by ARIMA followed the actual stock price more closely

than LSTM. This is consistent with the observed performance metrics for GOOG using ARIMA

and LSTM, RMSE (2.5754 vs 4.5959), MAPE (2.0113 Vs 3.9893) and MAE (1.9010 Vs 3.7554)

respectively.

Further, it is noteworthy that predictions using ARIMA tended follow the actual prices more

immediately compared to LSTM. This behaviour is attributable primarily to the employment of

one-step rolling forecast method. LSTM exhibited a slower response to sharp changes in stock

prices. This behaviour is likely attributable to several factors inherent in LSTM’s model

Page | 34

architecture, including its ability to capture long-term dependencies and the incorporation of

such dependencies into its predictions. Consequently, LSTM may have moderated the influence

of recently observed data, resulting in a slower adjustment to changes in stock prices.

5.3.2 Plots of ‘Actual versus Predicted Prices (using ARIMA and LSTM)’ of Other Stocks

Plots of other stocks obtained as output from Steps 3 and 4 of Appendix A are listed below.

These show similar patterns consistent with the above analysis.

 Figure 15: Actual vs Predicted Stock Prices JPM: ARIMA (output of Step 3 of Appendix A)

Page | 35

Figure 16: Actual vs Predicted Stock Prices JPM: LSTM (output of Step 4 of Appendix A)

Figure 17: Actual vs Predicted Stock Prices JNJ: ARIMA (output of Step 3 of Appendix A)

Page | 36

Figure 18: Actual vs Predicted Stock Prices JNJ: LSTM (output of Step 4 of Appendix A)

 Figure 19: Actual vs Predicted Stock Prices WMT: ARIMA (output of Step 3 of Appendix A)

Page | 37

Figure 20: Actual vs Predicted Stock Prices WMT: LSTM (output of Step 4 of Appendix A)

Figure 21: Actual vs Predicted Stock Prices TSLA: ARIMA (output of Step 3 of Appendix A)

Page | 38

Figure 22: Actual vs Predicted Stock Prices TSLA: LSTM (output of Step 4 of Appendix A)

Figure 23: Actual vs Predicted Stock Prices AMZN: ARIMA (output of Step 3 of Appendix A)

Page | 39

 Figure 24: Actual vs Predicted Stock Prices AMZN: LSTM (output of Step 4 of Appendix A)

Figure 25: Actual vs Predicted Stock Prices BP: ARIMA (output of Step 3 of Appendix A)

Page | 40

Figure 26: Actual vs Predicted Stock Prices BP: LSTM (output of Step 4 of Appendix A)

Figure 27: Actual vs Predicted Stock Prices NKE: ARIMA (output of Step 3 of Appendix A)

Page | 41

Figure 28: Actual vs Predicted Stock Prices NKE: LSTM (output of Step 4 of Appendix A)

Figure 29: Actual vs Predicted Stock Prices KO: ARIMA (output of Step 3 of Appendix A)

Page | 42

Figure 30: Actual vs Predicted Stock Prices KO: LSTM (output of Step 4 of Appendix A)

Figure 31: Actual vs Predicted Stock Prices PFE: ARIMA (output of Step 3 of Appendix A)

Page | 43

Figure 32: Actual vs Predicted Stock Prices PFE: LSTM (output of Step 4 of Appendix A)

6 Conclusion

It can be concluded, based on empirical evidence, that ARIMA can predict stock prices more

accurately than LSTM.

However, the accuracy of stock price predictions is sensitive to various factors, such as the

underlying stock data, the values assigned to ARIMA parameters, the chosen LSTM architecture,

and the tuning of its hyperparameters. Further, the methodology used for predicting stock prices,

the frequency of updating the model with the observed values and the forecast period also have a

significant impact on the accuracy of predictions.

Therefore, it would be incorrect to generalize the above conclusion and extend it to all situations.

Page | 44

This possibly explains the reasons for continued exploration of this topic by the researchers, each

investigation coming up with different findings.

7 Limitations and Future Work

In the conduct of this study, predictions were made solely based on historical data of a single

variable, namely, the adjusted close price. However, it is common knowledge that stock prices

are influenced by various factors, such as the macro and microeconomic data, the company's

financial performance, government policies, market sentiment and natural and manmade

disasters. Therefore, alternate approaches employing models which can incorporate multiple

variables, such as multivariate LSTM and hybrid models, could yield more accurate results.

Exploration of such models was beyond the current scope and has been marked for future

research.

In this extended essay, a one-step rolling forecast method was used, with the model predicting

the next day's stock price and thereafter being updated with the observed value prior to making

the next prediction. While this approach served to standardize the comparison of ARIMA and

LSTM, practical considerations may necessitate making stock price predictions on a weekly,

monthly, yearly, or any other time period. The code developed for the study can be extended

with minor modifications to extend the study to compare the performance of ARIMA and LSTM

for such arbitrary time periods. Such a study can add more insights into understanding the overall

performances of ARIMA and LSTM.

Lastly, as mentioned in various sections of the paper, tuning parameters and hyperparameters

and choosing an optimal model have a significant impact on the experimental outcomes. A more

Page | 45

thorough study to understand the impact on the accuracy of predictions by varying

hyperparameters is needed. This needs a deeper understanding of the domain and further study;

thus, the same has been reserved for future exploration.

Page | 46

8 Bibliography

1. Kobiela, Dariusz, et al. “ARIMA Vs LSTM on NASDAQ Stock Exchange Data.” Procedia

Computer Science, vol. 207, Jan. 2022, pp. 3836–45.

https://doi.org/10.1016/j.procs.2022.09.445. Accessed 10 Dec 2023.

2. Ma, Qihang. “Comparison of ARIMA, ANN and LSTM for Stock Price Prediction.” E3S

Web of Conferences, vol. 218, Jan. 2020, p. 01026.

https://doi.org/10.1051/e3sconf/202021801026. Accessed 10 Dec 2023

3. S. Siami-Namini, N. Tavakoli and A. Siami Namin, "A Comparison of ARIMA and LSTM

in Forecasting Time Series," 2018 17th IEEE International Conference on Machine Learning and

Applications (ICMLA), Orlando, FL, USA, 2018, pp. 1394-1401, doi:

10.1109/ICMLA.2018.00227. PDF available at https://sci-hub.se/10.1109/ICMLA.2018.00227.

Accessed 10 Dec 2023.

4. Gupta, Sakshi. “What Is Time Series Forecasting? Overview, Models &Amp; Methods.”

Springboard Blog, 28 Sept. 2023, https://www.springboard.com/blog/data-science/time-

series-forecasting/. Accessed 10 Dec 2023.

5. Fuqua School of Business. Introduction to ARIMA Models.

https://people.duke.edu/~rnau/411arim.htm. Accessed 10 Dec 2023.

6. “Box-Jenkins Methodology.” Columbia University Mailman School of Public Health, 3

Oct. 2022, www.publichealth.columbia.edu/research/population-health-methods/box-jenkins-

methodology.

https://doi.org/10.1016/j.procs.2022.09.445
https://doi.org/10.1051/e3sconf/202021801026
https://sci-hub.se/10.1109/ICMLA.2018.00227
https://www.springboard.com/blog/data-science/time-series-forecasting/
https://www.springboard.com/blog/data-science/time-series-forecasting/
https://people.duke.edu/~rnau/411arim.htm
http://www.publichealth.columbia.edu/research/population-health-methods/box-jenkins-methodology
http://www.publichealth.columbia.edu/research/population-health-methods/box-jenkins-methodology

Page | 47

7. Iamleonie. “Time Series: Interpreting ACF and PACF.” Kaggle, 15 Mar. 2022,

http://www.kaggle.com/code/iamleonie/time-series-interpreting-acf-and-pacf. Accessed 12

Dec 2023.

8. TrainDataHub. “How to Interpret ACF and PACF Plots for Identifying AR, MA, ARMA, or

ARIMA Models.” Medium, 2 Aug. 2022, medium.com/@ooemma83/how-to-interpret-acf-

and-pacf-plots-for-identifying-ar-ma-arma-or-arima-models-498717e815b6. Accessed 12

Dec 2023.

9. Stationarity and Detrending (ADF/KPSS) - Statsmodels 0.15.0 (+200).

www.statsmodels.org/dev/examples/notebooks/generated/stationarity_detrending_adf_kpss.h

tml.

10. Brownlee, Jason. “Probabilistic Model Selection With AIC, BIC, and MDL.”

MachineLearningMastery.com, 27 Aug. 2020,

https://machinelearningmastery.com/probabilistic-model-selection-measures .20 Dec 2023.

11. Sumi. “Understand ARIMA and Tune P, D, Q.” Kaggle, 20 Aug. 2018,

www.kaggle.com/code/sumi25/understand-arima-and-tune-p-d-q. Accessed 22 Dec 2023.

12. Brownlee, Jason. “How to Create an ARIMA Model for Time Series Forecasting in Python.”

MachineLearningMastery.com, 18 Nov. 2023, machinelearningmastery.com/arima-for-time-

series-forecasting-with-python. Accessed 22 Dce 2023.

13. Nissa, Nuzulul Khairu. “Stock Price Prediction Using Auto-ARIMA - Nuzulul Khairu Nissa

- Medium.” Medium, 16 Dec. 2021, nzlul.medium.com/stock-price-prediction-using-auto-

arima-5569fcceae59. Accessed 27 dec 2023.

http://www.kaggle.com/code/iamleonie/time-series-interpreting-acf-and-pacf
mailto:medium.com/@ooemma83/how-to-interpret-acf-and-pacf-plots-for-identifying-ar-ma-arma-or-arima-models-498717e815b6
mailto:medium.com/@ooemma83/how-to-interpret-acf-and-pacf-plots-for-identifying-ar-ma-arma-or-arima-models-498717e815b6
http://www.statsmodels.org/dev/examples/notebooks/generated/stationarity_detrending_adf_kpss.html
http://www.statsmodels.org/dev/examples/notebooks/generated/stationarity_detrending_adf_kpss.html
https://machinelearningmastery.com/probabilistic-model-selection-measures
http://www.kaggle.com/code/sumi25/understand-arima-and-tune-p-d-q

Page | 48

14. Hayes, Adam. “What Is a Time Series and How Is It Used to Analyze Data?” Investopedia,

13 June 2022, www.investopedia.com/terms/t/timeseries.asp.

15. Time Series Analysis Tsa - Statsmodels 0.14.1.

www.statsmodels.org/stable/tsa.html#descriptive-statistics-and-tests. Accessed 27 Dec 2023.

16. statsmodels.tsa.arima.model.ARIMA - Statsmodels 0.14.1.

www.statsmodels.org/stable/generated/statsmodels.tsa.arima.model.ARIMA.html. Accessed

27 Dec 2023.

17. pmdarima.arima.auto __ _arima — Pmdarima 2.0.4 Documentation. https://alkaline-

ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima.html. Accessed 20 Dec

2023.

18. “Yfinance.” PyPI, 21 Jan. 2024, pypi.org/project/yfinance.

19. “Yahoo Finance - Stock Market Live, Quotes, Business and Finance News.” Yahoo Finance -

Stock Market Live, Quotes, Business & Finance News, finance.yahoo.com.

20. Barla, Nilesh. “Recurrent Neural Network Guide: A Deep Dive in RNN.” neptune.ai, 22

Aug. 2023, https://neptune.ai/blog/recurrent-neural-network-guide. Accessed 20 Dec 2023.

21. Kalita, Debasish. “A Brief Overview of Recurrent Neural Networks (RNN).” Analytics

Vidhya, 7 Nov. 2023, www.analyticsvidhya.com/blog/2022/03/a-brief-overview-of-

recurrent-neural-networks-rnn. Accessed 22 Dec 2023.

22. Understanding LSTM Networks – Colah’s Blog. https://colah.github.io/posts/2015-08-

Understanding-LSTMs. Accessed 20 dec 2023.

http://www.statsmodels.org/stable/tsa.html#descriptive-statistics-and-tests
http://www.statsmodels.org/stable/generated/statsmodels.tsa.arima.model.ARIMA.html
https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima.html
https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima.html
https://neptune.ai/blog/recurrent-neural-network-guide
http://www.analyticsvidhya.com/blog/2022/03/a-brief-overview-of-recurrent-neural-networks-rnn
http://www.analyticsvidhya.com/blog/2022/03/a-brief-overview-of-recurrent-neural-networks-rnn
https://colah.github.io/posts/2015-08-Understanding-LSTMs
https://colah.github.io/posts/2015-08-Understanding-LSTMs

Page | 49

23. Özlü, Ahmet. “Long Short Term Memory (LSTM) Networks in a Nutshell.” Medium, 14

Dec. 2021, https://ahmetozlu.medium.com/long-short-term-memory-lstm-networks-in-a-

nutshell-363cd470ccac. Accessed 20 dec 2023.

24. Nyuytiymbiy, Kizito. “Parameters, Hyperparameters, Machine Learning | Towards Data

Science.” Medium, 7 Mar. 2023, https://towardsdatascience.com/parameters-and-

hyperparameters-aa609601a9ac. Accessed 20 Dec 2023.

25. Rendyk. “Tuning the Hyperparameters and Layers of Neural Network Deep Learning.”

Analytics Vidhya, 12 Jan. 2024, www.analyticsvidhya.com/blog/2021/05/tuning-the-

hyperparameters-and-layers-of-neural-network-deep-learning. Accessed 21 Dec 2023.

26. Gorodetski, Maria. “Hyperparameter Tuning Methods - Grid, Random or Bayesian Search? |

Towards Data Science.” Medium, 5 Jan. 2022, https://towardsdatascience.com/bayesian-

optimization-for-hyperparameter-tuning-how-and-why-655b0ee0b399. Accessed 21 Dec

2023.

27. Team, Keras. Keras Documentation: KerasTuner API. https://keras.io/api/keras_tuner.

Accessed 12 Dec 2023.

28. “Introduction to the Keras Tuner.” TensorFlow,

https://www.tensorflow.org/tutorials/keras/keras_tuner. Accessed 10 Dec 2023.

29. Quant, Ai. “Mastering Stock Price Prediction With Deep Learning and Keras Tuner |

Artificial Intelligence in Plain English.” Medium, 22 Apr. 2023, ai.plainenglish.io/mastering-

stock-price-prediction-with-deep-learning-and-keras-tuner-optimizing-hyperparameters-for-

66fca4d6525a. Accessed 27 Dec 2023.

https://ahmetozlu.medium.com/long-short-term-memory-lstm-networks-in-a-nutshell-363cd470ccac
https://ahmetozlu.medium.com/long-short-term-memory-lstm-networks-in-a-nutshell-363cd470ccac
https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac
https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac
http://www.analyticsvidhya.com/blog/2021/05/tuning-the-hyperparameters-and-layers-of-neural-network-deep-learning
http://www.analyticsvidhya.com/blog/2021/05/tuning-the-hyperparameters-and-layers-of-neural-network-deep-learning
https://towardsdatascience.com/bayesian-optimization-for-hyperparameter-tuning-how-and-why-655b0ee0b399
https://towardsdatascience.com/bayesian-optimization-for-hyperparameter-tuning-how-and-why-655b0ee0b399
https://keras.io/api/keras_tuner
https://www.tensorflow.org/tutorials/keras/keras_tuner

Page | 50

30. Mingboi. “Rolling Multi-step Forecasts With LSTM, RNN, GRU.” Kaggle, 29 July 2021,

www.kaggle.com/code/mingboi/rolling-multi-step-forecasts-with-lstm-rnn-gru. Accessed 25

Dec 2023.

31. Brownlee, Jason. “Time Series Forecasting With the Long Short-Term Memory Network in

Python.” MachineLearningMastery.com, 27 Aug. 2020, machinelearningmastery.com/time-

series-forecasting-long-short-term-memory-network-python. Accessed 25 Dec 2023.

9 Appendix A: Performance Evaluation of ARIMA and LSTM in

Stock Price Prediction

This Appendix contains the code for carrying out the Performance evelaution of ARIMA and

LSTM in predicting stock prices. Steps Involved in the Analysis:

1. Importing the required libraries and setting the configuration parameters.

2. Importing the dataset from Yahoo Finance using yfinance library and saving it to a CSV file for later use.

3. Perform rolling forecast ARIMA modeling on the dataset for each stock. This invoves:

– Data Preprocessing involving:

• Loading the CSV file into a Pandas DataFrame.

• Checking for missing values and filling them with the previous day’s values.

• Sorting the data in ascending order of date.

• Converting the index to a datetime object.

• Filtering the data to include only the Date and Adj Close columns which will be used

for analysis.

• Converting the Adj Close price to a float32 type, as it speeds up the computation and

is the default type for auto.arima() function.

– Splitting the data into train and test sets, and visualizing the train and test sets.

– Building the ARIMA model using auto.arima() function with necessary parameters for

optimization.

– Predicting the stock price using the ARIMA model One-Step Rolling Forecast one day at a time

for the test set.

– Evaluating the model performance using the root mean squared error (RMSE), mean absolute

error (MAE), and mean absolute percentage error (MAPE) metrics and time taken for model

training and prediction.

– Printing the metrics and time taken for model training and prediction.

http://www.kaggle.com/code/mingboi/rolling-multi-step-forecasts-with-lstm-rnn-gru

Page | 51

– Visualizing the predictions by plotting the predicted and actual stock prices for the test set along

with the metrics.

– Visualizing the residuals by plotting the residuals and density plot of the residuals.

– Saving the predictions to a CSV file for further analysis

– Saving the performance metrics to a CSV file for further analysis.

– Saving the plots to PNG files for further analysis.

– Calulating average RMSE, MAE, and MAPE for all the test sets. This is called cross validation.

We will use cross validation to compare the performance of different models, i.e, with LSTM in

the next steps.

– Saving the average performance metrics to a CSV file for further analysis.

4. Similarly, perform rolling forecast using LSTM and save the predictions and performance metrics to CSV

files for further analysis. However, in case of LSTM, the data is scaled using MinMaxScaler and reshaped

to a 3D array before training the model. Further, we use keras-tuner library to tune the hyperparameters

of the LSTM model (similar to auto.arima() function) and use the best hyperparameters to train the

model and predict the stock price. The hyperparameters tuned are:

– Number of LSTM layers

– Number of LSTM units

– Number of epochs

– Batch size

– Dropout rate

5. Compare the performance of ARIMA and LSTM models using the average RMSE, MAE, and MAPE

metrics.

9.1 Step 1: Importing the required libraries and setting the configuration

parameters.

Step 1: Import libraries

import os

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import yfinance as yf

from sklearn.metrics import mean_squared_error, mean_absolute_error, max_error, r2_score, median_absol
ute_error, mean_absolute_percentage_error

from sklearn.preprocessing import MinMaxScaler

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.callbacks import EarlyStopping

from keras_tuner.tuners import GridSearch

from math import sqrt

import warnings

supress warnings

warnings.filterwarnings('ignore')

Function to check stationarity using ADF test

from matplotlib.ticker import MaxNLocator

from pmdarima.arima import auto_arima

import time

Page | 52

from tabulate import tabulate

set styles for plots

sns.set_theme(style='whitegrid', palette='muted', font_scale=1.2) # style options - white, dark, whiteg
rid, darkgrid, ticks; palette options - muted, deep, pastel, bright, dark, colorblind; font_scale optio
ns - 1.2, 1.5, 2

changes the scale of the plot. other options include: paper, notebook, talk, poster. paper is suitabl
e for saving as pdf or for reports

sns.set_context('paper')

Step 1A: Define variables for configuration

the directory where the data will be saved

data_dir = 'data'

the directory where the ARIMA results will be saved

results_dir = 'results'

the directory where the ARIMA plots will be saved

plots_dir = 'plots'

the list of tickers to be used for analysis

tickers = ['GOOG', 'JPM', 'JNJ', 'WMT', 'TSLA', 'AMZN', 'BP', 'NKE', 'KO', 'PFE']

the start date of the data to be downloaded

start_date = '2018-01-01'

start_date = '2018-01-01'

the end date of the data to be downloaded

end_date = '2023-01-01'

 # the column name to use for analysis

column_name = 'Adj Close'

the ratio to split the data into train and test sets

split_ratio = 0.95

ltsm variables

 # the number of previous time steps to use as input variables to predict the next time period

look_back = 10

number of batches to use for training at each epoch

batch_size = 1

number of epochs to train the model

nb_epoch = 10

maximum number of neurons to use r

neurons = 4

petience for early stopping

early_stopping_patience = 3

number of days to predict

days_to_predict = 1

check if data directory exists; else create it so that data can be saved there

print('Checking if data directory exists...')

if not os.path.exists(data_dir):

 print('Data directory does not exist. Creating data directory...')

 os.makedirs(data_dir)

 print('Data directory created.')

else:

 print('Data directory exists.')

check if results directory exists; else create it so that results can be saved there

print('Checking if results directory exists...')

if not os.path.exists(results_dir):

 print('Results directory does not exist. Creating results directory...')

 os.makedirs(results_dir)

 print('Results directory created.')

else:

 print('Results directory exists.')

Page | 53

check if arima plots directory exists; else create it so that plots can be saved there

print('Checking if plots directory exists...')

if not os.path.exists(plots_dir):

 print(' plots directory does not exist. Creating plots directory...')

 os.makedirs(plots_dir)

 print(' plots directory created.')

else:

 print(' plots directory exists.')

9.2 Step 2: Importing the dataset from Yahoo Finance using yfinance library and

saving it to a CSV file for later use.

function to get data from yfinance and save as CSV

def get_ticker_data_and_save_as_csv(ticker, start_date, end_date, data_dir):

 '''

 A function to get data from yfinance and save as CSV.

 Parameters

 ticker : str

 The ticker symbol of the stock.

 start_date : str

 The start date of the data to be downloaded.

 end_date : str

 The end date of the data to be downloaded.

 data_dir : str

 The directory where the data will be saved.

 Returns

 data : DataFrame

 The data downloaded from yfinance.

 '''

 # Validate inputs

 if not all([ticker, start_date, end_date, data_dir]):

 raise ValueError(

 'All input parameters (ticker, start_date, end_date, data_dir) must be provided.')

 try:

 # Get data from yfinance

 print(f'Getting data for {ticker}...')

 data = yf.download(ticker, start=start_date, end=end_date)

 print('Done.')

 # Sanitize data

 print('Sanitising data...')

 data.index = pd.to_datetime(data.index)

 data = data.sort_index()

 # Check for missing values

 print('Checking for missing values...')

 if data.isnull().values.any():

 print('Data contains missing values. Using ffill method to fill missing values...')

 data = data.fillna(method='ffill')

 # Save data to data_dir

 output_file = os.path.join(data_dir, f'{ticker}.csv')

 print(f'Saving data to {output_file}...')

 data.to_csv(output_file)

Page | 54

 print('Done.')

 except ValueError:

 raise ValueError(f'No data found for {ticker}.')

 return data

Function to load data from a CSV file

def load_data_from_csv(ticker, data_dir):

 '''

 A function to load data from a CSV file.

 Parameters

 ticker : str

 The ticker symbol of the stock.

 data_dir : str

 The directory where the data is saved.

 Returns

 data : DataFrame

 The data loaded from the CSV file.

 '''

 # Validate inputs

 if not all([ticker, data_dir]):

 raise ValueError(

 'All input parameters (ticker, data_dir) must be provided.')

 # check if data directory exists; else raise error

 if not os.path.exists(data_dir):

 raise ValueError(f'Data directory {data_dir} does not exist.')

 # Load data from CSV file

 input_file = os.path.join(data_dir, f'{ticker}.csv')

 # check if file exists; else raise error

 if not os.path.exists(input_file):

 raise ValueError(f'File {input_file} does not exist.')

 print(f'Loading data from {input_file}...')

 data = pd.read_csv(input_file, index_col=0)

 print('Done.')

 return data

We iterate through the list of tickers and get data for each ticker

for ticker in tickers:

 try:

 data_from_yahoo = get_ticker_data_and_save_as_csv(ticker,

 start_date,

 end_date,

 data_dir)

 # Use the 'data' DataFrame as needed

 print("Obtained data for " + ticker + " from yfinance and saved to " + data_dir + ", as " + tic
ker + ".csv")

 # Handle the error accordingly

 data = load_data_from_csv(ticker, data_dir)

 except ValueError as e:

 print(f"Error occurred: {e}")

Page | 55

9.3 Step 3: Perform rolling forecast ARIMA modeling on the dataset for each

stock.

define functions

Function to select a column from a dataframe

def get_column_data(df, column_name):

 '''

 A function to select a column from a DataFrame.

 Parameters

 df : DataFrame

 The DataFrame to select the column from.

 column_name : str

 The name of the column to select.

 Returns

 values : Series

 The values of the column.

 '''

 # Validate inputs

 if df is None:

 raise ValueError('df is required.')

 if not isinstance(df, pd.DataFrame):

 raise ValueError('df should be a pandas DataFrame.')

 if not isinstance(column_name, str):

 raise ValueError('column_name should be a string.')

 # Check if the column exists in the DataFrame

 if column_name not in df.columns:

 raise ValueError(f'Column "{column_name}" does not exist in the DataFrame.')

 # Retrieve the column data

 values = df[column_name]

 return values

 # plot original data series

def plot_original_data_series(original_data_series, title_text,

 column_name='Adj Close Price',

 index_name='Date',

 save_path=None,

 file_name='original_data_series.png'):

 '''

 A function to plot the original data series.

 Parameters

 original_data_series : Series

 The original data series.

 title_text : str

 The title of the plot.

 column_name : str

 Returns

 None.

 '''

Page | 56

 plt.figure(figsize=(10,6), dpi=100)

 plt.title(title_text)

 plt.xlabel(index_name)

 plt.ylabel(column_name)

 plt.plot(original_data_series, label='Original Data Series', color='blue')

 plt.xticks(rotation=45)

 # Get the current axes

 ax = plt.gca()

 # Automatically set the number of x-axis ticks

 ax.xaxis.set_major_locator(MaxNLocator(integer=True))

 #ax.xaxis.set_major_locator(AutoLocator())

 #plt.xticks(np.arange(0, len(original_data_series), len(original_data_series)/20))

 plt.grid(visible=True, linestyle='dotted', linewidth=0.5, axis='both', which='major', color='grey')

 plt.tight_layout()

 plt.legend(loc='best')

 # if save_path is provided, save the plot to the path

 if save_path is not None:

 # check file extension and add it if not present or replace it if present. accept png, jpg and
jpeg

 if not file_name.endswith('.png') and not file_name.endswith('.jpg') and not file_name.endswith
('.jpeg'):

 file_name = f'{file_name}.png'

 # save plot to the path

 plt.savefig(os.path.join(save_path, file_name))

 plt.show(block=False)

 # close plot

 plt.close()

Function to create metrics dataframe

def create_metrics_dataframe(rows):

 # Create an empty DataFrame with columns 'key', 'text', 'value' for holding metrics

 metrics = pd.DataFrame(columns=['key', 'text', 'value'])

 # Concatenate the rows to the metrics dataframe

 for row in rows:

 # Convert the row to a DataFrame

 row_df = pd.DataFrame(row, index=[0])

 # Concatenate the row to the metrics dataframe

 metrics = pd.concat([metrics, row_df], ignore_index=True)

 return metrics

def get_predictions_and_metrics_using_arima(actual_data_indexed, train_size):

 # ###

 # split the data into train and test sets

 train, test = actual_data_indexed[0:train_size], actual_data_indexed[train_size:len(actual_data_ind
exed)]

 train_values = train.values

 test_values = test.values

 '''

 create a history list intially containing the training data set.

 we will use this for the initial prediction

 and with each prediction, we will append the actual value to the history list and use it for the ne
xt prediction as input to the model

 '''

 history = [x for x in train_values]

 # create a list to store the test predictions

 test_predictions = list()

 # create a list to store the fitting time

 arima_model_and_fit_time_in_ms = 0

 # create a list to store the prediction time

 arima_prediction_time_in_ms = 0

Page | 57

 # walk-forward validation for each time step in the test data set

 i=0

 for observed_value in test_values:

 # get time used for model and fit

 print('ARIMA: Predicting for : ' + str(i) + '/' + str(len(test_values)))

 i += 1

 start_time_arima_model_and_fit = time.time()

 # define model configuration. use the history list as the input to the model

 model = auto_arima(history,

 start_p=1, start_q=1, d=1,

 max_p=5, max_q=2, max_d=2,

 D=1, max_D=2, m=1,

 seasonal=True,

 trace=False,

 error_action='ignore',

 suppress_warnings=True, stepwise=True)

 # fit model

 arima_model = model.fit(history)

 end_time_arima_model_and_fit = time.time()

 arima_model_and_fit_time_in_ms += (end_time_arima_model_and_fit - start_time_arima_model_and_fi
t) * 1000

 # print the summary of the model to get the model parameters

 summary = arima_model.summary()

 print('ARIMA Model Summary:')

 print(summary)

 # get prediction for the next day

 start_time_predict = time.time()

 # Predict next value

 yhat, conf_int = arima_model.predict(n_periods=1, return_conf_int=True)

 end_time_predict = time.time()

 arima_prediction_time_in_ms += (end_time_predict - start_time_predict) * 1000 # convert to ms

 # store the prediction

 test_predictions.append(yhat)

 # add the actual value to the history object for the next iteration to train the model

 history.append(observed_value)

 # get time used for fit and predict

 arima_total_time_for_model_fit_and_predict_in_ms = arima_model_and_fit_time_in_ms + arima_predictio
n_time_in_ms

 # recovery is not needed since we are using auto_arima and provided the original series as input to
the model

 # Convert test_predictions list into a Pandas Series

 flattened_test_predictions = [item for sublist in test_predictions for item in sublist]

 test_predictions_series = pd.Series(flattened_test_predictions, index=test.index)

 # calulate accuracy metrics

 rmse = sqrt(mean_squared_error(test_values, test_predictions))

 mae = mean_absolute_error(test_values, test_predictions)

 mape = mean_absolute_percentage_error(test_values, test_predictions) * 100

 max_error_value = max_error(test_values, test_predictions)

 r2 = r2_score(test_values, test_predictions)

 median_absolute_error_value = median_absolute_error(test_values, test_predictions)

 rows = [

 {'key': 'rmse', 'text': 'RMSE', 'value': rmse},

 {'key': 'mape', 'text': 'MAPE', 'value': mape},

 {'key': 'r2', 'text': 'R2', 'value': r2},

 {'key': 'max_error_value', 'text': 'Max Error', 'value': max_error_value},

 {'key': 'mean_absolute_error', 'text': 'Mean Absolute Error', 'value': mae},

 {'key': 'median_absolute_error_value', 'text': 'Median Absolute Error', 'value': median_absolut
e_error_value},

 {'key': 'arima_total_time_for_model_fit_and_predict_in_ms', 'text': 'Total Time for Fit and Pre
dict', 'value': arima_total_time_for_model_fit_and_predict_in_ms},

 {'key': 'arima_model_and_fit_time_in_ms', 'text': 'Total Time for Model and Fit', 'value': arim
a_model_and_fit_time_in_ms},

 {'key': 'arima_prediction_time_in_ms', 'text': 'Total Time for Prediction', 'value': arima_pred
iction_time_in_ms}

]

Page | 58

 # create a dataframe with columns - key, text, value for holding metrics

 metrics_df = create_metrics_dataframe(rows)

 # return the model, test_predictions_series and metrics_df

 return arima_model, test_predictions_series, metrics_df

Function to plot the actual and predicted values

def plot_actual_and_predicted_values(actual_values,

 predicted_values,

 title_text,

 index_name='Date',

 column_name='Price',

 save_path=None,

 file_name='actual_vs_predicted.png'):

 '''

 A function to plot the actual and predicted values.

 Parameters

 '''

 # plot orginal_data_series_test and test_predictions_series

 plt.figure(figsize=(10,6), dpi=100)

 plt.title(title_text)

 plt.xlabel(index_name)

 plt.ylabel(column_name)

 plt.plot(actual_values, label='Actual', color='blue')

 plt.plot(predicted_values, label='Predictions', color='orange')

 plt.xticks(rotation=45)

 # Get the current axes

 ax = plt.gca()

 # Automatically set the number of x-axis ticks

 ax.xaxis.set_major_locator(MaxNLocator(integer=True))

 # show legend

 plt.legend(loc='best')

 # if save_path is provided, save the plot to the path

 if save_path is not None:

 # check file extension and add it if not present or replace it if present. accept png, jpg and
jpeg

 if not file_name.endswith('.png') and not file_name.endswith('.jpg') and not file_name.endswith
('.jpeg'):

 file_name = f'{file_name}.png'

 # save plot to the path

 plt.savefig(os.path.join(save_path, file_name))

 #show plot

 plt.show()

 # close plot

 plt.close()

create a map to hold the metrics for each ticker

arima_metrics_map = {}

for ticker in tickers:

 try:

 data = load_data_from_csv(ticker, data_dir)

 # Use the 'data' DataFrame as needed

 print("Loaded data for " + ticker + " from " + data_dir + ", as " + ticker + ".csv")

 adj_close_data = get_column_data(data, column_name)

 # lets call the adj_close_data as ''original_data_series' so that there is no confusion

 original_data_series = adj_close_data

 # plot the original data series for visual inspection

 plot_original_data_series(original_data_series,

 f'{ticker}: {column_name} Prices: (Original Data Series)',

 'Original Data Series',

Page | 59

 'Date',

 plots_dir,

 f'{ticker}_original_data_series.png')

 # split the data into train and test data

 train_size = int(len(original_data_series) * split_ratio)

 original_data_series_train = original_data_series[:train_size]

 original_data_series_test = original_data_series[train_size:]

 # use get_predictions_and_metrics_using_arima

 original_data_arima_model, original_data_test_predictions_series, arima_metrics_df = get_prediction
s_and_metrics_using_arima(

 original_data_series,

 int(len(original_data_series) * split_ratio)

)

 # add the metrics dataframe to the map

 arima_metrics_map[ticker] = arima_metrics_df

 # save the metrics dataframe to a csv file

 arima_metrics_df.to_csv(os.path.join(results_dir, f'{ticker}_arima_metrics.csv'))

 # save test_predictions_series to a csv file

 original_data_test_predictions_series.to_csv(os.path.join(results_dir,

 f'{ticker}_arima_original_data_test_pred
ictions_series.csv'))

 # plot orginal_data_series_test and test_predictions_series

 plt.figure(figsize=(10,6), dpi=100)

 plt.title(f'{ticker}: {column_name} Prices: ARIMA - Observed Vs Predictions):ARIMA')

 plt.xlabel('Date')

 plt.ylabel(column_name)

 plt.plot(original_data_series, label='Observed(Actual)', color='blue')

 plt.plot(original_data_test_predictions_series, label='Predictions', color='orange')

 plt.xticks(rotation=45)

 # Get the current axes

 ax = plt.gca()

 # Automatically set the number of x-axis ticks

 ax.xaxis.set_major_locator(MaxNLocator(integer=True))

 # show legend

 plt.legend(loc='best')

 #show plot

 plt.show()

 # plot orginal_data_series_test and test_predictions_series

 plot_actual_and_predicted_values(original_data_series_test,

 original_data_test_predictions_series,

 f'{ticker}: {column_name} Prices: ARIMA - Observed Vs Prediction
s',

 index_name='Date',

 column_name=column_name,

 save_path=plots_dir,

 file_name=f'{ticker}_arima_original_data_test_predictions_seri
es.png')

 except ValueError as e:

 print(f"Error occurred: {e}")

select perfomance_metrics and time_metrics from arima_metrics_map and add to arima_select_performanc
e_metrics and arima_time_metrics maps

arima_select_performance_metrics = {}

arima_time_metrics = {}

arima_mean_performance_metrics = {}

arima_mean_time_metrics = {}

selected_performance_metrics = ['rmse', 'mape', 'mean_absolute_error']

selected_time_metrics = ['arima_model_and_fit_time_in_ms',

 'arima_prediction_time_in_ms',

 'arima_total_time_for_model_fit_and_predict_in_ms']

Page | 60

def calculate_mean_metrics(metrics_dict, tickers, selected_metrics):

 mean_metrics = {}

 for metric in selected_metrics:

 mean_metrics[metric] = sum(metrics_dict[ticker][metrics_dict[ticker]['key']

 == metric]['value'].values[0] for ticker in tic
kers) / len(tickers)

 return mean_metrics

for ticker in tickers:

 # add the selected performance metrics to arima_select_performance_metrics

 arima_select_performance_metrics[ticker] = arima_metrics_map[ticker][arima_metrics_map[ticker]['key
'].isin(selected_performance_metrics)]

 # add the selected time metrics to arima_time_metrics

 arima_time_metrics[ticker] = arima_metrics_map[ticker][arima_metrics_map[ticker]['key'].isin(select
ed_time_metrics)]

Calculate mean performance metrics

arima_mean_performance_metrics = calculate_mean_metrics(arima_select_performance_metrics,

 tickers,

 selected_performance_metrics)

Calculate mean time metrics

arima_mean_time_metrics = calculate_mean_metrics(arima_time_metrics, tickers, selected_time_metrics)

pring arima_select_performance_metrics and arima_time_metrics as tables using tabulate with columns -
Ticker, RMSE, MAPE, Mean Absolute Error, and title as 'Performance Metrics for ARIMA'

print('\nAccuracy Metrics for ARIMA:\n')

all_data = []

for ticker in tickers:

 ticker_data = arima_select_performance_metrics.get(ticker)

 if ticker_data is not None and not ticker_data.empty:

 all_data.append([ticker, 'RMSE', ticker_data[ticker_data['key'] == 'rmse']['value'].values[0]])

 all_data.append(['', 'MAPE', ticker_data[ticker_data['key'] == 'mape']['value'].values[0]])

 all_data.append(['','Mean Absolute Error', ticker_data[ticker_data['key'] == 'mean_absolute_err
or']['value'].values[0]])

 else:

 print(f'No data for {ticker} in arima_select_performance_metrics\n')

headers = ['Ticker', 'Metric', 'Value']

merged_table = pd.DataFrame(all_data, columns=headers)

print(tabulate(merged_table, headers=headers, tablefmt='orgtbl', showindex=False, floatfmt=".4f", numal
ign="right"))

print('\n')

'''

print arima_mean_performance_metrics and arima_mean_time_metrics as a table

with columns - RMSE, MAPE, Mean Absolute Error, and title as 'Average Performance Metrics for ARIMA

'''

print('\nAverage Accuracy Metrics for ARIMA:\n')

mean_rsme_arima = arima_mean_performance_metrics['rmse']

mean_mape_arima = arima_mean_performance_metrics['mape']

mean_mean_absolute_error_arima = arima_mean_performance_metrics['mean_absolute_error']

table_data = [['RMSE', mean_rsme_arima], ['MAPE', mean_mape_arima], ['Mean Absolute Error', mean_mean_a
bsolute_error_arima]]

headers = ['Metric', 'Value']

print(tabulate(table_data, headers=headers, tablefmt='orgtbl'))

print('\n')

pring arima_time_metrics as tables using tabulate with columns - Ticker, Model Fit Time(ARIMA), Predi
ction Time(ARIMA), Total Time for Fit and Predict(ARIMA), and title as 'Time Metrics for ARIMA'

print('\nTime Metrics for ARIMA:\n')

all_data = []

Page | 61

for ticker in tickers:

 model_fit_time_arima = arima_time_metrics[ticker][arima_time_metrics[ticker]['key']

 == 'arima_model_and_fit_time_in_ms']['value'].val
ues[0]

 prediction_time_arima = arima_time_metrics[ticker][arima_time_metrics[ticker]['key']

 == 'arima_prediction_time_in_ms']['value'].value
s[0]

 total_time_for_model_fit_and_predict_arima = arima_time_metrics[ticker][arima_time_metrics[ticker][
'key']

 == 'arima_total_time_for_mo
del_fit_and_predict_in_ms']['value'].values[0]

 all_data.append([ticker, 'Model Fit Time(ARIMA)', model_fit_time_arima])

 all_data.append(['', 'Prediction Time(ARIMA)', prediction_time_arima])

 all_data.append(['', 'Total Time for Fit and Predict(ARIMA)', total_time_for_model_fit_and_predict_
arima])

headers = ['Ticker', 'Metric', 'Value']

merged_table = pd.DataFrame(all_data, columns=headers)

'''

print(merged_table) using tabulate

with columns - Ticker, Model Fit Time(ARIMA), Prediction Time(ARIMA),

Total Time for Fit and Predict(ARIMA),

and title as 'Time Metrics for ARIMA

'''

print(tabulate(merged_table,

 headers=headers,

 tablefmt='orgtbl',

 showindex=False,

 floatfmt=".4f",

 numalign="right"))

print('\n')

print arima_mean_time_metrics as a table using tabulate with columns - Model Fit Time(ARIMA), Predict
ion Time(ARIMA),

Total Time for Fit and Predict(ARIMA), and title as 'Average Time Metrics for ARIMA'

print('\nAverage Time Metrics for ARIMA:\n')

mean_model_fit_time_arima = arima_mean_time_metrics['arima_model_and_fit_time_in_ms']

mean_prediction_time_arima = arima_mean_time_metrics['arima_prediction_time_in_ms']

mean_total_time_for_model_fit_and_predict_arima = arima_mean_time_metrics['arima_total_time_for_model_f
it_and_predict_in_ms']

table_data = [['Model Fit Time(ARIMA)',

 mean_model_fit_time_arima],

 ['Prediction Time(ARIMA)',

 mean_prediction_time_arima],

 ['Total Time for Fit and Predict(ARIMA)',

 mean_total_time_for_model_fit_and_predict_arima]]

headers = ['Metric', 'Value']

print the table using tabulate

print(tabulate(table_data,

 headers=headers,

 tablefmt='orgtbl',

 showindex=False,

 floatfmt=".4f",

 numalign="right"))

print('\n')

Page | 62

9.4 Step 4: Perform rolling forecast using LSTM and save the predictions and

performance metrics to CSV files for further analysis.

convert an array of values into a dataset matrix

def create_dataset(dataset, look_back=1):

 # dataset is a numpy array that contains the stock prices

 # look_back is the number of previous time steps to use as input variables to predict the next time p
eriod

 # dataX is the input variable while dataY is the output variable;

 dataX, dataY = [], []

 # dataX contains the previous 20 days of stock prices while dataY contains the stock prices for the n
ext day

 # if dataset is 100, look_back is 20, then the loop will run from 0 to 79

 for i in range(len(dataset)-look_back-1):

 # a will contain the stock prices from 0 to 19 in the first iteration, 1 to 20 in the second
iteration and so on

 a = dataset[i:(i+look_back), 0]

 # append the 20 stock prices to dataX at each iteration;

 #so dataX will contain 80 arrays of 20 stock prices each increasing by 1 stock price at each
iteration

 dataX.append(a)

 # append the stock price for the 21st day to dataY at each iteration;

 #so dataY will contain 80 stock prices increasing by 1 stock price at each iteration

 dataY.append(dataset[i + look_back, 0])

return dataX and dataY as numpy arrays

 return np.array(dataX), np.array(dataY)

Function to build lstm model

def build_lstm_model(hp):

 model = Sequential()

 model.add(LSTM(units=hp.Int('units', min_value=1, max_value=50, step=1),

 batch_input_shape=(batch_size, look_back, 1),

 stateful=True))

 model.add(Dense(1))

 model.compile(loss='mean_squared_error', optimizer='adam')

 return model

get predictions and metrics using lstm with rolling window

def get_predictions_and_metrics_using_lstm(actual_data_indexed, train_size):

 org_data_set = actual_data_indexed

 data_series = org_data_set.values

 # normalize the dataset

 scaler = MinMaxScaler(feature_range=(0, 1))

 data_series = scaler.fit_transform(data_series.reshape(-1, 1))

 # split into train and test sets

 train_size = int(len(data_series) * split_ratio)

 test_size = len(data_series) - train_size

 train, test = data_series[0:train_size,:], data_series[train_size:len(data_series),:]

 train_indexed = org_data_set[0:train_size]

 test_indexed = org_data_set[train_size:len(org_data_set)]

 # reshape into X=t and Y=t+1

 trainX, trainY = create_dataset(train, look_back)

 testX, testY = create_dataset(test, look_back)

 # reshape input to be [samples, time steps, features]

 # trainX.shape[0] is the number of rows in trainX, trainX.shape[1] is the number of columns in tra
inX, 1 is the number of features

 trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))

 # testX.shape[0] is the number of rows in testX, testX.shape[1] is the number of columns in testX,
1 is the number of features

 testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))

Page | 63

 # create a stateful LSTM network

 lstm_model_and_fit_time_in_ms = 0

 tuner = GridSearch(

 build_lstm_model,

 objective='val_loss',

 max_trials=5) # Set the total number of trials

 print('finding LSTM best model...')

 # start lstm model and fit time

 start_lstm_model_and_fit_time = time.time()

 # search for best model

 tuner.search(trainX,

 trainY,

 epochs=5,

 batch_size=batch_size,

 validation_data=(testX, testY)

)

 # get the best model

 best_model = tuner.get_best_models(1)[0]

 print(best_model.summary())

 # define early stopping callback

 '''

 Here, monitor is the quantity to be monitored,

 patience is the number of epochs with no improvement after which training will be stopped,

 verbose is the verbosity mode,

 verbose=0 is silent, verbose=1 is progress bar,

 verbose=2 is one line per epoch

 '''

 early_stopping = EarlyStopping(monitor='loss',

 patience=early_stopping_patience,

 verbose=1)

 # define the LSTM layer

 best_model.fit(trainX, trainY,

 epochs=nb_epoch,

 batch_size=batch_size,

 verbose=2,

 shuffle=False,

 callbacks=[early_stopping])

 # end lstm model and fit time

 end_lstm_model_and_fit_time = time.time()

 # get time used for fit and predict

 lstm_model_and_fit_time_in_ms += (end_lstm_model_and_fit_time - start_lstm_model_and_fit_time) * 10
00

 # implement walk forward validation and get predictions

 lstm_predictions = list()

 lstm_prediction_time_in_ms = 0

 # walk-forward validation for each time step in the test data set

 i=0

 for obs in test:

 # X, y = testX[i, 0, :], testY[i]

 # reshape input to be [samples, time steps, features]

 i = i + 1

 print(" LSTM: Predicting for " + str(i) + "/" + str(len(test)))

 X = trainX[-1, :, :]

 # X = X.reshape(1, 1, len(X))

 X = X.reshape(1, look_back, 1)

 start_time_lstm_prediction = time.time()

 yhat = best_model.predict(X, batch_size=1)

 end_time_lstm_prediction = time.time()

 lstm_prediction_time_in_ms += (end_time_lstm_prediction

 - start_time_lstm_prediction) * 1000

 # update train with the actual value

 updated_train = data_series[0:train_size+i,:]

 # remove the first row from train so that the number of rows in train remains the same

 train = updated_train[1:]

Page | 64

 # recreate trainX and trainY

 trainX, trainY = create_dataset(train, look_back)

 '''

 reshape into X=t and Y=t+1.

 we need it in format [samples, time steps, features]

 trainX is the input variable while trainY is the output variable

 trainX.shape[0] is the number of rows in trainX,

 trainX.shape[1] is the number of columns in trainX, 1 is the number of features

 '''

 trainX = np.reshape(trainX,

 (trainX.shape[0],

 trainX.shape[1],

 1))

 '''

 reshape into X=t and Y=t+1.

 we need it in format [samples, time steps, features]

 trainY is the output variable

 trainY.shape[0] is the number of rows in trainY,

 1 is the number of columns in trainY, i.e. the number of features

 '''

 trainY = np.reshape(trainY, (trainY.shape[0], 1))

 # invert scaling to get the actual value

 yhat = scaler.inverse_transform(yhat)

 # add to predictions

 lstm_predictions.append(yhat[0,0])

 # Update the model state for the next iteration

 best_model.reset_states()

 # create a stateful LSTM network

 print('finding LSTM best model...')

 # start lstm model and fit time

 start_lstm_model_and_fit_time = time.time()

 # return best model with updated parameters.

 # This possibly makes the model better than the previous one.

 # But, not necessarily better than the best model overall.

 tuner.search(trainX,

 trainY,

 epochs=5,

 batch_size=batch_size,

 validation_data=(testX, testY)

)

 # get the best model

 best_model = tuner.get_best_models(1)[0]

 print(best_model.summary())

 # fit the best model

 best_model.fit(trainX,

 trainY,

 epochs=nb_epoch,

 batch_size=batch_size,

 verbose=2,

 shuffle=False,

 callbacks=[early_stopping]

)

 # end lstm model and fit time

 end_lstm_model_and_fit_time = time.time()

 # get time used for fit and predict

 lstm_model_and_fit_time_in_ms += (end_lstm_model_and_fit_time - start_lstm_model_and_fit_time)
* 1000

 # invert scaling for actual

 actual_vaules = test_indexed.values

Page | 65

 # calculate metric

 lstm_rmse = sqrt(mean_squared_error(actual_vaules, lstm_predictions))

 lstm_mae = mean_absolute_error(actual_vaules, lstm_predictions)

 lstm_mape = mean_absolute_percentage_error(actual_vaules, lstm_predictions) * 100

 lstm_max_error_value = max_error(actual_vaules, lstm_predictions)

 lstm_r2 = r2_score(actual_vaules, lstm_predictions)

 lstm_median_absolute_error_value = median_absolute_error(actual_vaules, lstm_predictions)

 # get time used for fit and predict

 lstm_total_time_for_model_fit_and_predict_in_ms = lstm_model_and_fit_time_in_ms + lstm_prediction_t
ime_in_ms

 rows = [

 {'key': 'rmse', 'text': 'RMSE', 'value': lstm_rmse},

 {'key': 'mape', 'text': 'MAPE', 'value': lstm_mape},

 {'key': 'r2', 'text': 'R2', 'value': lstm_r2},

 {'key': 'max_error_value', 'text': 'Max Error', 'value': lstm_max_error_value},

 {'key': 'mean_absolute_error', 'text': 'Mean Absolute Error', 'value': lstm_mae},

 {'key': 'median_absolute_error_value', 'text': 'Median Absolute Error', 'value': lstm_median_ab
solute_error_value},

 {'key': 'lstm_total_time_for_model_fit_and_predict_in_ms', 'text': 'Total Time for Fit and Pred
ict', 'value': lstm_total_time_for_model_fit_and_predict_in_ms},

 {'key': 'lstm_model_and_fit_time_in_ms', 'text': 'Total Time for Model and Fit', 'value': lstm_
model_and_fit_time_in_ms},

 {'key': 'lstm_prediction_time_in_ms', 'text': 'Total Time for Prediction', 'value': lstm_predic
tion_time_in_ms}

]

 lstm_metrics_df = create_metrics_dataframe(rows)

 # Convert test_predictions list into a Pandas Series

 lstm_test_predictions_series = pd.Series(lstm_predictions, index=test_indexed.index)

 # return the model, test_predictions_series and metrics_df

 return lstm_test_predictions_series, lstm_metrics_df

crate a table with columns - ticker, RMSE, MAPE, Mean Absolute Error, and for each ticker in tickers
list, add the ticker and the corresponding values for RMSE, MAPE, Mean Absolute Error

lstm_metrics_map = {}

for ticker in tickers:

 data = load_data_from_csv(ticker, data_dir)

 # Use the 'data' DataFrame as needed

 print("Loaded data for " + ticker + " from " + data_dir + ", as " + ticker + ".csv")

 adj_close_data = get_column_data(data, column_name)

 # lets call the adj_close_data as ''original_data_series' so that there is no confusion

 org_data_set = adj_close_data

 test_data_set = org_data_set[int(len(org_data_set) * split_ratio):]

 # get metrics and predictions using lstm with rolling window

 lstm_test_predictions_series, lstm_metrics_df = get_predictions_and_metrics_using_lstm(org_data_set
,

 int(len(org_
data_set) * split_ratio))

 #save the metrics dataframe to a csv file

 lstm_metrics_df.to_csv(os.path.join(results_dir,

 f'{ticker}_lstm_metrics.csv'))

 # save test_predictions_series to a csv file

 lstm_test_predictions_series.to_csv(os.path.join(results_dir,

 f'{ticker}_lstm_original_data_test_predictions_ser
ies.csv'))

 # add the metrics dataframe to the map

 lstm_metrics_map[ticker] = lstm_metrics_df

 # save the metrics dataframe to a csv file

Page | 66

 # convert test_data_set to float 63 as the test_data_set is of type float64 as test_data_set is of
type float64

 test_data_set = test_data_set.astype('float64')

 lstm_test_predictions_series = lstm_test_predictions_series.astype('float64')

 # reindex test_data_set and lstm_test_predictions_series

 test_data_set = test_data_set.reindex(lstm_test_predictions_series.index)

 # plot the actual and predicted values

 plot_actual_and_predicted_values(test_data_set,

 lstm_test_predictions_series,

 f'{ticker}: {column_name} : (Actual Vs Predictions):LSTM',

 index_name='Date',

 column_name=column_name,

 save_path=plots_dir,

 file_name=f'{ticker}_lstm_original_data_test_predictions_series.pn
g')

select perfomance_metrics and time_metrics from lstm_metrics_map and add to lstm_select_performance_
metrics and lstm_time_metrics maps

lstm_select_performance_metrics = {}

lstm_time_metrics = {}

lstm_mean_performance_metrics = {}

lstm_mean_time_metrics = {}

selected_performance_metrics = ['rmse', 'mape', 'mean_absolute_error']

selected_time_metrics = ['lstm_model_and_fit_time_in_ms', 'lstm_prediction_time_in_ms', 'lstm_total_tim
e_for_model_fit_and_predict_in_ms']

for ticker in tickers:

 lstm_select_performance_metrics[ticker] = lstm_metrics_map[ticker][lstm_metrics_map[ticker]['key'].
isin(selected_performance_metrics)]

 lstm_time_metrics[ticker] = lstm_metrics_map[ticker][lstm_metrics_map[ticker]['key'].isin(selected_
time_metrics)]

Calculate mean performance metrics

lstm_mean_performance_metrics = calculate_mean_metrics(lstm_select_performance_metrics,

 tickers,

 selected_performance_metrics)

Calculate mean time metrics

lstm_mean_time_metrics = calculate_mean_metrics(lstm_time_metrics,

 tickers,

 selected_time_metrics)

pring lstm_select_performance_metrics and lstm_time_metrics as tables using tabulate with columns - T
icker, RMSE, MAPE, Mean Absolute Error, and title as 'Performance Metrics for LSTM'

print('\Accuracy Metrics for LSTM:\n')

all_data = []

for ticker in tickers:

 rmse_lstm = lstm_select_performance_metrics[ticker][lstm_select_performance_metrics[ticker]['key']

 == 'rmse']['value'].values[0]

 mape_lstm = lstm_select_performance_metrics[ticker][lstm_select_performance_metrics[ticker]['key']

 == 'mape']['value'].values[0]

 mean_absolute_error_lstm = lstm_select_performance_metrics[ticker][lstm_select_performance_metrics[
ticker]['key']

 == 'mean_absolute_error']['value
'].values[0]

 all_data.append([ticker, 'RMSE', rmse_lstm])

 all_data.append(['', 'MAPE', mape_lstm])

 all_data.append(['','Mean Absolute Error', mean_absolute_error_lstm])

headers = ['Ticker', 'Metric', 'Value']

merged_table = pd.DataFrame(all_data, columns=headers)

print(tabulate(merged_table, headers=headers,

 tablefmt='orgtbl',

 showindex=False,

 floatfmt=".4f",

Page | 67

 numalign="right"))

print('\n')

'''

print lstm_mean_performance_metrics and lstm_mean_time_metrics as a table

using tabulate with columns - RMSE, MAPE, Mean Absolute Error,

and title as 'Average Performance Metrics for LSTM

'''

print('\nAverage Accuracy Metrics for LSTM:\n')

mean_rsme_lstm = lstm_mean_performance_metrics['rmse']

mean_mape_lstm = lstm_mean_performance_metrics['mape']

mean_mean_absolute_error_lstm = lstm_mean_performance_metrics['mean_absolute_error']

table_data = [['RMSE', mean_rsme_lstm],

 ['MAPE', mean_mape_lstm],

 ['Mean Absolute Error', mean_mean_absolute_error_lstm]]

headers = ['Metric', 'Value']

print(tabulate(table_data,

 headers=headers,

 tablefmt='orgtbl'))

print('\n')

''''

print lstm_time_metrics as tables using tabulate with columns - Ticker, Model Fit Time(LSTM), Predictio
n Time(LSTM),

Total Time for Fit and Predict(LSTM), and title as 'Time Metrics for LSTM

'''

print('\nTime Metrics for LSTM:\n')

all_data = []

for ticker in tickers:

 model_fit_time_lstm = lstm_time_metrics[ticker][lstm_time_metrics[ticker]['key']

 == 'lstm_model_and_fit_time_in_ms']['value'].values
[0]

 prediction_time_lstm = lstm_time_metrics[ticker][lstm_time_metrics[ticker]['key']

 == 'lstm_prediction_time_in_ms']['value'].values[0
]

 total_time_for_model_fit_and_predict_lstm = lstm_time_metrics[ticker][lstm_time_metrics[ticker]['ke
y']

 == 'lstm_total_time_for_model
_fit_and_predict_in_ms']['value'].values[0]

 all_data.append([ticker, 'Model Fit Time(LSTM)', model_fit_time_lstm])

 all_data.append(['', 'Prediction Time(LSTM)', prediction_time_lstm])

 all_data.append(['', 'Total Time for Fit and Predict(LSTM)', total_time_for_model_fit_and_predict_l
stm])

headers = ['Ticker', 'Metric', 'Value']

merged_table = pd.DataFrame(all_data, columns=headers)

print(tabulate(merged_table, headers=headers, tablefmt='orgtbl', showindex=False, floatfmt=".4f", numal
ign="right"))

print('\n')

'''

print lstm_mean_time_metrics as a table using tabulate

with columns - Model Fit Time(LSTM), Prediction Time(LSTM), Total Time for Fit and Predict(LSTM),

and title as 'Average Time Metrics for LSTM'

'''

print('\nAverage Time Metrics for LSTM:\n')

mean_model_fit_time_lstm = lstm_mean_time_metrics['lstm_model_and_fit_time_in_ms']

mean_prediction_time_lstm = lstm_mean_time_metrics['lstm_prediction_time_in_ms']

mean_total_time_for_model_fit_and_predict_lstm = lstm_mean_time_metrics['lstm_total_time_for_model_fit_
and_predict_in_ms']

table_data = [['Model Fit Time(LSTM)',

Page | 68

 mean_model_fit_time_lstm],

 ['Prediction Time(LSTM)',

 mean_prediction_time_lstm],

 ['Total Time for Fit and Predict(LSTM)',

 mean_total_time_for_model_fit_and_predict_lstm]]

headers = ['Metric', 'Value']

print(tabulate(table_data, headers=headers, tablefmt='orgtbl'))

print('\n')

9.5 Step 5: Compare the performance of ARIMA and LSTM models using the

average RMSE, MAE, and MAPE metrics.

'''

print comparison of performance metrics for ARIMA and LSTM as a table

using tabulate

with columns - Metric, ARIMA, LSTM,

and title as 'Comparison of Performance Metrics for ARIMA and LSTM', row names the ticker symbols

'''

print('\nComparison of Accuracy Metrics for ARIMA and LSTM:\n')

all_data = []

for ticker in tickers:

 rmse_arima = arima_select_performance_metrics[ticker][arima_select_performance_metrics[ticker]['key'
]

 == 'rmse']['value'].values[0]

 mape_arima = arima_select_performance_metrics[ticker][arima_select_performance_metrics[ticker]['key'
]

 == 'mape']['value'].values[0]

 mean_absolute_error_arima = arima_select_performance_metrics[ticker][arima_select_performance_metric
s[ticker]['key']

 == 'mean_absolute_error']['valu
e'].values[0]

 rmse_lstm = lstm_select_performance_metrics[ticker][lstm_select_performance_metrics[ticker]['key']

 == 'rmse']['value'].values[0]

 mape_lstm = lstm_select_performance_metrics[ticker][lstm_select_performance_metrics[ticker]['key']

 == 'mape']['value'].values[0]

 mean_absolute_error_lstm = lstm_select_performance_metrics[ticker][lstm_select_performance_metrics[t
icker]['key'] == 'mean_absolute_error']['value'].values[0]

 all_data.append([ticker, 'RMSE', rmse_arima, rmse_lstm])

 all_data.append(['', 'MAPE', mape_arima, mape_lstm])

 all_data.append(['','Mean Absolute Error', mean_absolute_error_arima, mean_absolute_error_lstm])

headers = ['Ticker', 'Metric', 'ARIMA', 'LSTM']

merged_table = pd.DataFrame(all_data, columns=headers)

print(tabulate(merged_table, headers=headers, tablefmt='orgtbl', showindex=False, floatfmt=".4f", numal
ign="right"))

print('\n')

 # print comparison of time metrics for ARIMA and LSTM as a table

print('\nComparison of Time Metrics for ARIMA and LSTM:\n')

all_data = []

for ticker in tickers:

 arima_model_and_fit_time_in_ms = arima_time_metrics[ticker][arima_time_metrics[ticker]['key']

 == 'arima_model_and_fit_time_in_ms']['va
lue'].values[0]

 arima_prediction_time_in_ms = arima_time_metrics[ticker][arima_time_metrics[ticker]['key']

 == 'arima_prediction_time_in_ms']['value'].
values[0]

 arima_total_time_for_model_fit_and_predict_in_ms = arima_time_metrics[ticker][arima_time_metrics[tic
ker]['key']

 == 'arima_total_time_f
or_model_fit_and_predict_in_ms']['value'].values[0]

Page | 69

 lstm_model_and_fit_time_in_ms = lstm_time_metrics[ticker][lstm_time_metrics[ticker]['key']

 == 'lstm_model_and_fit_time_in_ms']['value
'].values[0]

 lstm_prediction_time_in_ms = lstm_time_metrics[ticker][lstm_time_metrics[ticker]['key']

 == 'lstm_prediction_time_in_ms']['value'].val
ues[0]

 lstm_total_time_for_model_fit_and_predict_in_ms = lstm_time_metrics[ticker][lstm_time_metrics[ticker
]['key']

 == 'lstm_total_time_for_
model_fit_and_predict_in_ms']['value'].values[0]

 all_data.append([ticker, 'Model Fit Time',

 arima_model_and_fit_time_in_ms, lstm_model_and_fit_time_in_ms])

 all_data.append(["", 'Prediction Time',

 arima_prediction_time_in_ms, lstm_prediction_time_in_ms])

 all_data.append(['','Total Time for Fit and Predict',

 arima_total_time_for_model_fit_and_predict_in_ms, lstm_total_time_for_model_fit_and
_predict_in_ms])

headers = ['Ticker', 'Metric', 'ARIMA', 'LSTM']

merged_table = pd.DataFrame(all_data, columns=headers)

print(tabulate(merged_table, headers=headers, tablefmt='orgtbl', showindex=False, floatfmt=".4f", numal
ign="right"))

print('\n')

print comparison of average performance metrics for ARIMA and LSTM as a table

print('\nComparison of Average Accuracy Metrics for ARIMA and LSTM:\n')

rmse_arima = arima_mean_performance_metrics['rmse']

mape_arima = arima_mean_performance_metrics['mape']

mean_absolute_error_arima = arima_mean_performance_metrics['mean_absolute_error']

rmse_lstm = lstm_mean_performance_metrics['rmse']

mape_lstm = lstm_mean_performance_metrics['mape']

mean_absolute_error_lstm = lstm_mean_performance_metrics['mean_absolute_error']

table_data = [

 ['Mean RMSE', rmse_arima, rmse_lstm],

 ['Mean MAPE', mape_arima, mape_lstm],

 ['Mean Mean Absolute Error', mean_absolute_error_arima, mean_absolute_error_lstm]

]

headers = ['Metric', 'ARIMA', 'LSTM']

print(tabulate(table_data, headers=headers, tablefmt='orgtbl', colalign=['center', 'right', 'right']))

print('\n')

print comparison of average time metrics for ARIMA and LSTM as a table

print('\nComparison of Average Time Metrics for ARIMA and LSTM:\n')

arima_model_and_fit_time_in_ms = arima_mean_time_metrics['arima_model_and_fit_time_in_ms']

arima_prediction_time_in_ms = arima_mean_time_metrics['arima_prediction_time_in_ms']

arima_total_time_for_model_fit_and_predict_in_ms = arima_mean_time_metrics['arima_total_time_for_model_
fit_and_predict_in_ms']

lstm_model_and_fit_time_in_ms = lstm_mean_time_metrics['lstm_model_and_fit_time_in_ms']

lstm_prediction_time_in_ms = lstm_mean_time_metrics['lstm_prediction_time_in_ms']

lstm_total_time_for_model_fit_and_predict_in_ms = lstm_mean_time_metrics['lstm_total_time_for_model_fit
_and_predict_in_ms']

table_data = [

 ['Mean Model Fit Time', arima_model_and_fit_time_in_ms, lstm_model_and_fit_time_in_ms],

 ['Mean Prediction Time', arima_prediction_time_in_ms, lstm_prediction_time_in_ms],

 ['Mean Total Time for Fit and Predict', arima_total_time_for_model_fit_and_predict_in_ms, lstm_
total_time_for_model_fit_and_predict_in_ms]

]

headers = ['Metric', 'ARIMA', 'LSTM']

print(tabulate(table_data, headers=headers, tablefmt='orgtbl', colalign=['center', 'right', 'right']))

print('\n')

Page | 70

9.6 Code Acknowledgements

The code in this appendix was developed with insights from several open-source contributors,

online resources, forums, and code snippets. These sources collectively contributed to the

understanding and implementation of specific aspects of the code. Notably, the parameter tuning

process in ARIMA, using the auto_arima function provided by the pmdarima library, drew

inspiration from the works of Sumi, Nissa et al., and Brownlee. Additionally, guidance on

ARIMA model creation and estimation, including the rolling step, was adapted from Brownlee's

blog post. The implementation of multi-step forecasts with LSTM followed the approach

presented by Mingboi, while hyperparameter tuning in LSTM was influenced by Rendyk's

method and the insights shared by Quant (Ai).

