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INTRODUCTION
The aim of this investigation is to prove Fermat's little theorem. The topic is of significance because

by making use of Fermat's Little Theorem; it becomes possible to analyze big-digit numbers and

determine whether they are prime or composite numbers. This topic is important to me because I am

very interested in learning more about prime numbers. What makes prime numbers so interesting to

me is because of their usefulness and vast properties in mathematics such as the whole number line

can be produced using prime numbers. I have read a vast amount of math number theory related to

prime numbers, such as the Eratosthenes Sieve Algorithm and The Prime Number Theorem. For

instance Sieve's Algorithm allows anyone to quickly identify prime numbers up to a limit. That is

possible by crossing out the numbers composite by the prime numbers .On the other hand, the prime

number theorem discovered by Jacques Hadamard allows mathematicians  to determine the amount of

prime numbers until a specific range. The most unique characteristic of prime numbers is that the

further away you go, the rarer they become and thus harder for us to identify them. This is why

Fermat's little theorem is so famous and relevant. We are able to try out numbers and prove whether

they are prime or composite with a simple expression, and that is why it was even more exciting for

me to carry out this project.

FERMAT’S LITTLE THEOREM1

Fermat’s little theorem states: Let p be a prime number, and a be and integer.

Then ap-a is always divisible by p.

In modular arithmetic notation, this theorem can be written as:

ap≡a mod p
This notation has the meaning that if we take an integer a and set it in power of p (where p is a prime)

and then ap is divided by p, we would be able to obtain the same remainder as if we divided a by p.

For instance; let's take the integer a=4 and the prime number p=3.

From Fermat’s little theorem we would obtain:

1 "Fermat's Little Theorem | Brilliant Math & Science Wiki."
https://brilliant.org/wiki/fermats-little-theorem/. Accessed 5 Jul. 2020.
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43≡4 mod 3
Now if we write these numbers in the remainder form we would get:

43=64

64= 3×21 + 1

4= 3×1 + 1

As it can be clearly seen in the example above, the remainder of 64 and 4 after divided by 3 is 1,

meaning that for this scenario the theorem works.

The modular arithmetic notation form is going to be used in order to prove the theorem to be true,

however in order to get into that much detail, we need to first understand what modular arithmetic is

and what its principles are.

PRIME NUMBERS2

A prime number p is a natural number greater than 1, that is not a product of two smaller natural

numbers. A natural number greater than 1 that is not a prime number is called a composite number.

For instance, number 7 is a prime number because the only ways of writing it as a product is through ,

1×7 or 7×1. However 6 is a composite number because despite the fact that it can be written as 6×1;

and 1×6, it can also be written as 3×2 and 2×3.

Prime numbers are central in number theory, because every natural number greater than 1 is either a

prime itself or can be factorized as a product of primes that is unique up to their order.

MODULAR ARITHMETIC3

Modular arithmetic is a system of arithmetic that works with integers and their remainders. In modular

arithmetic numbers (integres) reach upon a fixed quantity, which is called modulus in order to leave a

remainder.

3 "Modular Arithmetic | Brilliant Math & Science Wiki."
https://brilliant.org/wiki/modular-arithmetic/. Accessed 5 Jul. 2020.

2 "Prime Numbers | Brilliant Math & Science Wiki."
https://brilliant.org/wiki/prime-numbers/. Accessed 21 Feb. 2021.
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A famous usage of modular arithmetic is a 12-hour clock. For instance; if the time right now happens

to be 9 o’clock in the morning , after 4 hours it is going to be 1 o’clock in the evening and not 13:00

o’clock. In the same way in this example the remainder of 13 modulus 12 is going to be 1.

In other words: 13= 12×1 + 1.

The way how we would right this example in the modular arithmetic expression is going to be :

13 mod 12

This means that if we take the number 13 and divide it with the number 12 (or modulus 12) we would

obtain the remainder equal to 1.

From this example we can get into a more general expression of modular arithmetic which is:

a mod N where a;N are integers

CONGRUENT INTEGERS IN MODULAR ARITHMETIC

Two integers a and b are said to be congruent with each other if a mod N and b mod N have the same

remainder after they have been divided by N. The word congruent is going to be meant through the

usage of the symbol ≡ .

In this case the we say that:

a≡b mod N where a;b;N are integers

For instance let's take again the modulus N as 12 and the inger a = 15 and the integer b= 27.

3
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Then:

15 mod 12 will have a remainder of 3

and

27 mod 12 will have a remainder of 3

Since  15 mod 12 and 27 mod 12 have the same reminder we can say that

27≡15 mod 12

ADDITION IN MODULAR ARITHMETIC

When the remainder of a mod N is added to the remainder of b mod N, then it becomes possible to say

that this remainder is equal to the remainder of a+b mod N.

Another way to present this principle is:

a mod N + b mod N= a+b mod N
For instance; let's take the integers a=9 and the integer b=10 and let's take N=8. By this we obtain:

9 mod 8 + 10 mod 8= 9+10 mod 8
9 mod 8 has a remainder of 1 (9 = 8×1 + 1)

10 mod 8 has a remainder of 2 (10 = 8×1 + 2)

9+10 mod 8 = 19 mod 8 has a remainder of 3 (19= 8×2 + 3)

So the remainder of 9 mod 8 = 1 plus the remainder of 10 mod 8 = 2 gives us the remainder of 19

mod 8 which is equal to 3 (2+1).

In case that the sum of the remainders of two integers mod N is equal to the modulus or bigger than

the modulus, then you need to take the mod N of that integer too.

4
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MULTIPLICATION IN MODULAR ARITHMETIC

When the remainder of a mod N is multiplied to the remainder of b mod N, then it becomes possible to

say that this remainder is equal to the remainder of a×b mod N.

Another way to present this principle is:

a mod N × b mod N= a×b mod N

For instance; let's take the integers a=9 and the integer b=10 and let's take N=8. By this we obtain:

9 mod 8 × 10 mod 8= 9×10 mod 8

9 mod 8 has a remainder of 1 (9 = 8×1 + 1)

10 mod 8 has a remainder of 2 (10 = 8×1 + 2)

9×10 mod 8 = 90 mod 8 has a remainder of 2 (90= 8×11 + 2)

So the remainder of 9 mod 8 = 1 multiplied to the remainder of 10 mod 8 = 2 gives us the remainder

of 90 mod 8 which is equal to 2 (2×1).

In case that the multiplication of the remainders of two integers mod N is equal to the modulus or

bigger than the modulus, then you need to take the mod N of that integer too.

Note: The modulus N of a=0 is always going to have a remainder of 0.

PASCAL’S TRIANGLE4

Pascal’s triangle is a triangular array of the binomial coefficients constructed by summing adjacent

elements in preceding rows. It rises in combinatorics, algebra and probability theory.  It was named

after the 17th century French mathematician, Blaise Pascal.

4 "Pascal's Triangle | Brilliant Math & Science Wiki."
https://brilliant.org/wiki/pascals-triangle/. Accessed 27 Dec. 2020.
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Fig. 1 Representation of the Pascal’s triangle

It begins by placing a 1 at the top center of the triangle as shown in Fig.1. The following row down of

the triangle is formed by summing adjacent elements in the previous row. Pascal's triangle has an

infinite number of rows.

The top row is considered to be the 0th row . The following one is the 1st, and the next one the 2nd and

so on (infinitely). In each row the leftmost element is the 0th element of the row, and the n to the right

of that is the 1st element and then the 2nd and so on.

In less words each nth (from n=0) row has an n+1 element/s.

Another way to find the binomial coefficients in the Pascal's Triangle is through nCr formula, where n

is the row and r is the element of the row.

nCr= ; (n,r 0)𝑛!
𝑟!(𝑛−𝑟)! ≥

Example:

The binomial coefficient in the 2nd row and  2nd element of the row is:

2C2= = = = 12!
2!(2−2)!

2×1
2×1(0)!

2
2

Now we can use nCr in order to find the binomial coefficient of the expansion terms for every

binomial in every power.

(x+y)n = xn + nxn-1y + ... +nCr xn-r yr + ... +nxyn-1 + yn (The Pascal’s triangle is going to be used later in

the proof.)

6
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PROVING FERMAT’S LITTLE THEOREM5

Lets restate what Fermat’s little theorem says again:

Fermat’s little theorem states: Let p be a prime number, and a be and integer.

Then ap-a is always divisible by p.

ap≡a mod p
1) First we are going to deal with {0} or in other words when a=0.

a=0 => 0p mod p = (0 × 0 × … × 0) mod p ≡ 0 mod p × … × 0 mod p = 0

Thus 0p mod ≡ 0 □

2) Now we are going to prove the theorem to be prove for a∈Z+

For nonnegative a we give a proof by induction on a

Basic step

a=1;

ap mod p = 1p mod p = (1 × … × 1)p mod p≡1 mod p × … × 1 mod p ≡ 1 mod p

1 mod p = a mod p □

Assumption

For a random but fixed a∈Z+, a≥1 we assume that ap mod p ≡ a mod p is true.

Inductive step

Investigate for a+1 : (a+1)p≡ a+1 mod p.

Then using binomial theorem can write (a+1)p as:

(a+1)p = pCr ap-r

𝑟=0

𝑝

∑

(a+1)p = pC0 ap + pC1 ap-1 + pC2 ap-2 + … + pCp-1 a + pCp 1

Another thing we know is that nCr or in this case pCr can be written as:

pCr=
𝑝!

𝑟!(𝑝−𝑟)!

This means that all the coefficients in front of a are ≡ 0 mod p except for the first one and the

last one.
pC0 ap + ... + pCp 1

Are the only ones not divisible by p

5 "Fermat's Little Theorem | Brilliant Math & Science Wiki."
https://brilliant.org/wiki/fermats-little-theorem/. Accessed 6 Jul. 2020.
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The reason why is because pC0 and pCp in Pascals Triangle are always equal to 1.

pC0= = = = 1𝑝!
𝑟!(𝑝−𝑟)!

𝑝!
0!(𝑝−0)!

𝑝!
𝑝!

pC9= = = 1𝑝!
𝑝!(𝑝−𝑝)!

1
0!

So the only part not divisible by p is:

ap + 1 so:

(a+1)p≡ (ap+1) mod p

(ap+1) mod p≡ ap mod p + 1 mod p

However in the beginning of the Theorem proof , we have considered ap mod p as true and

equal to a mod p. So:

(ap+1) mod p≡ ap mod p + 1 mod p≡ ap mod p + 1 mod p;

and

ap mod p + 1 mod p ≡ ap + 1 mod p □

Final Statement

Since a=1 was shown to be true and it was also shown that if the statement is true for some ap

mod p ≡ a mod p, it is also true for (a+1)p≡ a+1 mod p, a∈Z+ , it follows by the principle of

mathematical induction that the statement is true for all positive integers.

3) Now we are going to prove the theorem to be true for a∈Z-.

(-a)p≡ (-a) mod p.

Prime numbers can be:

- Even: only the number 2

- Odd: every other prime number like 1, 3, 5 ,7 etc.

Even:

(-a)2 = a2 ≡ -(a) mod 2; However we have proven that positive integers as a2 are congruent

with a mod 2, hence proving that a2 ≡ a mod 2. □

Odd:

(-a)p ≡ (-a) mod p => -1 × ap ≡ -1 × a mod p (so now we can remove -1) => ap ≡ a mod p. □

Quod erat demonstrandum (Q.E.D)
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APPLICATION OF THE THEOREM6

Fermat’s little theorem has authentic applications in the world. Similar to other number theory based

upon prime numbers, this one is likewise used in the RSA-cryptography. RSA is an encryption

algorithm used from websites and companies to transmit messages over the internet securely. RSA is

based upon the difficulty of factoring large composite numbers and hence allowing the person who

knows the factoring numbers to see the message. Because of the difficulty in breaking RSA, it

becomes usable everywhere encryption is needed, such as online shopping, banking, password

exchange, etc. RSA strength is based upon the size of the number. For instance, when the number is

155 digits, it is insecure and simple for someone to factor the number since computers have innovated

more and more over time. For instance, Israeli researchers were able to extract a 4096-bit number in

under an hour.

CONCLUSION
Even though Pierre de Fermat wrote Fermat's little theorem in 1640, it required 96 years for Euler to

provide the first proof of this theorem. Over the years, the theory has proven to possibly be one of the

most important theorems in mathematics, making it possible for everyone to determine whether a

number is prime or composite. Because of the proof of this theorem, Euler was able to come up with

his phi function or Euler's totient function where it becomes possible to find the number of integers up

to a given integer n that are relatively prime to n. Fermat's theorem has also led to new ideas and ways

to improve the theorem itself, such as the AKS - primality test, published in 2002 at the Indian7

Institute and Technology Kanpur. This test allows us to determine whether any given number is prime

or composite, just as Fermat's theorem. A further extension to the theorem and the IA would be the

investigation of the Rabin-Miller primality test. Like Fermat's little theorem, this test allows us to8

determine whether a number is prime. Compared to Fermat, this theorem relies more upon the

unproven Riemann hypothesis instead of the modular arithmetic, thus making Fermat's theorem more9

reliable since the Riemann hypothesis has not been proven yet. The only limitation that Fermat's little

theorem provides is that it proves to be va1lid only with prime numbers.

9 "Riemann hypothesis - Wikipedia." https://en.wikipedia.org/wiki/Riemann_hypothesis. Accessed 27
Dec. 2020.

8 "Miller–Rabin primality test - Wikipedia."
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test. Accessed 27 Dec. 2020.

7 "AKS primality test - Wikipedia." https://en.wikipedia.org/wiki/AKS_primality_test. Accessed 27 Dec.
2020.

6 "RSA Encryption | Brilliant Math & Science Wiki." https://brilliant.org/wiki/rsa-encryption/. Accessed
6 Jul. 2020.
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