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1 Introduction

 
1.1 Context and Scope 
 

There is an extensive use of Computer Vision (CV) in today's day of age, and the proliferation of 

its use has advanced. CV is often used to substitute manual labour in organisations and enterprises. 

One such interesting domain is Rescue Robots. Integrating CV into Search and Rescue missions 

(SAR) facilitates their deployment in disaster relief and search operations (Flynn et al). 

 

CV is made up of Neural Networks (NNs). NNs are capable of processing raw data to output 

valuable information (“Computer Vision”). Datasets, which consist of labelled data, are fed into 

these networks to facilitate the creation of scenarios. Numerous other factors influence the 

prediction’s accuracy such as frameworks which the model is built upon. Each framework has 

unique displayed behaviour when applied to varying datasets (Li and Luo). Consequently, a 

framework that performs exceptionally well with a dataset might perform poorly with dataset. The 

variability necessitates the development of multiple frameworks and versions (“Machine Learning 

Frameworks”). 

 

For instance, during the aftermath of the meltdown of nuclear reactors in the Fukushima Daiichi 

Nuclear Powerplant (“Fukushima Daiichi Accident”). There was an urgent need for rescue robots 

to (Westcott) assess the damage, search for survivors and conduct repairs. The site was also 

experiencing harsh weather conditions such as heavy rain and strong winds. This made it hard for 

the available robots to navigate or perform tasks as they were unable to navigate through dust, 

weather and debris (Li et al.). 
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Due to the collection of environmental data through hardware such as cameras, there is little to no 

validation of the data received which could help differentiate and eliminate visuals which can't be 

interpreted by the model, thus raising a problem statement.  

 

1.2 Research Question 

 

In the recent advances in Artificial Intelligence; (AI) You Only Look Once (YOLO), which is a 

widely used framework and influential method for object detection (OD) has been brought to 

significant attention, and is often used for Real-time object detection tasks. Redmon et al 

introduced YOLO in 2015 since then, scholars have published updated iterations of the concept.  

 

This investigation aims to examine algorithms YOLOv8, YOLOv9 and YOLOv10. Recent 

versions of YOLO frameworks such as YOLOv10 released in May 2024 and YOLOv9 released in 

February 2024 lack extensive documentation, particularly in comparison with YOLOv8. Notably, 

these three frameworks have yet to be compared against each other regarding the robustness of 

their performance in varying weather conditions.  

 

This investigation will conduct an extensive evaluation of the performances of frameworks; 

YOLOv8, YOLOv9 and YOLOv10 evaluating these concerning the mean average precision, 

recall, and precision. Therefore, the research question proposed is: “How do the real-time object 

detection frameworks; YOLOv8, YOLOv9, and YOLOv10, comparatively perform in terms of 

model efficiency in detecting various objects in adverse weather conditions? “Although this 

investigation does not rely on multimodal data inputs nor videos as datasets, it emphasises the 
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detection of objects in images compromised by weather conditions– providing more insight into 

object detection in still images. With the recognition that video data or multimodal datasets could 

further enhance the quality of the research, the study aims to maintain simplicity while offering a 

foundation for future development and research.  

 

1.3 Related work 

Though there have been numerous studies on CV there seems to be a lack of documentation with 

regards to YOLOv10 and YOLOv9. A journal published in ISPRS examines the necessity of 

specialised enhancements in object detection models for adverse weather conditions but there has 

been a lack of specificity in the analysis of YOLO (Toma et al.).  Similarly, another paper released 

in 2019 shares a valuable understanding of how YOLO faces challenges in adverse weather 

conditions and further suggests the use of multimodal approaches– this paper however lacks in-

depth research using the latest YOLO models (Wang et al.). 

2 Background

 
2.1 Neural Networks 

 

2.1.1 Definitions 

 

In addition to this, it is recommended to hover through Appendix A and Appendix B to gain a 

profound understanding of Neural networks and Convolutional neural networks. 
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Terminology Definition 

Backbone Extracts crucial features from input dataset through the use of CNNs 

Neck Connects the backbone to the head. Helps aggregate features provided by 

backbone 

Head Uses features extracted through the neck and backbone to make 

predictions. 

Convolutional Layer Appliance of convolutional operations to input data to capture spatial 

hierarchies in images by extracting features. (LeCun et al.) 

Convolution  The mathematical operation is applied in convolutional layers to filter 

data by sliding a kernel/filter across input aimed at producing a feature 

map. (LeCun et al.) 

Feature maps Represents various features example, edges and textures. (LeCun, 

Bengio, and Hinton) 

Kernal size Dimension of filter used in a convolutional layer expressed as height 

multiplied by width. (LeCun et al.) 

Channel count Number of channels in an image or features (RGB or feature 

representations). (Jain) 

Post-Processing Techniques applied after a model has done learning. ("References for 

Papers") 
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Activation Function Mathematical structures applied to a neural network’s output to introduce 

non-linearity, helping the network to model complex patterns. (Jain) 

Inference Using a trained machine learning model to make predictions based on 

new data. (Jain) 

Inference cost Computational resources are required to generate predictions for 

inference. (Chollet) 

Bottleneck Series of layers where the dimensionality of feature representation is 

reduced to compress the information or improve computational 

efficiency. (Chollet) 

Anchor free 

detection 

Methods that don't rely on predefined anchor boxes, rather predicting 

object locations directly.  (Tian et al.) 

Lightweight model A network designed to be resource-efficient. (Redmon and Farhadi) 

Up-sample Process of increasing the spatial resolution of feature maps. (Odena et 

al.) 

Downsample Process of reducing spatial resolution of feature maps. (LeCun et al.) 

Decoupling Separation of different aspects of processing to allow more efficient 

architectural designs. 

Spatial reduction Decreasing spatial dimensions of feature maps. (LeCun et al.) 

Pointwise 

convolution 

Convolutional operation with kernel (Redmon and Farhadi) 
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Cross-stage partial 

connections 

A technique where feature maps are partially propagated through 

different stages of the network– enhances gradient flow. (Wang et al.) 

Spatial Pyramid 

Pooling Faster 

Pools feature maps at multiple scales to improve OD. (Hirschfeld and 

Ziemann) 

Non-Maximum 

Suppression (NMS) 

Post-processing technique which eliminates redundant bounding box 

predictions and selects the ones with high confidence. 

Non-uniform 

matching 

Approach to OD where matching between predicted bounding boxes and 

ground truth boxes are adjusted dynamically or irregularly.  

NUMS post-

processing 

Post-processing technique which leverages non-uniform matching 

strategies during.  

One-to-one head Each anchor point is assigned a single object label, facilitating simpler 

matching. (He et al.) 

One-to-one 

matching predictions 

Predicted objects are matched with one ground truth object during 

training. (Zhou et al.) 

Auxiliary 

framework 

Additional components or branches are added to the main model to 

support the learning process by supplying gradient information and 

enhancing performance. (Szegedy et al.) 

Gradient path 

planning 

A technique used to optimise the flow of gradients when 

backpropagation occurs. 
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Transformer Model Relies on self-attention mechanisms to process input in parallel. 

Efficiently handles sequential data.  

Vision transformer NN architecture that uses transformer models. 

Python SDK Software development kit with a compilation of kits, documentation and 

libraries. 

Table 1: Important Definitions and Terminologies 

 

2.2 You Only Look Once (YOLO) 

You Only Look Once (YOLO) algorithm is a family of object detectors that have iterated 

throughout the years since its initial release by Joseph Redmon in 2015 (Redmon et al.). Each 

iteration advanced its predecessors by including a novel method. YOLO is notoriously known for 

its ability to proceed with real-time object detection by dividing the input images into a grid matrix 

and predicting the bounding boxes along with its class probabilities in parallel (Redmon et al.). 

 

 

Figure 1: Process of bounding box prediction; centered coordinate prediction; use of sigmoid function; use of the 

location of the grid cell. 
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2.2.1 YOLOv8 

Compared to its predecessors YOLOv8 includes a newer backbone that consists of a CSPDarknet 

architecture (Touvron et al.) which holds 53 convolutional layers and as well as equips itself with 

cross-stage partial connections, along with this, YOLOv8 uses the SiLU activation function which 

mitigates the vanishing gradient problem (Chen et al.). This intensifies information transmission 

in deep neural networks. The C2f module combines features on a high level with context to 

enhance detection accuracy. Spatial pyramid pooling faster (SPPF) (Simonyan and Zisserman) is 

another module and the other convolutional layers process the features in variable scales. 

 

In YOLOv8 the head is detachable hence it handles classification, object scores and regression 

work independently– due to this the overall accuracy is increased. Up sample (U) layers help 

increase the resolution of provided feature maps. Convolutional layers are included in the head to 

analyse these feature maps. Overall, the head is designed to optimise its speed and accuracy and 

hence consideration is given to kernel sizes and channel count of each layer. 

 

YOLOv8 uses anchor-free detection to speed up post-processing (Non-Maximum Suppression) 

additionally YOLOv8 also includes a newer convolutional layer aimed to detect features using 

learnable filters. The input layers are detected in variable resolutions and sizes to allow the network 

to be versatile (Fischer et al.). 
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Figure 2: YOLOv8 Architecture 

Predecessors of YOLOv8 had equipped a C3 convolutional layer which YOLOv8 replaces using 

a C2f layer. The C2f layers help utilise all the bottlenecks. Splitting YOLOv8 achieves parallel 

processing. Additionally, the kernel size has been increased in YOLOv8. 

Figure 3: (a) defines bottlenecks in YOLOv5 defined as n (b) defines bottleneck layers in YOLOv8 defined as n  
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In addition to these architectural features, YOLOv8 employs user accessibility by integrating 

Python SDK and Command Line Interface (CLI) which further supports programmers to be able 

to use this model (Ahmed et al.). 

 

2.2.2 YOLOv9 

During bottleneck (Kingma and Ba) conditions, it can be especially hard for ML models to be able 

to interpret data. Traditional methods of Masked modelling (Wang et al.) and reversible 

architectures (Nijkamp et al.) had to be iterated due to their drawbacks. To address these issues 

especially the bottleneck situation YOLOv9 has proposed Programmable gradient information 

(PGI). PGI generates reliable gradient information for model network weight updates. Generalised 

ELAN (Jiang et al.) (GELAN) simultaneously takes multiple parameters such as accuracy, 

computational efficiency, and speed into account which allows this design to allow programmers 

to make decisions upon choosing appropriate computational blocks for different devices.  The 

combination of PGI and GELAN gave rise to YOLOv9. YOLOv9 proposes that increasing the 

model size accumulating more parameters and adding enhanced data transformers can help 

information retainment– however, this does not address the issue completely.  

 

The introduced auxiliary framework PGI is divided into three components. As shown in the figure 

4.  PGI is dependent on the main branch and hence it does not require inference costs, the remainder 

is utilised to solve and precisely investigate important issues in learning methods. Auxiliary 

reversible branch tries to deal with information bottleneck which occurs when the network is 

deepened which will cause the loss function to be incapable of providing reliable gradients. 
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Finally, multi-level auxiliary information handles error accumulation problems which are 

generally caused due to deep supervision. 

 

Figure 4: Three divisions of PGI 

 

GELAN is a new network architecture made from the combination of CSPNet (Ramesh et al.)  and 

ELAN (Jiang et al.) which are innately made with gradient path planning. YOLOv9’s GELAN 

takes into consideration the weight of the model, inference speed, and accuracy. GELAN validates 

PGI, especially in lightweight models.   

 

Figure 5: (a) CSPNet (b) ELAN and (c) GELAN architectures 
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2.2.3 YOLOv10 

End-to-end object detection is a shift of methodology from the past where traditional pipelines 

(Srivastava et al.) were used. Baidu’s RT-DETR (Raffel et al.) is used which is a vision transformer 

architecture. Hungarian loss is also occupied by it to reach one-to-one matching predictions 

(Viana) and hence it eliminates post-processing.   

 

YOLOs rely on NUMS post-processing to allocate positive samples for each instance to leverage 

TAL (Vaswani et al.)  during training– this is detrimental to the model’s inference efficiency. 

YOLOv10 provides an NMS-free training strategy through the use of dual labels and consistent 

matching metrics ("YOLOv10 Documentation"). 

 

As shown in Figure 6 the incorporation of one-to-one head is seen. The optimisation objective 

remains the same as the original branch of one-to-many but this leverages to obtain label 

assignments (Xu et al.). 

 

Figure 6: Architecture of YOLOv10 
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The conjoining of two heads allows the backbone to have optimal supervision ("YOLOv10: An 

Introduction"). While inference is employed to avoid inference cost, a one-to-many head is 

discarded and a one-to-one head is used, which beats Hungarian matching by utilising lesser 

training time (Xu et al.). 

 

The final regression head takes the significance performance of YOLO compared to the 

classification head. We can reduce the overhead of the classification head without hurting the 

performance; therefore, a lightweight architecture is employed ("YOLOv10: Everything You Need 

to Know"). 

 

YOLOs use standard convolution stride to achieve spatial downsampling and channel 

transformation simultaneously. This raises computational costs and parameter counts. YOLOv10 

decouples the spatial reduction and channel increase operations. Pointwise convolution is 

leveraged to modulate the dimension of the channel and further utilize depthwise convolution to 

achieve spatial downsampling. This maximises the information retained during downsampling as 

well as computational cost (Xu et al.). 

 

Rank-guided block design scheme decreases the complexity of redundant stages; essentially 

making a compact model. Compact inverted block (CIB) adopts depthwise convolution for spatial 

mixing and pointwise convolutions. Rank-guided block allocation helps achieve maximum 

efficiency while also maintaining good capacity (Xu et al.). 
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3 Methodology

 

 

Figure 7: Flow chart of investigation to be proceeded 

 

3.1 Dataset 

Roboflow is an online directory of CV model resources, including datasets. It allows the download 

of these data sets through multiple version formats and these datasets can be easily integrated into 

Google Colaboratory through the use of APIs. BDD100K is another larger dataset comprising 

videos and still images of objects in adverse weather conditions. However, due to limitations in 

hardware along with Roboflow's ease of integrating datasets into Google Colaboratory and its 

service of cloud-based data storage, Roboflow was utilised for this investigation. 
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The selected public dataset “O.D IN BAD WEATHER “("Object Detection in Bad Weather 

Dataset") contains images of labelled subjects including Bikes, Buses, Cars, Motors, Persons and 

Riders. The dataset has innately been pre-processed using auto-orientation and resized to 640x640 

pixels by its creator ("Foreign Object Aerodromes"). Furthermore, it is split into training (815 

images) validation (218 images), and test (117 images) subsets.  

 

Figure 8: Visual view of the images compiled in the public dataset ("Object Detection in Bad Weather Dataset") 

The dataset is integrated from Roboflow by the following snippet:   

  

Figure 9: Integration of Roboflow API 
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 3.2 Variables 

During training, the following parameters were kept constant across each framework: 

Parameter Value 

Epoch 25 

Batch 16 

img/imgz 640 

Plots true 

Table 2: Showcases the parameters and chosen value 

 

The dataset used remained constant throughout the investigation, with only the dataset version 

differing, which does not affect the final result; these variables act independently in this 

investigation.  

 

The dependent variables are the obtained results from each framework post-training. These results 

are retrieved by visualising the trained models. The results are stored in the training results 

directory in the workspace and the visualization is accomplished using IPython.display.  These 

raw results are then evaluated and compared against each other. 
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 3.3 Evaluation Metrics 

All models were evaluated using post-training results which are accessible in each model’s results 

directory. All the results were measured using a constant evaluation metric. The following metrics 

were visualized:  

 

1. Confusion Matrix  

2. F1-Confidence Curve 

3. Precision-Recall Curve  

4. Precision-Confidence Curve 

5. Recall-Confidence Curve 

 

Additionally, overall model results were also visualized, including mean average precision (mAP), 

losses in validation, test and training datasets, precision and recall.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)
                                  [ 1 ] 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
                                      [ 2 ] 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×   
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                         [ 3 ]  

 



20 

𝑚𝐴𝑃 =  
𝛴𝑗+1

𝑘 𝐴𝑃𝑖

𝑘
                                                                                     [ 4 ] 

 

Precision helps evaluate the robustness of the object detached whereas recall indicates the model’s 

ability to be able to detect instances of concern in the data input. The F1 score helps us measure 

both precision and recall in a balanced manner. Finally, mAP helps compare the growth truth 

bounding box and the bounding box detected by the model. The Confusion matrix summarizes 

the performance of an ML model on a set data set and includes specifics such as classes also known 

as the error matrix.  

 

A confusion matrix is usually structured through the use of: 

 

1. True Positive (TP): Number of instances where the model had correctly predicted the 

positive classes 

2. False Positive (FP): Number of instances where the model had incorrectly predicted 

positive classes. (Predicted positive, but the real class was negative.) 

3. True Negative (TN): The number of instances where the model had correctly predicted the 

negative classes. 

4. False Negative (FN): The number of instances where the model had incorrectly predicted 

negative classes. (Predicted negative, but the real class value was positive.) 



21 

Higher TP and TN values showcase the model’s performance as well subsequently higher FP 

values suggest the model is making multiple mistakes. 

 

3.4 Model Training 

To proceed with training the frameworks; Cloud GPU provided by Google Colaboratory was 

utilized due to GPU limitations. The following details specify the GPU used: 

 

Figure 10 : details of GPU used for investigation 

 

Each framework was run through constant parameters and visualised post-training.  

 

3.4.1 YOLOv8 

YOLOv8 was installed directly in the workspace using a pip function 

 

 

Figure 11: Installation of YOLOv8 
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Subsequently, the dataset was imported to the workspace using RoboFlow. The dataset version 

used for this model was yolov8 and the training was conducted using the set parameters, as shown 

in the code snippet below. 

 

 

Figure 12: Data training on YOLOv8 

 

Post the training, the model was visualised by outputting the training results. 

 

3.4.2 YOLOv9 

Despite the similarities with YOLOv8 while initializing the training process, due to the recent 

release of YOLOv9 it yet cannot be imported through a pip function, therefore the framework had 

to be cloned from its official GitHub repository. 

 

Figure 13: Installation of YOLOv9 

 

Additionally, the YOLOv9 model at the current stage cannot download the weights directly, so 

they were manually downloaded from GitHub and stored separately in the workspace.  
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Figure 14: Installation of YOLOv9 weights 

 

The parameters were kept constant for YOLOv8, and the training results were extracted and 

visualized post-training. 

 

 

Figure 15: Data training on YOLOv9 

 

3.4.3 YOLOv10 

Similar to YOLOv9, the recent release of YOLOv10 means it cannot be downloaded using a pip 

function and hence it was to be imported by cloning its GitHub repository. 

 

Figure 16: Installation of YOLOv10 
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Following this, the weights were manually downloaded and stored in the workspace separately. 

 

 

Figure 17: Installation of YOLOv10 weights 

 

The dataset was downloaded in the same manner similar to YOLOv9 and YOLOv8.  However, 

the model version remained yolov9 due to the unavailability of a yolo10 data type version. This 

change did not affect the performance. YOLOv10 was trained using constant parameters and 

visualized post-training results. 

 

 

Figure 18: Data training on YOLOv10 
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3.5 Hypothesis 

This study hypothesises that YOLOv10 will outperform the other models in precision, especially 

for well-defined object classes like cars and motors. NMS-free strategy and dual-head architecture 

employed by YOLO will aid this. However, YOLOv8 may have a higher recall because of its 

CSPDarknet backbone and finally YOLOv9 will exhibit higher precision in detecting small or 

occluded objects due to the introduction of PGI and GELAN. 

4 Results and Analysis

 

4.1 Tabular Representation  

 Precision Recall mAP50 

Class YOLOv8 YOLOv9 YOLOv10 YOLOv8 YOLOv9 YOLOv10 YOLOv8 YOLOv9 YOLOv10 

All 0.677 0.475 0.658  0.263 0.377 0.192 0.286 0.378 0.203  

Bike 0.603 0.334 1 0.04 0.12 0 0.7 0.115    0 

Bus 0.523 0.424 0.418 0.425 0.525 0.275 0.412 0.469      0.288 

Car 0.704 0.705 0.603 0.709 0.749 0.631 0.741 0.777      0.655 

Motor 1 0.575 1 0 0.145 0 0.02 0.209      0.7 

Person 0.498 0.454 0.301 0.261 0.355 0.198 0.285 0.348      0.171 

Rider 1 0.372 1 0 0.211 0 0.081 0.286     0 

Truck 0.414 0.461 0.288 0.403 0.532 0.242 0.369 0.445 0.203 

Table 3: Comparison of YOLOv8, YOLOv9 and YOLOv10’s performances regarding Precision, Recall and mAP50 
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Precision: YOLOv8 provides the highest Precision overall (0.677), compared to YOLOv9 (0.475) 

and YOLOv10 (0.658). YOLOv9 has the lowest overall precision, suggesting that it may produce 

more false positives, lastly, YOLOv10 has slightly lower precision than YOLOv8 but higher than 

YOLOv9, indicating YOLOv10 holding a balance. 

 

Recall: YOLOv8 employs the lowest Recall (0.263) hence it misses more objects in the input; 

This could be a significant drawback in addressing adverse weather conditions. YOLOv9 has a 

higher Recall (0.377) than YOLOv8 but still is behind YOLOv10, indicating a better ability to 

detect in challenging environments. YOLOv10 has the highest recall (0.658), making it able to 

detect most objects which is crucial in adverse weather. 

 

mAP50: YOLOv8 shows a middle-group performance in mAP50 (0.286) but is however 

outperformed by YOLOv9 (0.378), indicating YOLOv9 has better accuracy. Lastly, YOLOv10 

has the lowest mAP (0.203), indicating that while it detects multiple objects, the accuracy of these 

predictions is lower compared to YOLOv9 and YOLOv8. 

 

4.2 Graphical Representation  

 

Figure 19: Colour coding for object classes 
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The image above showcases the colour assigned to each object class. The results graph each object 

class result on each evaluation metric. 

 

4.2.1 F1-Confidence 

 

Graph 1: Graphical Result of YOLOv8, YOLOv9 and YOLOv10 on F1-Confidence Curve 

YOLOv9 stands out to be the most balanced model across all the classes, with a higher and more 

stable F1 score over a range of confidence levels. YOLOv10’s tabular results reflect its generally 

lower F1 scores. YOLOv8 lastly, provides a more moderate performance, with less consistent F1 

scores which makes this framework more consistent than YOLOv10 and less favourable compared 

to YOLOv9. 
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4.2.2 Precision on Recall 

 

Graph 2: Graphical Result of YOLOv8, YOLOv9 and YOLOv10 on Precision/Recall Curve 

 

YOLOv9 exhibits its balance by offering the best trade-off between precision and recall across 

most object classes consequently YOLOv10 shows strong precision for certain classes but tends 

to lose precision rapidly as recall increases, particularly for smaller or more complex objects. 

Lastly, YOLOv8 is less consistent than YOLOv9 with a more significant drop in precision as recall 

increases across several classes. 

4.2.3 Precision on Confidence 

 

Graph 3: Graphical Result of YOLOv8, YOLOv9 and YOLOv10 on Precision/Confidence Curve 

 



29 

YOLOv9 is presented as the most balanced model, by showcasing consistent and dependable 

accuracy thresholds for the majority of object classes. YOLOv10 achieves excellent precision but 

with greater variability between classes; overall, its performance may be less consistent and more 

class-dependent. Lastly, while YOLOv8 performs reasonably well, YOLOv9 often outperforms it, 

particularly when it comes to consistency across various object classes. 

 

4.2.4 Recall on Confidence 

 

Graph 4: Graphical Result of YOLOv8, YOLOv9 and YOLOv10 on Recall/Confidence Curve 

YOLOv9 once again is exhibited to be the most balanced, by maintaining higher recall across a 

range of confidence levels. YOLOv10 rapidly declines in recall as confidence increases, indicating 

a strong preference for high precision at the expense of recall. YOLOv8 generally struggles to 

maintain recall as the confidence is increased especially compared against YOLOv9 
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4.2.5 Confusion Matrix 

 

Graph 5: Confusion Matrices of YOLOv8 

 

Graph 6: Confusion Matrices of YOLOv8, YOLOv9 and YOLOv10 
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Graph 7: Confusion Matrices of YOLOv8, YOLOv9 and YOLOv10 

 

YOLOv8 excels in predicting the class car but then showcases confusion with the background 

class and often misclassifies the background as car. YOLOv9 however improves this by offering 

a more balanced performance with normalized data regardless it does struggle with 

misclassification. Lastly, YOLOv10 outperforms the other models by maintaining overall 

accuracy and not consuming background with other classes, making it the most effective of the 

three of them.  
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4.3 Analysis 

YOLOv8 has a high precision for classes such as Motor and Car and low precision for classes Bus 

and Truck this can be because of the CSPDarknet backbone as it is optimized for well-designed 

objects like cars and motors. Larger scale objects such as trucks could introduce challenges due to 

variability of size especially when distorted by adverse weather conditions.  

 

Furthermore, reliance on convolutional layers, which are effective for high-contrast features may 

be the cause of low recall as high-contrast features are diminished by adverse conditions. 

Additionally, YOLOv8’s anchor-free detection can make the model less reliable regardless of 

increasing the speed of detections.  

 

The C2f model in YOLOv8 combines high-level features with context which can be effective in 

environments which are high in contrast and clear. However, given a dataset with distortions for 

this investigation, YOLOv8 is unable to maintain a balance in mAP50. It becomes low in classes 

where these distortions are more pronounced.  

 

The use of anchor-free detection may have caused YOLOv8 to struggle with objects whose 

position and size vary unpredictably this directly contributes to the steep in the recall furthermore, 

the confusion matrix showcases misclassification between objects and the background, especially 

for Truck, this can be justified because of the use of CSPDarknet which is generally excellent for 

extracting complex features and hence there is a chance that noise and other elements could have 

confused the architecture to pick it up as well and in return why the model confuses objects such 

as trucks with the background.  
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YOLOv9 shows variability in precision-recall curves, and includes sharp declines in classes like 

Bike and Person– though YOLOv9 can maintain high precision it struggles with recall, especially 

in challenging detection scenarios. This is possible due to the introduction of PGI– which can 

affect gradient stability and make the model more sensitive to confidence thresholds.  

 

  

YOLOv9 exhibits more fluctuation in the precision/confidence curve, especially at lower 

confidence levels– GELAN’s impact could have led to affect gesture aggregation, which may not 

always provide constant gesture quality across different classes, in return, this could lead to the 

precision and confidence variability. Similarly, the recall/confidence curve also showcases a 

noticeable sharp drop in YOLOv9 in recall as confidence increases– This suggests the model is 

cautious in its detections when operating under high confidence thresholds. 

 

Achieving high true positive rates for Cars and trucks but also showing confusion in the 

background category, particularly in bike and motor can be justified due to the model’s sensitivity 

to background features whilst using GELAN– which aggregates features from different scales but 

doesn't effectively separate foreground objects from the background. Higher cross-entropy losses 

for these classes define the model’s struggle with class separability, particularly under the noise of 

adverse conditions.  

 

YOLOv10 exhibits a conservative precision-recall trade-off. This is evident in the sharp decline 

of recall as precision increases– the NMS-free strategy employed can likely be the cause of this, 

which optimizes precision by eliminating overlapping detections but this costs the recall.  
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The weighting on precision may cause the model to prioritise certain high-confidence predictions 

which can lead to a low recall, especially for objects that are harder to detect–for example, objects 

smaller in size or covered by fog or adverse factors.   

 

The dual head architecture could reason for the model’s high precision at higher confidence and 

variability of precision at lower confidence– the model might over-prune detection from one-to-

many heads during inference. Consequently, the recall/confidence curve showcases the decline of 

YOLOv10– this is because the model sacrifices recall to ensure higher precision. Decoupling of 

spatial and channel operations may also contribute to this making the model less sensitive to details 

which is necessary for detecting smaller objects.  

 

The Confusion matrix suggests that YOLOv10 shows significant confusion in the background 

particularly with smaller classes such as Person and Motor. YOLOv10 reduces post-processing 

through NMS-free strategies this can contribute to filtering out lower confidence detection that 

would otherwise be true positives.  The higher rates of false positives specifically in the 

background can be justified by the confidence-weighted prediction strategy where the model 

focuses on precision during inference and could lead to overconfidence in background 

misclassifications.  
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5 Conclusion

 

From this investigation, it was interpreted that in the evolution of frameworks from YOLOv8 to 

YOLOv10, there is a trend towards refining precision and recall. YOLOv9 serves substantial 

improvements compared to YOLOv8 making it robust for a wide range of OD tasks, especially in 

challenging environments. Technically, even though YOLOv10 is more advanced, it does not 

justify its performance. Given the evidence from the results, generally, YOLOv9 is suggested for 

OD in bad weather due to its balance and reliability compared to other models used in this 

investigation. However, in conclusion after the result analysis, the best model does not exist and 

can only be generalised. To gain maximum benefit, it is recommended to consider the performance 

of these frameworks to be case-dependent. YOLOv10 can be considered for specialized scenarios 

such as situations where the need for high precision is required, high confidence environments and 

specialised OD, similarly, YOLOv8 can be considered for lightweight applications and 

environments with low complexity.  

 

6 Further Scope

 

According to this investigation; resulted in a sequence of best-performing to least-performing 

frameworks. There is scope to implement multiple framework models in a singular workspace 

aimed at one task and leverage the importance of each model’s output to be case-dependent, similar 

to how weights work in a neural network– this approach could help the rescue robot not be 
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dependent on a singular framework rather multiple working frameworks which are enhanced in a 

particular field such as precision. 

 

7 Limitations and Challenges

 

The investigation would have been carried out to be more sophisticated perhaps if the dataset was 

not too small. It is hard to generalise and train a model using a small dataset. The BDDK100 dataset 

was not used to due poor computational power and hardware limitations. Furthermore, the usage 

of other modes of data types such as videos and other multimodal options would have further 

enhanced the integrity of this research but it was not proceeded with due to yet again limitations 

of resources, hence the investigation improvised to providing investigation upon a smaller data set 

with only still-images which gives rise for further studies in the future.  

 

It took plentiful hours to find the dataset which matched this investigation's aim in addition to more 

time spent playing around with Google Colaboratory and the framework implementation and 

numerous inferences and model training to be done before this investigation. 

 

The lack of proper documentation which YOLOv10 held made it immensely hard to be able to 

understand the architecture of the model. However, through the use of official documents, the 

GitHub repository and a few research journals this was made possible. Highlighting the extensive 

time taken to evaluate each research before referencing through their acceptance in terms of peer 

review and citations.  
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9 Appendices

 
  

9.1 Appendix A: Terminology 
 

Terminology Definition 

Multimodal Integration of multiple data types. 

Grid Matrix Division of an image into separate grid cells. 

Bounding boxes Boxes which are used to localize and locate objects in an image are defined 

by coordinates. 

Deep Neural 

Networks 

Neural network with multiple hidden layers between input and output. 

Computation  Process of performing calculations through technology 

Information 

retainment 

The ability of a NN to retain information to utilize later 

Cloud-based data 

storage 

Storing data on remote servers which are accessed via the internet 

API keys Identifiers which are used to authenticate access to a program 

Table 1: Additional basic terminology  

 

9.2 Appendix B: Background 
 

9.2.1 Artificial Neural Networks (NNs)  

 

A neuron contains data and each neuron contains different activation values in essence the 

activation value decides upon the significance of the neuron (Sanderson). The more significant a 

neuron it is likely to increase significance of the neuron subsequently to the neuron forward, the 

less significant the neuron is cancelled out. Assigning weights to neuron connections between 
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layers helps classify and manually tweak the significance of each neuron to be specific about 

results (Sanderson). 

 

𝑤1𝑎1 +  𝑤2𝑎2  + 𝑤3𝑎3 +. . . +𝑤𝑛𝑎𝑛                                                                         [ 1 ] 

 

The above equation describes the addition of weight (Sanderson). The weighted sum would give 

the specific feature which is looked up for. Each neuron consists of biases which is a scalar value 

added to the weighted sum before passing the result through an activation function which is used 

to adjust the output of each neuron along with the weighted inputs.  

 

9.2.2 Convolutional Neural Networks (CNNs)  

 

Computer vision involves the computer interpreting stimuli from its environment-- to achieve this 

a CNN is used. CNN helps interpret visual data on a sophisticated basis. There are multiple ways 

to interpret data such as; Object recognition, detection or segmentation. 

 

Figure 1: Classification, Localization and Segmentation Visualization 

 

CNN is implemented through the use of " blocks " of convolution, it is essential to define 

Kernels/filters as wanted to be able to feature extract effectively (Hinton et al.). Kernels and Filters 
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describe small matrices used for convolutional operations. They help detect specific features in 

input data. 

 

𝑞𝑖
𝑙 = 𝑓(𝑏𝑖

𝑙 + ∑ 𝑤𝑖𝑗  × 𝑥𝑗 + 𝑗𝑑−1
𝑗=0 )                                                                [1] 

𝑞𝑖𝑗
𝑙 = 𝑓 (𝑏𝑖𝑗 + ∑ ∑ 𝑤

(𝑖+𝑘)(𝑗+𝑚)

𝑥(𝑖+𝑘)(𝑗+𝑚)𝑑2
𝑚=0

𝑑1
𝑘=0 )                                                                     [2] 

 

Equation [1] The equation calculates the output 𝑞𝑖𝑗
𝑙  of a neuron by applying intended activation 𝑓 

to the weighted sum of its inputs plus the bias, with an additional term 𝑗 included. 𝑞𝑖𝑗
𝑙  represents 

the output of a neuron 𝑖 in layer 𝑙. 𝑏𝑖𝑗
𝑙  represents the bias which has been added to the weighted 

sum of inputs. Equation [2] describes a neuron in a CNN where the output is calculated by applying 

the activation function to the sum of weighted inputs like [1] but over a local receptive field. The 

double summation reflects the process of convolving a filter across the input space to compute the 

neuron’s output.  

 

The output undergoes pooling to aggregate an emphasis on key features, achieved by reducing the 

spatial dimensions. Various pooling techniques are available such as average pooling, sum 

pooling, and max pooling (Karn). 

 

Figure 2: General structure of a CNN  
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(Liu et al.) Single-stage detectors identify objects in a single pass and hence remove the necessity 

for a separate region proposal step (like R-CNN). By employing multiple convolutional feature 

maps and varying scales for bounding box predictions, these detectors can effectively identify 

objects of different sizes and shapes in a single forward pass. Examples of single-shot detectors 

include the YOLO framework (Devlin et al.) 

 

Figure 3: Abstract architecture of a single-stage object detector 
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9.3 Appendix D: Investigation Code 

 


