

Extended Essay

Word count: 4000

Table of contents

1 Introduction ... 1

2 Approaching the problem .. 2

3 Tile of dimension 1 2 and board of dimension 2β ... 3

3.1 Tile of dimension 1 2 and board of dimension 2 1 .. 3

3.2 Tile of dimension 1 2 and board of dimension 2 2 .. 3
3.3 Tile of dimension 1 2 and board of dimension 2 3 .. 4

3.4 Tile of dimension 1 2 and board of dimension 2n .. 4

3.5 Derivation of the recursive formula ... 6

3.6 Dynamic programme of the recursive formula .. 7

3.7 Summary ... 8

4 Tile of dimension 1α and board of dimension α β ... 9

4.1 Total number of tile arrangements where α β .. 9

4.2 Function and code for tile arrangements where α β .. 10

4.3 Total number of tile arrangements where α β .. 11

4.4 Function and code for tile arrangements where α β .. 12

4.5 Total number of tile arrangements where α β .. 13

4.6 Function and code for tile arrangements where α β .. 14

4.7 Final function and code for the research question ... 14

5 Extension of the research question ... 18

5.1 Derivation of the explicit formula for the Fibonacci sequence ... 19

5.2 Inductive proof of the explicit formula for the Fibonacci sequence ... 22

5.1 Derivation of the explicit formula for the research question .. 24

6 Conclusion ... 29

Works cited .. 30

1

1 Introduction

The topic of dynamic programming has always been of great significance to me, as I am

highly interested in the field of programming; I aspire to become a computer scientist one day.

Over the past few years, dynamic programming has found its way into multiple fields, including

exploitation of natural resources (Stensland and Tjostheim 99), management of finance (Elton

and Gruber 473) and, in recent years, modern technology, such as path finding algorithms in

GPSs (Spouge 1552). As technology advances, dynamic programming is expected to grow more

and more a viable option for effectively optimising programmatic procedures, allowing for

faster computation of information.

This paper will focus on determining whether dynamic programming can be used as an

effective method of logical problem solving. In their journal article, “The Computational

Implications of Variations in State Variable/State Ratios in Dynamic Programming and Total

Enumeration”, Samuel G. Davis and Edward T. Reutzel describes the nature of dynamic

programming as follows:

Dynamic programming computational efficiency rests upon the so-called principle of

optimality, where it is possible to decompose combinatorial problems into individual sub-

problems (stages). The sub-problems are solved independently and linked together through the

use of state variables which reflect optimal decisions for other (preceding) stages. (1003)

Simply put, dynamic programming is a mathematical method in which past answers are

incorporated in solving future problems. A fundamental example of dynamic programming

includes the recursive function for determining the factorial of a non-negative integer, which can

be denoted as follows:

f
f

  








(1) (1)
()

1 (0)

n n n
n

n

provided n is a non-negative integer.

Thus, to test the potential of dynamic programming, this paper will investigate whether

it would be possible to answer the following classic mathematical problem, henceforth research

question, through the use of dynamic programming:

“What is the total number of ways in which α1 tiles can fit in a α β board?”

2

2 Approaching the problem

In order to solve this problem, I will be formulating a mathematical function and

writing code in C. As a basic demonstration, the aforementioned function for calculating the

factorial of a non-negative integer will be converted into code written in C; henceforth, numbers

in bold in the output section of a code will refer to values that have been input into the code:

Code:

#include <stdio.h>

int Factorial(int num) {
 if (num == 0)
 return 1;

 return num * Factorial(num - 1);
}

int main(void) {
 int num;

 scanf("%d", &num);
 printf("%d \n", Factorial(num));

 return 0;
}

Output:

6
120

When input a value of 6, the function recalls itself with an input value of 5, again with

an input value of 4, and so on, until it reaches an input value of 0 and returns the collective

product of the preceding inputs.

Thus, one may safely assume that the final function derived from the research question

may also make use of a recursive function which repeats itself until termination.

3

3 Tile of dimension 1 2 and board of dimension β2

In order to find a solution and derive a recursive function for the problem, the simplest

case of the problem, “What is the total number of ways in which 1 2 tiles can fit in a β2

board?”, will first be analysed. Cases of 1 1 tiles and a 1 β board will not be analysed as it

is obvious there exists only one arrangement for each case, making it trivial to conclude so. In

order to represent that  is a natural number, the set, , will be introduced, where

 {1, 2, 3, 4, } . Henceforth, the set, , will be used to denote the set of natural numbers.

3.1 Tile of dimension 1 2 and board of dimension 2 1

As β , the initial step in approaching the problem would be to examine the total

number of ways in which 1 2 tiles can fit in a 2 1 board, as the smallest value in the set,

, is 1. Without a doubt, even those with a rudimentary understanding of geometry would

realise that there exists only one way in which 1 2 tiles can fit in a 2 1 board:

Although not too interesting at first glance, as the horizontal length of the board, β ,

increases, the total number of possible positionings begin to present somewhat of an interesting

pattern.

3.2 Tile of dimension 1 2 and board of dimension 2 2

In order to determine what this pattern exactly is, the possible posistionings of the next

simplest case of the problem will be computed, with tiles of dimensions 1 2 and board of

dimensions 2 2 :

2

b)

2

2

2

Figure 2: Possible arrangements of 1 2 tiles in a 2 2 board

2

a)

1

Figure 1: Possible arrangements of 1 2 tiles in a 2 1 board

a)

4

By placing one of the 1 2 tiles into a horizontal position, it naturally forces the

following tile to also be placed horizontally inside the board, allowing for a total of two possible

positionings. This structure of horizontal and vertical tiles plays a crucial role in determining

the overall number of tile arrangements as in some cases, both vertical and horizontal tiles may

constitute an arrangement of tiles within a board.

3.3 Tile of dimension 1 2 and board of dimension 2 3

Namely, the next simplest example, which in this case is with tiles of dimensions 1 2

and board of dimensions 2 3 , effectively demonstrates how both vertical and horizontal tiles

may coexist within a tile arrangement:

Applying these patterns of placing a tile vertically or horizontally to decrease the

horizontal length of the board allows one to obtain a recursive formula that returns the total

number of tile arrangements.

3.4 Tile of dimension 1 2 and board of dimension 2n

As mentioned above, placing the first tile vertically in the board decreases the

horizontal length of the total available area for tile placement by 1 unit. Henceforth, shaded

regions in a diagram will represent unoccupied areas within a board:

As the 1 2 tile occupies a certain area of the board, the problem is now reduced to

2

a)

3

b) c)

n

2

a)

2

3

2

3

Figure 3: Possible arrangements of 1 2 tiles in a 32 board

Figure 4: Arrangement of one 1 2 tile in a 2 n board

5

finding the number of possible arrangements within a board with width, (1)n :

From this point on, one may repeat the process to reduce the problem until there

remains no additional space for further tile placements.

The problem may also be reduced by inserting the first tile horizontally. As the first tile

is inserted horizontally into the board, the following tile is forced horizontally either beneath or

above the preceding horizontal tile, depending on the position of the first horizontal tile:

Similar to the case of vertical tiles, the problem is now reduced to finding the number of

possible arrangements within a board of width, (2)n :

One again, the reduced problem may be solved over and over again until there remains

no space for additional tiles.

a)

n

2

b)

2

b)

2 2n

2

1

Figure 7: Arrangement of two 1 2 tiles in a 2 n board with distinction between tiles and remaining space

1n

Figure 5: Arrangement of one 1 2 tile in a 2 n board with distinction between tile and remaining space

Figure 6: Arrangement of two 1 2 tiles in a 2 n board

6

3.5 Derivation of the recursive formula

Analysis of the pattern above suggests that the total number of possible tile

arrangements arrangements with 1 2 tiles and a β2 board is equal to the sum of the total

number of possible tile arrangements with a  β2 (1) board and a  β2 (2) board.

Therefore, the recursive function for calculating the total number of possible tile arrangements

with 1 2 tiles and a β2 board can be computed as follows:

f f f  β β β() = (1) (2)

provided β .

However, in certain circumstances, the recursive formula above does not successfully

compute unless some of its beginning values are assigned a certain output. For example, when

input a value of 3, the recursive function, f f f (3) (2) (1) , cannot be calculated unless there

exist constant outputs for both f (2) and f (1) . These output values are otherwise known as

initial conditions, which are values required when starting a dynamic system.

In this case, the output values for the initial conditions have already been calculated

from Figure 1 and Figure 2, prior to deducing the recursive function; f (1) 1 and f (2) 2 .

Thus, the fuction may be newly denoted as follows:

f

f f



 

   







β

β β

β β β

1 (1)

() 2 (2)

(1) (2) (3)

provided β .

The recursive formula above presents some interesting characteristics that become

more apparent once listed:

β 1 2 3 4 5 6 7 8 9 10

f β() 1 2 3 5 8 13 21 34 55 89

Figure 8: First ten outputs of the recursive formula derived from the case with 1 2 tiles and 2 β board

7

Some avid enthusiasts of mathematics may instantly realise that this pattern almost

perfectly resembles the classical Fibonacci sequence, with the only difference being the

omission of the initial term, 1:

1, 1, 2, 3, , 1 2n n nF F F   ,

3.6 Dynamic programme of the recursive formula

 Thus, the aforementioned function may now be compiled into code for easier

computation of each different case of the simplifed dynamic programming question, “What is

the total number of ways in which 1 2 tiles can fit in a β2 board?”. The code below

includes some extra lines of text for added user-friendliness.

Code:

#include <stdio.h>

int totalWays(int beta)
{

 if (beta == 1)
 return 1;
 else if (beta == 2)
 return 2;
 else
 return totalWays(beta - 1) + totalWays(beta - 2);
}

int main(void)
{

 int beta;
 printf("The total number of ways in which 1*2 tiles can fit in a 2*β

board. \n");
 printf("Input variable β: ");
 scanf("%d", &beta);

 printf("Total number of ways: %d \n", totalWays(beta));
 return 0;
}

Output:

The total number of ways in which 1*2 tiles can fit in a 2*β field.
Input variable β: 8

Total number of ways: 34

8

3.7 Summary

Ultimately, one may deduce that the total number of ways in which 1 2 tiles can fit in

a β2 board resembles a recursive pattern in which the output is equal to the collective sum

of the outputs involving cases with a  β2 (1) board and a  β2 (2) board. One may also

infer from this simplified scenario that the solution to the main question, “What is the total

number of ways in which α1 tiles can fit in a α β board?”, will also most definitely make

use of recursion.

9

4 Tile of dimension α1 and board of dimension α β

 Now, back to the main topic of discussion, calculating the the total number of ways in

which α1 tiles can fit in a α β board. Since it would virtually be impossible to derive

individual sets of functions for each different scenario, the three main conditions in which the

total number of tile arrangements depends on will be analysed to compute a collective function.

Such three conditions are:

1. α β

2. α β

3. α β

provided ,α β

4.1 Total number of tile arrangements where α β

Proposition:

Provided ,α β , when the length of the tile, α , is greater than the horizontal length

of the board, β , the total number of tile arrangements is equal for all cases: one.

Proof:

A visual rendition of a case involving tiles of dimensions 1 n and board of

dimensions  n n m() , where n, m and n m , demonstrates how there exists only one

possible tile arrangement for all cases where α β :

 Since α n , the length of the tile itself should also be n . Considering that the length

of the tile, n , is greater than the horizontal length of the board, n m , and that the tiles can

only be placed in rectilinear orientations, it can be deduced that all tiles must be and can only be

placed vertically in the board:

n m

n

Figure 9: Empty  n n m() board

10

 Thus, it can be deduced that there is one possible tile arrangement in cases involving

α1 tiles and a α β board, where α β .

4.2 Function and code for tile arrangements where α β

 The function for the total number of tile arrangements where α β can, therefore, be

readily computed as follows:

f () 1α, β

provided α, β and α β .

 The portion of the code responsible for computing the output of this function may be

represented as follows where the function returns the value, 1, if α β . Since the Include

syntax

#include <stdio.h>

and the main function

int main(void) {
 ····
 return 0;
}

remain constant regardless of the recursive function, the two blocks of code will henceforth be

omitted when representing derived functions in code format. Therefore, the representation of

the code is as follows:

n m

n

Figure 10: Total permutations of case involving a  n n m() board

11

int totalWays(int alpha, int beta) {

 if (alpha > beta)

 return 1;

}

Thus, when α , the length of the tile and vertical length of the board is greater than β ,

the horizontal length of the board, the total number of tile arrangements will always be one.

4.3 Total number of tile arrangements where α β

Proposition:

Provided ,α β , when the length of the tile, α , is equal to the horizontal length of

the board, β , the total number of tile arrangements is equal for all cases: two.

Proof:

A visual representation of a case with tiles of dimensions 1 n and board of

dimensions n n , where n , demonstrates how there exists only two possible tile

arrangements for all cases, where α is equal to β :

 Placing a tile vertically into the board would force the following tile to also be placed

vertically, as the horizontal length would decrease by 1 unit, making it impossible for the second

tile to be placed horizontally. This pattern also applies to when the first tile is placed

horizontally into the board; the following tiles will be forced in horizontally. This exact concept

has been explored above with cases involving 1 n tiles and a  (1)n n board:

n

n

Figure 11: Empty n n board

12

 With cases where α β , the tile arrangements can either be initiated by placing a tile

vertically or horizontally, leading to a total of two possible permutations; the remaining space

would be filled with tiles in the same orientation as the initial tile. Thus, it can be deduced that

there exist two possible tile arrangements in cases involving α1 tiles and a α β board,

where α β .

4.4 Function and code for tile arrangements where α β

 Thr function for tile arrangements where α β can be readily computed as follows:

f α, β() 2

provided α, β and α β .

 The portion of the code responsible for computing the output of this function may be

represented as follows, where the function returns the value, 2, if α β :

int totalWays(int alpha, int beta) {
 if (alpha == beta)
 return 2;
}

 Thus, when α , the length of the tile and vertical length of the board is equal to β , the

horizontal length of the board, the total number of tile arrangements will always be two.

n 1

Figure 12: Total permutations of case involving a n n board

n

n

n

n

1

n

1

n 1 n

13

4.5 Total number of tile arrangements where α β

Proposition:

Provided ,α β , when the length of the tile, α , is less than the horizontal length of

the board, β , the total number of tile arrangements will vary for each case in a recursive

manner, very much like the Fibonacci sequence.

Proof:

 Figure 3 suggests that in cases with 1 2 tiles and a 2 3 board, both horizontal and

vertical tiles may coexist within the board. This is due to the nature of the board as it is

guaranteed that there will remain space for additional tiles. The number of tile placements

varies depending on the length of the tile (the vertical length of the board) and the horizontal

length of the board. This idea can be demonstrated through a visual representation of two

possible initial permutations in cases involving tiles of dimensions α1 and board of

dimensions α β , where α n and  β n m , hence, where α β :

 After the first tile is inserted, additional tiles may either be placed in three different

types of arrangements

1. only vertically

2. only vertically or only horizontally

3. both vertically and horizontally

depending on the relationship between the length of the tile, n, and the horizontal length of

unoccupied space within the board, m, with the conditions being

1. n m

2. n m

3. n m

Figure 13: Total initial permutations of case involving a  n n m() board

m n

 n m 1 1

n n

14

respectively.

 This finding suggests that whilst the number of tile arrangements resulting from

conditions 1 and 2 outputs the values 1 and 2 respectively, the number of tile arrangements

resulting from condition 3 would solely depend on the dimension of the unoccupied area of the

board after a tile has been inserted. This concept can be applied to derive the final recursive

function for the case of α1 tiles and a α β board where α β .

4.6 Function and code for tile arrangements where α β

Figure 13 suggests that when computing the total number of ways in which α1 tiles

can fit in a α β board, where α β , only two different states need to be considered: α β

board with remaining space of dimensions  α β(1) and α β board with remaining space

of dimensions  α β α() . As additional tiles can only be placed in empty areas, the recursive

function can be defined by referring to the unoccupied space within the board. Thus, the

recursive function for calculating the total number of possible tile arrangements with α1

tiles and a α β board, where α β , can be computed as follows:

1f f f  α, β β β α() = () ()

provided α, β and α β .

The portion of the code responsible for computing the output of this function may be

represented as follows where the function recalls itself until terminating condtions, if α β :

int totalWays(int alpha, int beta) {
 if (alpha < beta)
 return totalWays(beta - 1, alpha) + totalWays(beta - alpha,

alpha);
}

 Thus, when α , the length of the tile and vertical length of the board is less than β ,

the horizontal length of the board, the total number of tile arrangements will vary depending on

the values of α and β .

4.7 Final function and code for the research question

 The final function for the dynamic programming question can be deduced as the

following:

15

f

f f



 

   







α β

α, β α β

β β α α β

1 ()

() 2 ()

(1) () ()

provided β .

Other than for cases where α , the length of the tile and vertical length of the board is

greater than of equal to β , the horizontal length of the tile, the function will behave recursively

until α β and returns a constant value of either 1 or 2.

Piecing together the final three derived blocks of code

int totalWays(int alpha, int beta) {

 if (alpha > beta)

 return 1;

}

int totalWays(int alpha, int beta) {
 if (alpha = beta)
 return 2;
}

int totalWays(int alpha, int beta) {
 if (alpha < beta)
 return totalWays(beta - 1, alpha) + totalWays(beta - alpha,

alpha);
}

from three different conditions

1. n m

2. n m

3. n m

respectively, the finished code can be represented as follows. Similar to the code from 3.6, the

code below includes some extra lines of text for added user-friendliness:

16

Code:

#include <stdio.h>

int totalWays(int beta, int alpha)

{

 if (alpha > beta)

 return 1;

 else if (alpha == beta)

 return 2;

 else

 return totalWays(beta - 1, alpha) + totalWays(beta - alpha,

alpha);

}

int main(void)

{

 int alpha, beta;

 printf("The total number of ways in which 1*α tiles can fit in a α*β

board. \n");

 printf("Input variable α: ");

 scanf("%d", &alpha);

 printf("Input variable β: ");

 scanf("%d", &beta);

 printf("Total number of ways: %d \n", totalWays(beta, alpha));

 return 0;

}

Output:

The total number of ways in which 1*α tiles can fit in a α*β board.

Input variable α: 5

Input variable β: 44

Total number of ways: 119305

 Comparing with actual values were obtained from The On-Line Encyclopedia of Integer

Sequences, , it can be confirmed that the function works as intended:

α β Actual value f α, β()

2 24 75025 75025

2 25 121393 121393

2 26 196418 196418

2 27 317811 317811

2 28 514229 514229

2 29 832040 832040

3 30 58425 58425

4 35 43371 43371

5 40 38740 38740

6 45 37975 37975

7 50 39173 39173

8 55 41623 41623

(OEIS)
Figure 12: Total permutations of case involving a n n board

17

In conclusion, it can be deduced that the dynamic programming question, “What is the

total number of ways in which α1 tiles can fit in a α β board?”, can be solved through the

use of recursive functions, making it possible to recreate the problem using code for easier,

more efficient computation of the inputs, α and β .

18

5 Extension of the research question

 Although seemingly fast and efficient, dynamic programmes do have one limitation,

being that every input, other than the initial conditions, can only be computed once its sub-

inputs have been computed. This means that as the input increases in value, the number of

computations subsequently increase, leading to inefficient, time-consuming calculations . This

problem can in fact be observed from the derived function above.

The addition of the “time.h” library allows the code to print the runtime of each trial

after execution:

α β Runtime (s)

2 40 3.114000

2 41 4.976000

2 42 7.928000

2 43 12.561000

2 44 21.062000

2 45 32.354000

3 50 2.452000

4 60 2.997000

5 70 4.112000

6 80 5.854000

7 90 8.181000

8 100 11.931000

 As the values of α and β increase, the runtime of each trial consequently increases

exponentially. In fact, the device I used to measure the runtime of this function could not at all

compute any greater values; hence, could not list further values. Therefore, In order to solve this

issue of long computation times, I aim to devise an explicit formula for estimating the result for

the research question, which is built upon Binet’s formula and the Golden Ratio.

0

5

10

15

20

25

30

35

(2, 40) (2, 41) (2, 42) (2, 43) (2, 44) (2, 45)

R
u

n
ti

m
e

(s
)

(α, β)

Runtime (s) by (α, β)

0

2

4

6

8

10

12

14

(3, 50) (4, 60) (5, 70) (6, 80) (7, 90) (8, 100)

R
u

n
ti

m
e

(s
)

(α, β)

Runtime (s) by (α, β)

19

5.1 Derivation of the explicit formula for the Fibonacci sequence

 As mentioned in 3.5, the Fibonacci sequence is as follows, where a certain term is the

sum of its two preceding terms:

1, 1, 2, 3, , 1 2n n nF F F   ,

This nature of the Fibonacci sequence makes it almost impossible to efficiently

calculate large inputs through recursion, as computing an output for a certain input requires the

outputs of all of its preceding inputs. There exists, however, an explicit formula that allows the

computation of the nth term of the Fibonacci sequence: Binet’s formula. In my case, I have

decided to approach Binet’s formula through limits and linear recurrence equations.

As terms in the Fibonacci sequence grow larger, the ratio between two consecutive

Fibonacci terms approach a certain value, otherwise known as the Golden Ratio (Heyde, 1079).

Henceforth, this value – the golden ratio – will be denoted as “Φ ”.

lim




n

n
n

F
Φ

F 1

 Substituting n with n 1 returns the following limit:

lim 




n

n
n

F
Φ

F
1

2

 As the ratios between nF and nF 1 , nF 1 and nF 2 both tend towards the same

irrational constant, Φ , an equation describing the equality between the ratios of consecutive

Fibonacci terms can be defined as follows:

lim lim 

 
 

 n n

n n
n n

F F
Φ

F F
1

1 2

 Consider the recursive formula of the Fibonacci sequence:

1 2n n nF F F  

20

Hence, nF from lim lim 

 
 

 n n

n n
n n

F F
Φ

F F
1

1 2

 can be substituted with 1 2n nF F  to

return:

lim lim

lim lim

  

 
 

 

 
 


 

  

n n n

n n
n n

n n

n n
n n

F F F
Φ

F F

F F
Φ

F F

1 2 1

1 2

2 1

1 2

1

 The equation above shows that lim 




n

n
n

F
Φ

F
1

2

, suggesting that lim 




n

n
n

F

F Φ
2

1

1
, therefore:

 

 

  

Φ
Φ

Φ Φ

Φ Φ

2

2

1

1

1 0

1

 The quadratic formula,
  b b ac

a

2 4

2
, can be used to determine Φ :

         





 







22 (1) (1) {4 1 (1)}4

2 2 1

1 5

2

1 5 1 5
or

2 2

b b ac

a

 However, since nF , it is evident that nF 0 , therefore, lim




n

n
n

F

F 1

0 , meaning that

Φ 0 ; thus,


Φ
1 5

2
.

 Considering that 1 2n n nF F F   is in fact a recurring equation, one may make use of

the linear recurrence equation

     n n n k n ka c c ca a a1 1 2 2

21

where the ic are non-negative integers. Knowing that the recurring formula, 1 2n n nF F F   ,

has two initial conditions, the general solution of the linear recurrence equation

 
n n

na c x c x1 1 2 2

may be obtained, where ix represents the each of the two roots of the quadratic equation

above:
1 5

2
 and

1 5

2
. Substituting the two initial conditions, F 1 1 and 1F 2 , the two

following equations can be derived from the linear recurrence equation:

 

 
 

   
      
   

F c x c x

c c

1 1
1 1 1 2 2

1 1

1 2

1 5 1 5
1

2 2

 

 
 

   
      
   

F c x c x

c c

2 2
2 1 1 2 2

2 2

1 2

1 5 1 5
1

2 2

 From these two equations, the follwing system of equations is derived:

 
 

 
 

    
       
    


   
       
   

c c

c c

1 2

1 2

1 5 1 5
1

2 2

3 5 3 5
1

2 2

This system of equations can be solved as follows to derive c 1 and c 2 :

22

   
  

     


 

 
 





 

       
              
       

   
      
   

   
      
   

 
  
 

c c c c

c c

c c

c c

c

c

c

2 1 21

1 2

1 2

11

1

1

2

1 5 1 5 3 5 3 5

2 2 2 2

1 5 3 5 3 5 3 5

2 2

1 5 1 5
1

2 2

2 5
1

2

1

5

1

5

 Thus, the final explicit formula for computing the nth term of the Fibonacci sequence can

be defined as follows:

()


 
 

 
 

 


   
      
   

     
       
     

1 1 5 1 1 5

2 25 5

1 1 5 1 5

2 25

5

n n

n

n n

n n

F

Φ Φ

5.2 Inductive proof of the explicit formula for the Fibonacci sequence

 In order to prove that the derived explicit formula above is true for all cases n ,

proof by induction will be used. Henceforth, let P n() be the proposition that
()


 


5

n n

n

Φ Φ
F

holds true for all cases n , where nF is the nth Fibonacci term and


Φ
1 5

2
.

23

1. Check that P n() is true for when n 1 and n 2

()

()

3 3





 


 








 


 








   
   
   

 
 
 

   
   
   

 
 
 

Φ Φ
F

Φ Φ
F

1 1

1

2 2

2

5

1 5 1 5

2 2

5

2 5

2

5

5

5 5

2 2

5

2 5

2

5

1

1

 Therefore, it can be proved that the base cases for P n() holds true.

2. Assume that P n() is true for when n k and n k 1 

()

()



  



 


 


k k

k

k k

k

Φ Φ
F

Φ Φ
F

1 1

1

5

5

24

3. Prove that P n() is true for when n k 2 

 

() ()

() ()

 

      

   

 

 

     
 

     

       

2 1

2 2 1 1

1 1

1

()

5 5 5

5

(1) () {() 1}
5

1

1

k k k

k k k k k k

k k k k

k k

F F F

Φ Φ Φ Φ Φ Φ

Φ Φ Φ Φ

Φ Φ Φ Φ

From   Φ Φ2 1 0 it can be known that  Φ Φ 21 and  
   

1 2() () 1Φ Φ .

Substituting these values into the equation above returns the following:

 

 

  

     

   

 




  

   

2 2

2 2

2 2

() () {() 1 1}
5

() ()
5

()

5

LHS RHS

1

1

k k

k k

k k

Φ Φ Φ Φ

Φ Φ Φ Φ

Φ Φ

 Thus, by the principle of mathematical induction, P n() holds true for all cases n .

5.1 Derivation of the explicit formula for the research question

 Intuition lead me to exploring the ratios of different sequences which exist in the form

of n n n   ma a a1 and discovering that these ratios can be utilised to derive explicit formulas

that are quite accurate in estimating the nth term of a sequence. To explain the process in which

the formula is derived, the sequence, n n n  N N N1 3 , otherwise known as Narayana’s cows

sequence (“A000930 As a Simple Table.”), will be analysed.

 The ratio of consecutive terms in Narayana’s cows sequence also converges to a certain

value, which will henceforth be denoted as φ . The limit is as follows:








n

n
n

N

N 1

1.465571231

1.4656

lim

25

 The values of ratios will henceforth be truncated to four decimal places, as it will be

sufficient to output a fairly accurate value. This limit in particular also happens to be the real

positive root of the polynomial, f   φ φ φ3 2() 1 , as suggested by the following graph:

 Further investigation of different sequences in the form of n n n   ma a a1 reveals that

there exists a correlation between the ratios of increasing consecutive terms and the real

positive root of polynomials in the form of f


  
1() 1m mx x x . This convergent ratio was

calculated through the list of sequences on The On-Line Encyclopedia of Integer Sequences, and

the real positive root of the f


  
1() 1m mx x x polynomial was determined by means of

Wolfram Alpha’s “Solve for x calculator”:

m lim
n

n
n




a

a 1

  0 
    

m m
x x x x

1
1

2 1.61803398⋯ 1.61803398⋯

3 1.46557123⋯ 1.46557123⋯

4 1.38027756⋯ 1.38027756⋯

5 1.32471795⋯ 1.32471795⋯

6 1.28519903⋯ 1.28519903⋯

7 1.25542287⋯ 1.25542287⋯

8 1.23205463⋯ 1.23205463⋯

(OEIS; rfreberg)

Figure 14: Graph of f   φ φ φ
3 2

() 1

26

 Therefore, it can be deduced that the ratio of increasing consecutive terms in the

sequence, n n n   ma a a1 , is equal to the real positive root of the polynomial,

f


  
1() 1m mx x x . I intuitively tried substituting Φ from Binet’s formula with the ratio of

consecutive terms in Narayana’s cows sequence, henceforth denoted as φ , and derived a new

equation for estimating the nth term of the sequence.

 Since the 5 from
()


 


5

n n

n

Φ Φ
F would change depending on the ratio of

consecutive terms, I believed that substituting the ratio and calculating for the denomiator for

the nth term for when n approaches infinity would allow the derivation of a new denominator, x.

()

()

()



 









 

 

 











2.39671370

2.3967

lim lim

1.4656 1.4656
lim

1.4656 1.4656
lim

n n

n
n n

n n

n

n n

n
n

φ φ
N

x

x

x
N

 Therefore, for the case of Narayana’s cows sequence, the explicit formula for estimating

the nth term of the sequence can be derived as follows, where φ 1.4656 , a value which

approximates to the ratio between two consecutive terms from the sequence:

()


 


2.3967

n n

n

φ φ
N

 Testing for a random input of 20 returns a fairly accurate result:

27

output actual

actual

()

()

()







 

 

 


 


 

 











n n

n

n n

φ φ
N

N 20

20 20

2.3967

1.4656 1.4656

2.3967

1.4656 1.4656
872

2.3967

872.35921140

Value Value
Percentage error 100

Value

872.35921140 872
100

872

0.00041193 100

0.04119397

 0.0412%

 Although not perfect, the equation does return quite an accurate result, with a

percentage error of 0.0412%. However, this equation is not fully reliable when it comes to

smaller inputs, as the outputs tend to deviate significantly from the actual values:

output actual

actual

()

()

()







 


 


 





 


 

 



n n

n

φ φ
N

N
3 3

3

3 3

2.3967

1.4656 1.4656

2.3967

1.4656 1.4656
1

2.3967

1.44604577

Value Value
Percentage error 100

Value

1.44604577 1
Percentage error 100

1

0.44604577 100

44.60457



722

44.6046%

28

 Analysis of the percentage errors of cases involving different values of m in the

recursive equation, n n n   ma a a1 , further supports this observation, as the percentage

uncertainty of the output of the explicit formula nears 0% as n approaches infinity.

 Thus, it can be concluded that the explicit formula for the dynamic programming

question can be used as a means of estimating the nth term of a given sequence, but is not

accurate enough when it comes to smaller inputs; therefore, can only be used as a band-aid

solution to the issue of long computation times.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

P
er

ce
n

ta
ge

 e
rr

o
r

(%
)

n

Percentage error (%) by n for each m

m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

29

6 Conclusion

 Returning to the original research question, “What is the total number of ways in which

α1 tiles can fit in a α β board?”, the total number of arrangements depends on three

different conditions:

1. α β

2. α β

3. α β

provided ,α β

 A conclusive recursive formula can then be derived based on these conditions:

f

f f



 

   







α β

α, β α β

β β α α β

1 ()

() 2 ()

(1) () ()

 Although this function can be used to accurately compute an output for a given case,

due to the recursive nature of the function, efficient computation becomes impossible as inputs

increase in value. To tackle this issue of inefficient recursive calculations, the explicit formula for

calculating the nth term of the Fibonacci sequence, Binet’s formula,
()


 


5

n n

n

Φ Φ
F , where


Φ

1 5

2
, can be examined and modified to derive an explicit formula for closely estimating the

total number of arrangements of a given case:

() 


 


n n

nA
x

where lim
A

A





 n

n
n 1

 and x is a converging variable for when n approaches infinity.

 Though I believe that an explicit formula for computing an exact output exists, due to

time and knowledge constraints, I am unable to deduce such a formula.

30

Works cited

“A000045 As a Simple Table.” The On-Line Encyclopedia of Integer Sequences, 2018,

oeis.org/A000045/list.

“A000930 As a Simple Table.” The On-Line Encyclopedia of Integer Sequences, 2018,

oeis.org/A000930/list.

“A003269 As a Simple Table.” The On-Line Encyclopedia of Integer Sequences, 2018,

oeis.org/A003269/list.

“A003520 As a Simple Table.” The On-Line Encyclopedia of Integer Sequences, 2018,

oeis.org/A003520/list.

“A005708 As a Simple Table.” The On-Line Encyclopedia of Integer Sequences, 2018,

oeis.org/A005708/list.

“A005709 As a Simple Table.” The On-Line Encyclopedia of Integer Sequences, 2018,

oeis.org/A005709/list.

“A005710 As a Simple Table.” The On-Line Encyclopedia of Integer Sequences, 2018,

oeis.org/A005710/list.

Davis, Samuel G., and Edward T. Reutzel. “The Computational Implications of Variations in State

Variable/State Ratios in Dynamic Programming and Total Enumeration.” Journal of the

Operational Research Society, vol. 35, no. 11, 1984, pp. 1003–1011.,

doi:10.1057/jors.1984.196.

Elton, Edwin J., and Martin J. Gruber. “Dynamic Programming Applications in Finance.” The

Journal of Finance, vol. 26, no. 2, May 1971, pp. 473–506., doi:10.2307/2326061.

Heyde, C. C. “On a Probabilistic Analogue of the Fibonacci Sequence.” Journal of Applied

Probability, vol. 17, no. 04, Dec. 1980, pp. 1079–1082.,

doi:10.1017/s0021900200097369.

rfreberg. “Solve for X Calculator.” Wolfram|Alpha, 2018 Wolfram Alpha LLC—A Wolfram

Research Company, 7 Sept. 2011,

www.wolframalpha.com/widgets/view.jsp?id=7953c4ea52a4873d32cc72052f3dcb10.

Spouge, John L. “Speeding up Dynamic Programming Algorithms for Finding Optimal Lattice

Paths.” SIAM Journal on Applied Mathematics, vol. 49, no. 5, Oct. 1989, pp. 1552–1566.,

doi:10.1137/0149094.

Stensland, Gunnar, and Dag Tjostheim. “Optimal Investments Using Empirical Dynamic

Programming with Application to Natural Resources.” The Journal of Business, vol. 62,

no. 1, Jan. 1989, pp. 99–120., doi:10.1086/296453.

